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3 Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, Equipe RADOPT

ABSTRACT
Sparse regularisation has proven its worth and effectiveness in
many fields, such as medical imaging. In this sense, nuclear
magnetic resonance spectroscopy (MRS) is one of the modali-
ties that could greatly benefit from sparse regularisation. This
paper introduces a novel Bayesian approach for MRS restora-
tion that accounts for possible errors in the observation linear
operator. The algorithm is tailored to the complex nature of
MRS data, incorporating both real and imaginary parts of the
spectrum. An MCMC (Markov chain Monte Carlo) inference
is conducted using a Gibbs sampler strategy. The method has
been successfully validated on both synthetic and clinical data
of high-grade brain tumor glioblastoma (GBM) patients. This
study will enable further analysis of metabolites of interest
not conventionally considered in clinics because of their un-
detectable concentration.

1 Introduction
Brain magnetic resonance spectroscopy (MRS) is a power-
ful non-invasive exploration technique that provides highly
valuable information on the biochemical composition and
metabolic activity of the brain. Furthermore, MRS plays a
crucial role in oncology, enabling clinicians to characterise
tumors and even to target the therapy according to their
metabolic abnormalities [1, 2].

However, the analysis of MRS data can be very challeng-
ing, mainly due to the inherently low signal-to-noise ratio
(SNR). Among the most prevalent techniques, the linear com-
bination model (LCM) fitting method is one of the most com-
mon approaches [3]. In this approach, the contribution of each
metabolite to the overall spectrum is modelled using a dedi-
cated response function known as a basis spectrum, which
acts as the observation operator. Regarding LCM methods,
based on inverse problem solving, there is a wide range of
ready-to-use softwares relying on different algorithms, start-
ing from the simple non-linear least-squares analysis [4] to
approaches based on Bayesian inference [5].

Addressing the challenges of inverse problem resolution
in brain MRS requires innovative methodologies that not

only enhance the quantification of well-known metabolites
but also open avenues for the discovery of hidden compounds
not yet analysed because no method could detect their pres-
ence drowned in noise. One promising approach to overcome
these challenges consists of promoting signal sparsity via
Bayesian inference. This paper investigates a new method
for sparse regularisation of MRS signals accounting for ob-
servation operator errors. The above-mentioned method has
been previously proposed and validated for EEG (electroen-
cephalogram data) [6, 7]. Modifications have been applied
to adapt the algorithm to the nature of MRS data that are
complex, which requires a specific processing. The proposed
approach enables the estimation of both the target coefficients
and the linear operator in the observation model. Meanwhile,
the other model parameters and hyperparameters are auto-
matically estimated from the available data. This involves
the construction of a hierarchical Bayesian model using a
specific likelihood and suitable priors. Finally, a Markov
Chain Monte Carlo (MCMC) algorithm is used to generate
samples that are asymptotically distributed according to the
target distribution, ensuring highly reliable estimate for all
the model parameters.

This paper is structured as follows. Section II introduces
the proposed Bayesian method. Section III evaluates the per-
formance of this method using synthetic and in vivo MRS
imaging (MRSI) data. Finally, conclusions are presented in
Section IV, where the findings are summarised and future per-
spectives are discussed.

2 Proposed Method
2.1 Problem formulation
Let a = (a1, ..., aM )T ∈ RM

+ be the target vector, contain-
ing the contribution of M metabolites to the observed signal,
measured by y ∈ CP through a linear operator H ∈ CP×M .
The operator H stands here for the metabolite basis set, where
each column corresponds to the spectral pattern of a single
metabolite. Accounting for the additive complex-valued ac-
quisition noise n ∈ CP , the observation model we are inter-



ested in can be written as:

y = Ha+ n. (1)

Since all metabolites do not necessarily contribute to the mea-
sured spectrum y, the metabolites contribution vector a is as-
sumed to be sparse. We therefore aim to apply a sparse regu-
larisation strategy to estimate the unknown coefficients of a in
a Bayesian framework. More specifically, we propose to ex-
tend the Bayesian sparse regularisation method developed in
[6] to the case of complex-valued signals, while also account-
ing for potential errors in the estimation of the linear operator
H [7]. In this article, a Bernoulli-exponential distribution is
proposed as prior for the target vector a and a Gaussian prior
for the linear operator H.

2.2 Hierarchical Bayesian model
In this section, we introduce the hierarchical Bayesian model
employed, outlining both the chosen likelihood and priors.

2.2.1 Likelihood
Under the assumption of complex-valued additive Gaussian
noise of covariance matrix Ψ = σ2

nI , the likelihood can be
expressed as follows:

f(y|a, σ2
n,H) =

1

πPσ2P
n

exp

(
−∥y −Ha)∥2

σ2
n

)
, (2)

where ∥.∥ is the ℓ2 norm.

2.2.2 Priors
Bayesian inference requires to define prior information about
the unknown model parameters, i.e., a, σ2

n and H. These
priors are described in this section.
Target vector a
Long echo-time spectroscopy (TE ≥ 130 ms) is often associ-
ated with sparse signals in the frequency domain. In order to
promote the sparsity of the vector a, a Bernoulli-exponential
prior is assigned to each coefficient ai leading to:

f(ai|ω, λ) = (1− ω)δ(ai) +
ω

λ
exp

(
−ai

λ

)
1R∗

+
, (3)

where δ(.) is the Dirac function, λ > 0 is the parameter of the
exponential distribution, and ω is a weight in ]0, 1[ that en-
ables to control the proportion of zero coefficients. This prior
has found widespread application in literature for the sparse
reconstruction of noisy images and signals [8]. Assuming the
prior independence of a1, ..., aM , the joint prior of a is:

f(a|ω, λ) =
M∏
i=1

f(ai|ω, λ). (4)

Noise variance σ2
n

To guarantee the positivity of σ2
n and keep this prior non-

informative, a Jeffreys prior is assigned to σ2
n:

f(σ2
n) ∝

1

σ2
n

1R+
(σ2

n), (5)

where 1R+(ξ) = 1 if ξ ∈ R+ and 0 otherwise.
Operator H
To account for possible inaccuracies in the observation oper-
ator H, we adopt here a complex-valued Gaussian prior to the
vectorized observation operator h, with a diagonal covariance
matrix Υ = σ2

hI and mean h̄:

f(h|h̄, σ2
h) =

1

(πσ2
h)

PM
exp

(
−∥h− h̄∥22

σ2
h

)
. (6)

This prior allows one to assume that the observation opera-
tor is close to its mean h̄, which is the reference basis set of
metabolites quantified in the spectrum [9]. Note that h̄ is as-
sumed to be known and that σ2

h is a hyperparameter, which
will be estimated jointly with the other model parameters.
The unknown parameter vector to be estimated is denoted by
θ = {a,h, σ2

n, σ
2
h} in what follows.

2.2.3 Hyperparameter priors
Hyperprior on ω
A uniform distribution on the simplex ]0, 1[ has been used for
ω as a non informative prior, i.e., ω ∼ U]0,1[(ω).
Hyperprior on λ
Since λ is real positive, a conjugate inverse-gamma (IG) dis-
tribution has been used as a hyper-prior for this parameter:

f(λ|α, β) = IG(λ|α, β) = βα

Γ(α)
λ−α−1 exp

(
−β

λ

)
, (7)

where Γ(.) is the gamma function, while α and β are hyper-
parameters set to α = β = 10−3. These values of α and β
ensure a non-informative prior for λ.
Hyperprior on σ2

h

A Jeffreys’ prior is assigned to σ2
h (as for σ2

n):

f(σ2
h) ∝

1

σ2
h

1R+
(σ2

h). (8)

2.3 Bayesian inference scheme
We adopt here a Maximum A Posteriori (MAP) strategy in
order to estimate the model parameters vector θ based on the
likelihood, the priors and hyperpriors introduced here-above.
Denoting as Φ = {λ, ω, σ2

h} the hyperparameter vector, the
posterior distribution of {θ,Φ} writes:

f(θ,Φ|y, α, β) ∝ f(y|θ)f(θ|Φ)f(Φ|α, β). (9)

Assuming independence between the model parameters, the
conditional distribution f(θ|Φ) can be derived from the prod-
uct of distributions (4), (5) and (8). Akin to [6, 7], we propose
to use a Gibbs algorithm to iteratively sample according to
the conditional distributions of (9), i.e., f(a|y, ω, λ,h, σ2

n),
f(σ2

n|y,a,h), f(h|σ2
h,y,a) f(λ|a, α, β), f(ω|a), f(σ2

h|h).
The conditional distributions f(λ|a, α, β) and f(ω|a) are the
same as in [6], whereas f(σ2

n|y,a,h) and f(σ2
h|h) are the

following inverse gamma distributions:

σ2
n|y,a,h ∼ IG(σ2

n|P, ∥y −Ha∥22),
σ2
h|h ∼ IG(σ2

h|PM, ∥h− h̄∥22). (10)



2.3.1 Sampling according to f(h|σ2
h,y,a)

Decomposing h on the orthonormal basis {V1, · · · ,VMP}
such that h = h−l + hlVl, where h−l stands for h where
hl has been set to 0, straightforward calculations yield the
following conditional distribution for hl:

hl|a,y, σ2
n,h−l, h̄, σ

2
h ∼ N (µl, σ

2
l ), (11)

where σ2
l =

σ2
hσ

2
n

σ2
n+σ2

ha
2
l

, µl = σ2
l

(
h̄l

σ2
h
+ aTVl

Tzl

σ2
n

)
, zl = y −

hT
−la and T means “transpose conjugate”.

2.3.2 Sampling according to f(a|y, ω, λ,h, σ2
n)

Decomposing a on the orthonormal basis {U1, . . . , UM} such
that a = a−i + aiUi, where a−i is the vector a whose ith el-
ement has been set to 0, straightforward calculations, as those
performed in [8], lead to the conditional distribution:

f(ai|ω, λ, σ2,a−i,y,h)

= ω0,iδ(ai) + ω1,iΨ
+(ai, µi, σ

2
i ).

(12)

The resulting distribution is a truncated Bernoulli Gaussian
distribution with a mean µi and a variance σ2

i , given by:

Ψ+(ai, µi, ρi) =
1

C(µi, ρi)
e
− (ai−µi)

2

2ρi ,

where:
C(µi, ρi) =

√
πρi
2

[
1 + erf

(
µi√
2ρi

)]
,

and µi and ρi are given by:

ρi =
σ2
n

∥hi∥2
, and µl,i = ρi

(
ei

Thi

σ2
n

+
hi

Tei
σ2
n

− 1

λ

)
,

where hi = HUi and ei = y − (Ha−HiaiUi).
Moreover, the weights (ωl,i)0≤l≤1 in (12) are defined by

ωl,i =
ul,i

u0,i + u1,i
,

with u0,i = 1 − ω and u1,i =
√
2πρi

ω
λ exp

(
µ2
i

2ρi

)
C(µi, ρi).

As regards the general Gibbs sampler, an algorithm similar
to [7] is used so sample according to the above-detailed dis-
tributions. After the burn-in period, an MMSE (Minimum
Mean Square Error) estimator is used to estimate the unknown
model parameters.

3 Simulation results
The results of proposed method (referred to as MCMC) were
obtained by considering 600 iterations, 300 of which were
burn-ins. The implementation was carried out in Matlab
R2023b on a 5.20GHz i7-1365U processor with 64GB RAM.
Each estimation required 30 seconds.

Fig. 1: MSE of estimated metabolite amplitudes (10 MC runs).
3.1 Synthetic data
In order to evaluate the performance of the proposed method
(referred to as MCMC), we conducted a first experiment on
synthetic data, obtained by combining the profiles [9] of the
metabolites potentially present in the brain. Simulated spectra
were obtained according to the observation model in (1) using
proportions of these metabolites. Four different levels of com-
plex white Gaussian noise were used. For each noise level,
N = 10 Monte-Carlo runs were performed to assess mean
and variance accuracy to recover the original metabolite pro-
portions a. For the sake of comparison, MCMC is compared
to two state of the art methods: variational regularization us-
ing a Parallel Proximal Algorithm (PPXA) [10] and the well-
known AQSES method [4] based on a least-squares criterion.
To investigate the ability of the proposed method to recover
accurate sparsity levels, Table 1 reports the l0 pseudo-norm
values of a for the different input SNRs and sparsity levels.
These figures confirm the ability of the proposed method to
accurately recover the sparsity level of the ground truth data.
The mean squared errors (MSE) of the estimated metabolite
proportion vectors a computed using 10 Monte-Carlo runs
are shown in Figure 1 for different SNRs and sparsity lev-
els. These results demonstrate the high performance of the
MCMC method to estimate individual metabolite amplitudes.
The values of MSEa obtained using the MCMC method are
systematically lower than those obtained with the state-of-
the-art, for the different SNR levels of SNR, even at the low-
est signal sparsity level. Regarding the l0-norm, the MCMC
method is able to retrieve the correct number of non-zero co-
efficients under high to medium SNRs, and with reasonable
uncertainty under low SNRs (Table 1).

Input SNR
Sparsity

Level ||aref||0 28.5 dB 18.6 dB 8.5 dB 1.5 dB

60% 7 7 7 7± 0.5 6.3 ± 0.7
80% 4 4 4 4.1 ± 0.3 4

Table 1: l0 pseudo-norm of the estimated amplitude vector versus
the sparsity level and the SNR of the synthetic signal: mean and
standard deviation over 10 MC runs.

3.2 In-vivo data
For in-vivo data, appropriate approvals were obtained from
the relevant ethics committees and the French competent au-



Fig. 2: Two representative spectra from a GBM patient and the corresponding estimations using PPXA, AQSES and MCMC. Metabolites
of interest were: Asc: Ascorbic Acid, Cr: Creatine, GABA: γ-Aminobutyric Acid, Glc: Glucose, Gln: Glutamine, Glu: Glutamate, Gly:
Glycine, Hom: Homocarnosine, Lac: Lactate, Lip: Lipids, NAA: N-Acetyl Aspartate, PCh: Phosphocholine, PE: Phosphorylethanolamine,
Ser: Serine, Tau: Taurine, 2HG: 2-Hydroxyglutarate, Glc: Glucose, mI: myo-Inositol, sI: scyllo-Inositol.

Fig. 3: Estimated observation operator for the NAA metabolite com-
pared with the reference basis spectrum obtained from the normal
voxel processing (Fig. 2).
thority. All enrolled patients gave their written informed con-
sent. We tested the proposed method on in-vivo MRSI data
from a GBM patient acquired after surgery and before chemo-
radiotherapy. We show the results for two representative vox-
els: normal tissue and contrast enhancing tumor (red squares
in the left and right MR images of Fig. 2). For each voxel,
the SNR was computed from the ratio between the NAA peak
intensity in the spectrum modulus and the noise standard devi-
ation (calculated in a metabolite-free region (> 5 ppm)) [11].

A number of observations can be drawn from the anal-
ysis of the spectra using the proposed MCMC method and
the other two state-of-the-art methods (Fig. 2). From a clini-
cal perspective, the obtained results are consistent with brain
tumor state of the art [12]. In the tumor, a decrease in NAA
and Creatine was detected, along with a significant increase in
Choline, indicating a cellular proliferation. Moreover, clini-

cal data analysis reveals the significant differences in SNR
depending on the voxel location, and highlights the need for
a noise-robust quantification method. This difference in SNR
can be mainly attributed to the collapse of NAA peak due to
functional neurons decrease and residual tumor activity; and
possibly as a result of post-surgical reshaping and magnetic
field heterogeneity. The three methods performed similarly
when it came to quantifying metabolites abundantly present in
the brain (NAA, Cr, Cho and Lac/Lip when available). How-
ever, the MCMC method performs more consistently with the
sparse nature of MR spectra at long echo-time with a lower
number of non-zero coefficients (for both voxels: ∥â∥0 = 7).
An example of the estimated operator for NAA metabolite
with MCMC is given in Fig. 3, demonstrating the ability
to correct for small imperfections in the reference operator
while maintaining close alignment with it. Yet, it’s impor-
tant to note that comparing various methods using in-vivo data
without a definitive reference point is challenging. Future re-
search involving synthetic data should integrate additional el-
ements mirroring real-world artifacts [11], which are essential
for producing results that can be more easily transposable to
in-vivo data.

4 Conclusion
In this paper, we have adapted a Bayesian method for sparse
signal regularisation to complex-valued MRS data. The
method has been successfully validated on synthetic sig-
nals as well as clinical data, for which an expert validated
the spectra fitting. This work opens the way to a number of
perspectives, in particular the quantification of minor metabo-
lites, present in low concentrations in the brain but likely to
be affected by the patient’s condition. As part of the project,
this method will be applied to the follow-up of GBM patients
and analysed alongside with blood metabolism of patients’
samples taken at the same time points.
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