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Abstract

Programming language processing is a field of increasing interest, as more and more models become
available, either to address specific tasks or to acquire general knowledge which can then be fine-tuned on
downstream tasks. All these models are based on architectures that come from the field of natural language
processing, most of them being built on the distributional hypothesis from linguistics. Although this transition
from one field to another appears to have occurred naturally, it is not so obvious to claim that this hypothesis
will be appropriate for extracting semantics from programs.

In this paper, we investigate to which extent a distributional hypothesis can be applied to code embedding.
To this end, we first formulate various hypotheses adapted to the specific information contained in program-
ming languages. We then provide a framework to evaluate the effectiveness of these hypotheses through
the quality of the resulting embedding spaces. This framework is based on the doc2vec model as a generic
language model, as its implementation of the original distributional hypothesis is easy to understand and to
adapt to any new ones. Among other tools, we propose a new evaluation method based on program analogies,
which measures how well the models capture the underlying structure and meaning of the code.

We apply the proposed framework to a set of (distributional) hypotheses and show that we can rule out
certain hypotheses in favor of others. Specifically, our study indicates that instruction-based hypotheses cap-
ture less semantic information than token-based ones. Furthermore, we observe that distributional hypotheses
on tokens are effective in both source code, execution traces, and abstract syntax trees. Additionally, we find
that the semantics captured on programs by these three hypotheses are of comparable levels and natures.

1 Introduction

The analysis of computer programs has been the subject of intense research, particularly in the last decade
thanks to major advances in the fields of representation learning and deep learning. Methods for learning
representations of programs and the processing models that derive from them are mainly applied in two areas:
Software Engineering and Education (particularly in Computer Science Education).

In Software Engineering, these methods are used for tasks such as development assistance, debugging, refac-
toring, testing, etc. They help developers to improve the quality and reliability of their code, and can facilitate
the maintenance and evolution of software systems.

In Education, these methods are used to assist students in learning programming and to help teachers track
and analyze student learning patterns . They can provide personalized feedback and recommendations to stu-
dents, and help teachers identify areas where students are struggling and adapt their teaching accordingly.

Many current models for processing computer programs are inspired by language models that were originally
designed for natural language processing [20, 12, 46, 8]. The results obtained with these natural language models,
for example on tasks such as code classification, generation, summarization, or translation, seem to suggest that
the assumptions made about natural language can be transposed to programming languages. But is this always
the case?

In this paper, we focus in particular on the distributional hypothesis of word meaning [15], which states that
words with similar meanings appear in similar contexts. This hypothesis is indeed the basis for language models
such as word2vec [23] and BERT [10], which have been widely used to process computer programs. However,
it is not so obvious to claim that similar fragments of computer code appear in similar contexts. At the very
least, it would be necessary to evaluate the effectiveness of this hypothesis with respect to the definition of such
fragments and contexts in which they appear.

The aim of this paper is to investigate, independently of any specific downstream task, the extent to which
a distributional hypothesis can be applied to programming languages in order to capture semantics. To our
knowledge, this fundamental question has not yet been explored in these terms, due to two significant limitations:
(1) the requirement for a language model that is centered on the distributional hypothesis and sufficiently generic
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to instantiate multiple variants, and (2) the challenge of evaluating the quality of a task-agnostic embedding space,
particularly in the case of program embeddings.

We have selected the doc2vec model [21] as a generic language model, given its ability to simultaneously learn
continuous spaces of word and document representations by making simple and exclusive use of word distributions
in documents. Our aim is to adapt this model to the specific context of programming languages, in order to
compare different distributional hypotheses commonly encountered in this domain. We thus propose a generic
reformulation of the doc2vec model that takes into account various definitions of code fragment and context. This
enables us to learn continuous representations of code fragments (embeddings) and evaluate the effectiveness of
different distributional assumptions in capturing semantics from computer programs.

We then choose to evaluate the effectiveness of these distributional hypotheses through the quality of the
induced representation spaces. To this end, we have designed a framework for evaluating program embeddings
during the learning process, based on several complementary perspectives: the visualization of program embed-
dings, the ability to partition according to an external criterion, and the capture of analogies.

Our framework allows one to assess the quality of program embeddings from different angles, providing a
comprehensive evaluation of the effectiveness of the distributional hypotheses. By visualizing the embeddings,
we can gain insights into the structure of the representation space and identify potential patterns or clusters.
The ability to partition the embeddings according to an external criterion allows one to evaluate the extent to
which the learned representations capture relevant information. Finally, by analyzing the syntactic-semantic
relationships between programs, we can assess the extent to which the embeddings capture the underlying
structure and meaning of the code.

The main contributions of this article are as follows:

• A synthesis and critical review of the different assumptions inherited from natural language and commonly
accepted in programming languages.

• A generic reformulation of the doc2vec model to evaluate different scenarios of distributional hypotheses
on computer programs.

• A task-agnostic and multi-perspective evaluation framework, including the novel construction of a set of
over a thousand analogies on computer programs.

• A study highlighting the effectiveness of certain distributional hypotheses over others, demonstrated on
several program datasets and confirmed over different languages (Python and Java).

2 Related work

2.1 Program embedding learning models

Concerning the transfer of natural language processing (NLP) methods to program analysis, the most intuitive
way consists in observing the distribution of tokens (or sub-tokens [37]) in source code, i.e. to adapt the
distributional hypothesis from natural language (NL) to programming language (PL) by mapping the words
to tokens [12, 20, 13, 46, 26, 45, 30, 17]. A large majority of these models rely on the general Transformer
architecture [39] or on one of its derivatives, such as BERT [10].

For instance, Kanade et al. [20] train a BERT model by adapting the original learning tasks to source code,
i.e. the BERT NL sentences are mapped to PL statements. Neelakantan et al. [26] train a Transformer-based
model in a contrastive learning way.

Some works also take advantage of comments, combining the analyses of tokens in source code and words
in comments. Feng et al. [12] train a BERT model this way, as well as Wang et al. [46], Park et al. [30], who
both train a Transformer-based encoder-decoder model with various PL-only and PL+NL tasks (e.g. generating
comments from code).

Other works go even further. For example, Guo et al. [13] train a BERT model on several tasks including the
prediction of some additional information from the data flow graphs. Wang et al. [44] train a BERT model with
additional information from the abstract syntax tree. Wang et al. [45] train a Transformer-based model with
additional inputs like AST and control flow graph.

Another approach consists in pre-processing source codes into an intermediate program representation (PR),
the most common one being the abstract syntax tree (AST) [24, 25, 6, 47, 2, 41, 27, 8, 7, 28, 14, 45, 19]. Here,
the models will observe the distribution of AST nodes, whether they correspond to tokens, instructions, or any
other code fragment granularity.

For example, Mou et al. [25] adapt the convolution mechanism to tree structures, and apply it to AST to learn
program embeddings. Their model has since been used in several works: Bui et al. [6] use it to learn program
embeddings in a contrastive learning way; Bui et al. [7] add a layer that predicts the presence of some sub-trees
in AST based on its embedding.
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Guo et al. [14] propose a Transformer-based model that takes NL comments of the program combined with
its AST that has been flattened in a way that keeps structural information.

Graphs are also commonly used as a PR that contains structural information of programs [1, 9, 4, 43, 13,
48, 45, 19]. It can either be AST augmented with additional information, or a flow graph, e.g. control-flow
graph (CFG), or data-flow graph (DFG). In either case, the models will analyze the distribution of graph nodes,
regardless of the code fragment granularity to which they correspond, as in AST.

Ben-Nun et al. [4] use a PR from a compiler tool (i.e. LLVM) to build a flow graph which combines information
related to both CFG and DFG. They then train a word2vec model on the nodes, building the contexts as the set
of neighbors in the graph.

Zhang et al. [48] propose to augment AST, e.g. by adding edges between close tokens in the source code or
between siblings in AST, and to pass it through a variant of the Transformer architecture, adapted to graph
structures.

Finally, another major approach is to execute the programs on test cases to extract specific information about
their running behavior (or a derivative) [32, 42, 16, 40, 41, 8, 18, 17]. Here the models will analyze quite different
distributions along the program executions, from the value of variables to the distribution of code fragments.
For instance, Henkel et al. [16] apply word2vec on the instructions in the sequence of generated artificial traces,
and Cleuziou and Flouvat [8] adapt doc2vec to analyze the AST nodes distribution in the sequence of traversed
nodes during execution.

Beside the methods that explicitly rely on a distributional hypothesis, there are other approaches to learn
program embeddings based on AST [47, 2, 28], graphs [1], or program execution [32, 42, 40, 41]. However, we will
not discuss these approaches here as they do not observe a distribution in the same manner as the distributional
hypothesis-based methods.

To sum up, there are four main categories of models that consider a distribution based on a context, as origi-
nally formulated in the distributional hypothesis, but applied to code fragments. These categories include source
code-based models, AST-based models, graph-based models, and program execution-based models. Furthermore,
some of these categories can be further divided into sub-categories that observe code fragments relative to PL
tokens, instructions, or a combination of both.

2.2 Program embeddings evaluations

There exist only few genuine evaluations of embeddings in literature as most contributions focus on evaluating
models through downstream tasks, which demonstrate their learning abilities rather than the quality of the
embeddings themselves.

For example, a typical downstream task is to categorize programs, which can take the form of predicting or
generating method names, exercises, problems, or any other predefined partition [24, 25, 47, 2, 40, 41, 7, 48, 19].
Another very common downstream task is to predict whether two programs are clones or to find the most
likely clone of a program from a set of candidates [6, 47, 43, 13, 46, 44, 7, 14, 45, 19, 17]. Among the generative
models, such as those based on the transformer architecture, some of their most common tasks involve converting
NL comments or descriptions to PL code, the reverse, or even translating a program from one PL to another
[12, 13, 46, 44, 7, 26, 14, 45, 30, 17].

In this paper, our focus is on evaluating the extent to which the model has successfully captured semantic
information of programs into the embedding space. Few spatial evaluations go this way: Henkel et al. [16], Ben-
Nun et al. [4] evaluate the embedding space through instructions analogies, Alon et al. [2] rather use function
name analogies, and Cleuziou and Flouvat [8] propagate feedbacks between nearby programs in the embedding
space.

Another method for evaluating code embeddings is to apply an external model to analyze them automatically.
For instance, DeFreez et al. [9] use k-means clustering on program embeddings and compare the resulting clusters
to given classes. Ben-Nun et al. [4], Cleuziou and Flouvat [8] use a recurrent neural network (RNN) and a support
vector machine (SVM), respectively, to predict the exercise associated with a given code snippet. Bui et al. [7]
apply k-means and evaluate whether similar programs tend to be grouped together in the same cluster. These
approaches provide an automated way to assess the quality of the learned embeddings without relying on manual
inspection or downstream task performance.

3 Distributional hypotheses formalization

Our study is focused on a representative subset of the different distributional hypotheses implemented by pre-
vious works. We consider six configurations of hypotheses, characterized through two dimensions: (1) the code
fragments (or elements) whose semantic is targeted by the hypothesis and (2) the program representations (PR)
specifying the contexts of occurrence in which the elements are distributed. In the following, two types of elements
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are considered: tokens (t) and instructions (i); and three PR are studied: raw source code (S), execution trace
(T ) and abstract syntax tree (A).

We denote He
P the distributional hypothesis which states that elements of type e with similar meanings appear

in similar contexts in PR format P . Table 1 summarizes the notations used for the six hypothesis configurations
studied.

Table 1: The 6 distributional hypotheses studied on programming languages. Each hypothesis is defined by both,
the element whose semantic has to be captured (lines) and the program representation specifying the contexts
of occurrence in which the elements are distributed (columns).

Source code (S) Execution trace (T ) Abstract syntax tree (A)

Tokens (t) Ht
S Ht

T Ht
A

Instructions (i) Hi
S Hi

T Hi
A

4 Language model reformulation

To investigate the various distributional hypotheses in PL, our study relies on the word2vec language model,
specifically its doc2vec extension. The word2vec language model [23] is formalized by a very light neural network
trained on sequences of words (raw texts) in a self-supervised manner. In particular, in a sequence of words,
the CBOW (Continuous Bag of Words) architecture predicts a hidden word from its context, i.e. the preceding
and following words. The parameters of word2vec are summarized by two weight matrices: the matrix of word
representations (or embeddings) and the interpretation matrix for predictions. In contrast, the SG (Skip-Gram)
variant predicts the hidden context of a given word from the word itself.

Considering that word distributions vary from one text to another, Le and Mikolov [21] added the sequence
in which the words are observed as an additional input. This results in the doc2vec model, which allows to
learn both word and document (word sequence) embeddings simultaneously. Among the two versions of doc2vec
presented in the original paper, we consider the PV-DM (Paragraph Vector - Distributed Memory) architecture,
illustrated in fig. 1 (left), which corresponds to the augmentation of the CBOW architecture.

It is clear that these very light language models explicitly and exclusively rely on the distributional hypothesis
of words in NL. Other language models such as transformers are indeed more powerful but are also more complex
because they rely on other complementary hypotheses due to, for example, attention mechanism. More generally,
we can reformulate doc2vec as a ”semantic extraction tool” that leverages a distributional hypothesis on a set of
structured data.

Let E be a set of elements (e.g. a set of words), S a set of structured data sources on E (e.g. raw texts =
sequences of words), and C a definition of context on the occurrences of the elements of E in S (for example, the
k preceding and following words). We denote (S, E , C)2vec, or sec2vec, the semantic extraction model that learns

et

E E P

e1 . . . ek progi

Context Program

Target

E P

et progi

e1 . . . ek

Context

ProgramTarget

Figure 1: Sec2vec architectures: (left) PV-DM is trained to predict the target element from its context and the
program; (right) PV-SG is trained to predict the context from its target element and the program.
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embeddings on S (and E) by analyzing the distributions of elements E in contexts C extracted from sources S
(distributional hypothesis).

We then instantiate the sec2vec generic model on each of the six previously stated distributional hypotheses
on PL, defining six different (S, E , C) triplets (table 2).

Table 2: Definition of the triplets instantiating the six PL distributional hypotheses in sec2vec.

Distributional Structured data sources Elements Contexts

hypothesis S E C

Ht
S raw source codes S tokens t

Hi
S (sequences) instructions i preceding and following

Ht
T execution traces T tokens t elements in the sequence

Hi
T (sequences) instructions i

Ht
A token-based ASTs

nodes in the tree child nodes in the tree
Hi

A instruction-based ASTs

Context definition depends on the kind of data structure. Source codes and execution traces are sequential,
allowing contexts to be similar to those in natural language, which consist of the preceding and following elements.
About AST, we take advantage of tree structures by using child nodes as the context of an element (i.e. a node).

Both tokens and instructions can be extracted naturally from source codes and execution traces with simple
tokenization tricks. For ASTs, it is necessary to adjust the formalism by defining token-oriented and instruction-
oriented AST structures (see Appendix[22]).

In the following, Sec2vec(He
P ) denotes the sec2vec model applied on elements of type e in program repre-

sentation P , taking as input the corresponding triplet (S, E , C). Similarly, models based on the same type e of
elements are denoted as Sec2vec(He), and on the same type P of program representations as Sec2vec(HP ).

We should mention the special case of token-based ASTs. In this PR, only leaves of the tree contain program
tokens. As a result, since the Sec2vec(Ht

A) early version predicts each node from its children, it will never
predict the leaf nodes and the program embeddings will never be directly learned from the tokens. To address
this potential bias, we introduced a variant of doc2vec as shown in fig. 1 (right). We call this new version of
doc2vec PV-SG since it is based on the word2vec SG architecture, and the sec2vec model using this architecture
is denoted Sec2vec∗(H).

In the following study, the Sec2vec(H) model based on the PV-DM architecture will serve as our reference,
and we will only report the performance of the PV-SG architecture (Sec2vec∗(H) models) when it clearly benefits
the quality of induced program embeddings (full comparative results are available in the Appendix[22]).

5 Datasets

To demonstrate our framework, we have collected three educational datasets of programs, whose overview is
shown in table 3.

The first one, NC5690, has been proposed by Cleuziou and Flouvat [8], and consists of more than 5,000
students Python programs, organized into 66 exercises.1 Most programs contain a single function, and none
contain a class definition.

The two others, AD2022 and ProgPedia, have been proposed by Petersen-Frey et al. [31] and Paiva et al.
[29] respectively, and both contain students programs in Python and Java. AD2022, the smallest one, contains
less than a thousand programs in each language. Most of those programs only consist of a few functions, and
rarely contain a class definition (even in Java), but they lack regularity since some of them contain several class
definitions. Moreover, most of Python programs contain only a few functions. The ProgPedia dataset is made
up of more complex programs, sometimes containing several class definitions, mainly in Java. This results in a
richer ”vocabulary”.

The use of such educational datasets makes it possible to test distributional hypotheses on relatively simple
programs naturally organized into distinct groups (in this case, exercises). This facilitates model analysis, offering
both quantitative (e.g. measurements) and qualitative (e.g. visualizations) evaluation possibilities.

1Two programs are excluded from the original dataset for technical reasons.
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Table 3: Some statistics on the datasets we use in this paper.

Dataset NC5690 AD2022 ProgPedia

Language Python Python Java Python Java

Nb. programs 5690 687 838 2169 4339
Nb. exercises 66 21 21 7 16
Nb. students 56 166 199 187 254

Vocab. # tokens 94 152 121 154 245
size # instr. 1595 1455 1630 2857 6239

Av. prog. # tokens 65.14 125.15 174.8 503.05 533.5
size # instr. 9.79 15.97 17.33 69.06 57.16

6 Evaluation framework

This section presents one of the major contributions of the article, namely the evaluation of program embed-
ding spaces. It aims to evaluate and compare the embeddings and through them the formulated distributional
hypotheses, relying on external information or knowledge that the embedding spaces should have captured. By
external, we mean that the models don’t have access to them during their training phase. To our knowledge,
there is no consensual methodology in the literature, and this is a real shortcoming for the domain.

Our set of evaluations starts with slightly revisited classical evaluations based on external information (e.g.
a partition, classes, etc), followed by a new evaluation based on program analogies. To illustrate them, each
evaluation has been applied on NC5690 dataset, although we obtained significantly similar results on other
datasets (more detailed results are available in the appendix[22]).

Please note that not only we compare the models between different distributional hypotheses, but we also
compare the same models with a different number of epochs, where one epoch is a complete pass through the
entire dataset.

Every experiment has been run in a cross-validation fashion, where the datasets have been divided into 5
folds, and the models have been consecutively trained on 4 batches and evaluated on the fifth one so that each
batch was tested once. Thus, in each table and curve, the values are averaged, and the standard deviation is
indicated.

For the sake of reproducibility, we specify here the main parameters of the model: embedding vectors are
100-dimensional, the aggregation step consists of averaging the input vectors, the minimum number of element
occurrences is 1 and context windows are composed of the 5 preceding/following elements (for sequential contexts).
Variations have been tested, such as smaller window sizes or vectors, but no significant differences were observed.

6.1 Implementation

The sec2vec model is implemented in Python, using inner doc2vec models based on gensim [33] to learn program
embeddings from a given corpus of program representations (PR). In order to compute the different PRs, we use
the Python library tree-sitter [5], which contains parsers for a number of programming languages, and allows
us to parse a piece of code and generate them. Please find examples of our AST and artificial trace in the
appendix[22].Our models, evaluation functions and analogy dataset are available on github.2

The execution trace consists of the sequence of elements (i.e. tokens or instructions) traversed by the execution
of the program. The underlying objective is to change the proximity of certain elements in the execution traversal
order, thus modifying the raw source code distributional hypothesis with subtle additional information about the
behavior of the program. To do so, we need to execute programs on test cases, but very few datasets contain
test cases and it is a heavy task to build them manually from thousands of existing programs. Since our goal is
to provide a framework which is easy to use, we decided to build artificial execution traces.

To generate an artificial trace, we implemented an algorithm that walks through the AST in a depth-first
order, randomly excluding or repeating some sub-trees when specific nodes are reached. Sub-tree of a conditioned
statement (e.g. if statement) has 50% chances of being excluded. When a loop is reached, its sub-tree is repeated
a random number of times between 1 and 10. To explore as many program paths as possible, we actually
concatenate 10 of these random walks to form a complete artificial trace. A comparison between the results
obtained from the real and artificial trace showed that they were similar enough to proceed with the artificial
trace.

Our goal is to capture the semantic of programs as algorithms, but a few aspects of source code slightly
noise their semantic, namely NL-related semantic. For example, variable names for the same algorithm can be

2https://github.com/martinett/ProgramEmbeddingsEvaluationFramework
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Figure 2: Cartography evolution on NC5690 from different distributional hypotheses, after training phases of
different number of epochs, reduced to 2 dimensions by t-SNE models. The dot colors are based on the exercises.

very different between two programs, or the same name could correspond to very different variables, but the
models will observe the distribution of those names. Another example is comments, which are often pure NL.
So we decided to anonymize in all PRs every piece of code that holds potentially noising semantic for programs:
function, class and variable names, comments, imported module and tool names, and constants. A more detailed
description of the anonymization process is provided in the appendix[22].

6.2 Evaluations with external information

The first evaluations involve specific external information corresponding to semantic categories provided with
the data. With NC5690, this information is the exercises answered by students.

We produce a first qualitative visualization, called a cartography evolution, to observe how the embedding
spaces are structured during learning, depending on the distributional hypothesis considered, and thus gain
initial insights. Each line in fig. 2 refers to a model (i.e. a sec2vec on a distributional hypothesis), each column
corresponds to the duration of the training (i.e. the number of epochs: 1, 5, 10, 50 and 500), and each cell contains
a 2-dimensional projection (using t-SNE [38]) of the program embeddings. The colors report the distribution of
the external information.

First of all, a cartography evolution, in addition with its colors, allows us to see how much each model is
effective in separating the different groups of a dataset in its embedding space. Figure 2 shows that in the first
few epochs of the models, the embeddings seem to be almost uniformly distributed, and then start to form
clusters as the number of epochs increases. This structuring mechanism suggests that a model is able to bring
together programs from the same exercise, as long as the clusters are each of a single color. But we notice that
Sec2vec(Hi

S) and Sec2vec(Hi
T ), which basically analyze sequences of instructions, do not perform as well as

the other models because the clustering process is much less prominent in this case. A possible cause for this
behavior is that instructions are formed by concatenating their tokens, and it doesn’t make a significant difference
whether two objects differ by a large number of tokens or just a few, they will be analyzed and embedded totally
independently. So these models could potentially give more importance to a difference of a few tokens between
two programs than to a difference in structure. However, since the instructions-based models have to learn a much
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Figure 3: Clustering index ρ monitoring on dataset NC5690 the external information (here the exercises)
captured by different sec2vec models: on source codes (blue), execution traces (green) and ASTs (brown).

Table 4: Examples of program analogies. Each row contains two pairs of programs (p1, p2) and (p3, p4), and we
want that −−→p1p2 ∼ −−→p3p4.

p1 p2 p3 p4

for elem → for index for elem → for index

Syntactic

def sum list(l):
res = 0
for elem in l:

res += elem
return res

def sum list(l):
res = 0
for i in range(len(l)):

res += l[i]
return res

def display list(l):
for elem in l:

print(elem)

def display list(l):
for i in range(len(l)):

print(l[i])

addition → multiplication addition → multiplication

Semantic def incr(x):
return x + 1

def double(x):
return x * 2

def incr list(l):
return [e+1 for e in l]

def double of list(l):
return [e*2 for e in l]

larger vocabulary than the token-based models, as shown in table 3, these two models might simply have not
reached the clustered state yet. In contrast, Sec2vec(Hi

A) appears to perform well, likely because the distinction
between similar structures is sufficient for the model to differentiate the exercises, and AST-based models like
Sec2vec(Hi

A) are particularly effective at exploiting it.
Secondly, it gives us a glimpse of how fast each model structures the embedding space, in terms of number

of epochs. For example, Sec2vec(Ht
T ) and Sec2vec(Hi

T ) achieve results in 1 or 5 epochs that are comparable to
what Sec2vec(Ht

S) and Sec2vec(Hi
S) obtain in 10 or 50 epochs respectively, as if there is a 10-fold shift between

these models. This is probably because the trace is actually a concatenation of 10 traces, each being quite similar
to the source code. So not only do trace-based models have access to similar information as source code-based
models, they also do similar work 10 times. This means that their weights are adjusted 10 times more frequently,
allowing them to converge faster and achieve better performance in fewer epochs.

We supplement the visualizations with a quantitative assessment, in the form of a clustering index indicating
how well program embeddings are separated into clusters of exercises (external information). The clustering
index is defined as follows:

ρ(D,ΠD) =

∑
π∈ΠD

∑
pi,pj∈π dist(pi, pj)∑

pi,pj∈D dist(pi, pj)
(1)

where π ∈ ΠD are each class of the dataset external information, pi ∈ D is a program of the dataset D, and
dist(pi, pj) is the distance (typically euclidean distance) between the two programs in the embedding space. The
clustering index ρ ∈ [0, 1] is the ratio of the sum of intra-cluster distances to the total sum of distances over the
entire dataset. We’re not interested in the specific value of ρ (by definition always very small), but rather in how
it changes and behaves during the process of learning embeddings. A decreasing value of ρ means that data from
a same class are getting closer to each other. Conversely when ρ increases, data from a same class are dispersing.

This metric measures essentially the same information as the previous visualization, but it gives a quantitative
value to compare models and avoids the bias of information loss inherent in the dimensionality reduction step
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that is required for visualization. On the other hand, it suffers from another bias, since it penalizes a model
that decomposes a class into several separated sub-clusters, even if this may be legitimate (e.g. several ways of
solving an exercise). In any case, trends can be found between both evaluations, and they somehow complement
each other. Figure 3 confirms the poor results of Sec2vec(Hi), except for Sec2vec(Hi

A) since it goes up towards
the end. We also see the fast stabilization of Sec2vec(HT ) in just 4 or 5 epochs, where Sec2vec(HS) stabilizes
after 40 or 50 epochs (confirming the 10-fold shift previously mentioned).

The two main findings from this initial set of evaluations are as follows: firstly, analyzing the distributions
of tokens (rather than instructions) seems to be the most effective way to extract semantics from programs;
secondly, using execution traces would only artificially accelerate the learning of embeddings without providing
any additional semantics compared to source codes or ASTs (since all Sec2vec(Ht) end up with approximately
the same value).

6.3 Evaluation with program analogies

Table 5: Analogy evaluation per types, after 500 epochs on NC5690

Source Trace AST

Sec2vec(Ht
S) Sec2vec(Hi

S) Sec2vec(Ht
T ) Sec2vec(Hi

T ) Sec2vec(Ht
A) Sec2vec(Hi

A)

Syntactic analogies 0.431 ±0.011 0.136 ±0.015 0.395 ±0.011 0.124 ±0.020 0.328 ±0.008 0.141 ±0.023

Semantic analogies 0.961 ±0.005 0.001 ±0.002 0.955 ±0.007 0.0 ±0.0 0.551 ±0.043 0.008 ±0.006

The previous evaluations are interesting when one wants to compare several models on the same dataset,
and when there is an available external information which organizes programs into semantically different classes.
However, sometimes datasets do not contain this kind of information, and it would be costly in time and resources
to manually design a partitioning on the dataset of programs. In addition, this kind of evaluation does not allow
one to compare models on different datasets with language variations (e.g. Python vs Java) or domain variations
(e.g. educational vs engineering dataset) since results are highly dependent on the number of classes.

This is why we propose a new evaluation based on program analogies, as well as large dataset of such analogies.
To the best of our knowledge, this is the first attempt to create such a dataset, which is generic and can be used
on any model that learns program embeddings. And yet, analogy evaluation seems to have proven its worth
[11, 36], and is widely used in representation learning model evaluation [3, 35, 34, 23, 4, 2]. The difference is that
we study analogies on programs, instead of the usual ones on elements.

Our analogy evaluation works in an usual manner: taking two pairs of connected programs (p1, p2) and
(p3, p4), as illustrated in table 4, we infer the four embedding vectors vec(pi) and proceed to the following
operation p′ = vec(p2) − vec(p1) + vec(p3), which leads us to a point p′ somewhere in the embedding space.
Then, among all the dataset programs the model was trained on, we check whether p4 is the nearest neighbor
of p′. This is like applying the vector vec(p2)− vec(p1) on vec(p3), expecting vec(p4) to be the resulting vector.
This process will verify if the embedding space is coherent enough to retrieve the fourth program of each analogy.

As it is often the case, we define two types of program analogies:

• Syntactic analogies: leveraging syntactic relations between two programs semantically equivalent (produce
the same output) but having different implementations.

• Semantic analogies: leveraging on semantic relations between two programs semantically different (differ
on the outputs) but in a syntactically similar way.

The evaluation of program embeddings by analogies brings a new and very valuable dimension to the study on
distributional hypotheses applied to programming languages. In order to evaluate as much embedding space as
possible, we built a set of more than a thousand program analogies, similar to the examples in table 4, consisting
of 67% syntactic analogies and 33% semantic analogies. We then computed the accuracy of each model on this
set of analogies as the ratio of successfully retrieved analogies (i.e. analogies for which the target program (p4)
is the nearest neighbor of the resulting vector p′).

Table 5 shows the accuracies for the six models (candidate distributional hypotheses) on both analogy types.
This table confirms very bad results of instruction-based models. Token-based models are excellent for retrieving
semantic analogies, but they do not perform as well with syntactic ones. Interestingly, regarding performance
between syntactic and semantic analogies, we obtain the same trend as Di Gennaro et al. [11] who evaluate a
word2vec with word analogies in NL. Note that Ben-Nun et al. [4], who evaluate a word2vec with instruction
analogies in PL, obtain less differences between syntactic and semantic analogies, but their definition of these
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Figure 4: Analogy evaluation of different sec2vec models applied on NC5690, after training phases of different
number of epochs, aligned by number of epochs on the left, and by number of iterations on the right (one epoch
consists of as many iterations as learning examples) .

analogies are quite different. Table 5 also shows that Sec2vec(Ht
A) is not competitive, thus supporting our

assertion made in section 4 that token-based ASTs are poorly exploited by a PV-DM architecture.

Table 6 reports results obtained with token-based models on all datasets. It definitely confirms that Sec2vec(Ht
A)

is not competitive unless we include Sec2vec∗(Ht
A), which leverages the token-based ASTs with a skip-gram based

architecture. Results even show that it is slightly better than other PRs, but not systematically nor significantly.
Note that there are more results about other Sec2vec∗(H) in the appendix[22]. These findings support the claim
that execution traces do not appear to offer valuable supplementary information in comparison to source codes,
as Sec2vec(Ht

T ) rarely outperforms Sec2vec(Ht
S).

To confirm this definitely, we studied the evolution of the model performance according to the number of
epochs. As illustrated in fig. 4 (left), Sec2vec(Ht

T ) is the first one to stabilize, around epoch 10, while Sec2vec(Ht
S)

stabilizes around epoch 100, so we have once again this 10-fold shift between them. Sec2vec(Ht
A), does not seem

to have reached its limit yet at epoch 500.

Furthermore, we investigated the question about the number of iterations (one epoch consists of as many
iterations as learning examples), and it turns out that the models indeed perform different number of predictions
per epoch, favoring those computing more. For example, Sec2vec(Ht

T ) has about 10 times more iterations per
epoch than Sec2vec(Ht

S) on NC5690. To deal with this bias, we display in fig. 4 (right) how accuracy evolves
with the number of iterations. A notable observation from the figure is that the gaps between the curves have
largely disappeared. It seems that for the same number of iterations, all the models’ accuracy increases almost
simultaneously. Note that curves start at different values because the first point is actually the accuracy at the
end of the first epoch, so the more a model has iterations per epoch the later its curve starts in the graphic. Also
note that to obtain a satisfactory final comparison, we trained models once again on a specific number of epochs
in order to make curves to end simultaneously, and the new accuracy value of Sec2vec(Ht

A) suggests that this
model has finally reached its limit, albeit below the others. Thus, these graphics confirm that Sec2vec(Ht

A) is
not as good as the three others, which are approximately equivalent according to the number of iterations.

7 Conclusion

In this paper, we formulated several distributional hypotheses for programming language, from the distribution
analysis of tokens to instructions, depending on the contexts of program representations from source code to AST
and execution trace. We have adapted a light language model, namely doc2vec, to be able to precisely study the
impact of different distributional hypotheses on embeddings, and also proposed various evaluation strategies to
assess and compare them. We applied these strategies to evaluate models for different numbers of epochs, and on
several datasets in Python and Java. Languages do not drastically change the results, but it will be interesting to
further investigate on the differences between them, or even on the possible benefits of training a multi-language
model.

Among these evaluations, we proposed a new program analogy assessment solution, that allows to verify
whether models have built a syntactically and semantically coherent embedding space. It is based on the addition
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Table 6: Analogy evaluation per dataset, after 500 epochs

Sec2vec() Sec2vec∗()

Ht
S Ht

T Ht
A Ht

A

NC5690 0.607 0.581 0.402 0.628

AD2022 (Python) 0.717 0.658 0.423 0.669

AD2022 (Java) 0.695 0.751 0.433 0.761

ProgPedia (Python) 0.714 0.686 0.357 0.761

ProgPedia (Java) 0.842 0.829 0.516 0.772

of new programs into embedding space and analyzing their relative coordinates. We then proposed a set of more
than a thousand analogies to have a maximum cover of the embedding space, but the proposed set of analogies
is intended to be enriched to cover even more space and evaluate new program relations.

We found that the instruction-based distributional hypotheses fail to extract the semantics of programs. On
the other hand, token-based distributional hypotheses seem to be globally equivalent.

As perspectives, we could explore a better AST format, to provide models with even more useful information
about the program structures. It would also be interesting to augment these ASTs into graphs to further extend
the current hypothesis list. In another direction, we also plan to analyze how our framework performs on deeper,
not yet fine-tuned state-of-the-art models. Since the field of evaluating distributional hypotheses for programming
language is still unexplored, there are plenty of possible directions to follow, and thus plenty of opportunities for
future works. We hope that this paper will serve as a foundation for further investigations to consolidate the
knowledge of this field, and maybe one day to improve or at least to better understand the bigger deep language
models for programming language.
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