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A B S T R A C T
Vibroacoustic inverse methods use the measured response of a vibrating structure to identify
a structural parameter or a dynamic load. Two inverse methods are considered, the Force
Analysis Technique (FAT) and the Virtual Fields Method (VFM). The Corrected Force Analysis
Technique (CFAT) is a variant of FAT that corrects its singularity. This correction allows the
method to be applied in the high-frequency domain, when the number of measurement points
per flexural wavelength becomes small. In this study, the proposed novelty is the development
of a Frequency-Adapted VFM (FA VFM) to the case of a Love-Kirchhoff plate. Thanks to
this method, the VFM can now be applied to identify the equivalent bending stiffness and
structural damping of a thin plate when the number of measurement points per wavelength is
small. The method has previously been developed for an Euler-Bernoulli beam. An experimental
identification of the complex bending stiffness of an locally damped aluminium plate using Laser
Doppler Velocimetry (LDV) data and the developed method is performed. The experimental
study shows for the first time that the FA VFM can be used to map the equivalent bending stiffness
and structural damping as a function of position on a plate and identify these parameters as a
function of frequency over a large frequency band. The results of the Frequency-Adapted VFM
are compared with those of CFAT and the classical VFM approach. FA VFM results are more
accurate than those of classical VFM and similar to those of CFAT.

1. Introduction
The development of new materials that offer good mechanical strength for minimum weight, such as composite or

multi-layer panels, is now a major challenge in certain industrial sectors. These new developments lead to the need for
bending stiffness and loss factor identification in order to solve direct vibro-acoustic problems or complete numerical
models that will resolve the direct problem [1]. In vibroacoustics, the mechanical characterisation of materials can be
carried out in different ways. A first approach is to use modal analysis to determine bending stiffness and damping at low
frequencies. The Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) method decomposes
the response of the structure into a sum of complex exponentials plus Gaussian noise to perform a modal analysis at
higher frequencies. The method can be used as long as the modal overlap remains below 70% [2]. However, modal
analysis only allows characterisation at the structure’s natural frequencies and to do this, the structure must first be
modelled [3]. Inverse vibratory methods can then be used to characterize the structure over a wider frequency band.
These methods analyse the vibratory response of the structure to identify the complex bending stiffness. A number of
inverse methods can be used depending on the frequency range under consideration. Methods such as High-Resolution
Wave-vector Analysis (HRWA) [4] which has been used to identify the local bending stiffness of a complex structure
or the Algebraic Wavenumber Identification (AWI) [5] are designed to extract the wavenumbers of the structure. Some
of these methods are global, such as Inhomogeneous Wave Correlation (IWC), which considers that the response of
the structure can be described using a plane wave. The complex bending stiffness is determined by fitting this model to
the actual response of the structure [6, 7]. The model used in the IWC is too imprecise close to the sources. It is made
more complex using Hankel functions [8, 7]. It should be noted that inverse methods can also be used to characterize
other structures. For example, in [9, 10], the parameters of the constitutive equation of inhomogeneous viscoelastic
material are identified and mapped.
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Nomenclature
𝐴𝑖 and 𝐵𝑖 Polynomial function of 𝜏 used in the expression of �̃�VFM(𝑥𝑖, 𝑦𝑖)
𝐁 and 𝐍 Column vectors used in the least squares calculation
𝐷 Complex Bending stiffness
(𝐷∕(𝜌ℎ))FAT

(𝑥𝑖,𝑦𝑖)
, (𝐷∕(𝜌ℎ))CFAT

(𝑥𝑖,𝑦𝑖)
, (𝐷∕(𝜌ℎ))VFM

(𝑥𝑖,𝑦𝑖)
Complex Bending stiffness identified with FAT, CFAT and
the VFM at point (𝑥𝑖, 𝑦𝑖)

𝐸 Young Modulus
𝐸FAT, 𝐸CFAT and 𝐸VFM Response of FAT, CFAT and the VFM in the wavenumber domain
ℎ Thickness of the plate
𝐻1 and 𝐻2 Hermite16 interpolation functions
𝐻 Response of the low-pass wavenumber filter
𝑘f = 2𝜋∕𝜆f = 4

√

(𝜌ℎ𝜔2)∕𝐷 Flexural wavenumber of the plate
𝑘𝑐 Cut-off wavenumber of the low-pass wavenumber filter
𝐾𝑃
𝑥 and 𝐾𝑃

𝑦 Polynomial interpolation of the curvatures
𝑛 = 2𝜋∕(𝑘f𝛥) Number of measurement points per wavelength
𝑝(𝑥, 𝑦, 𝑡) = �̃�(𝑥, 𝑦)𝑒j𝜔𝑡 Harmonic transverse loading in N/m2

�̃�FAT(𝑥𝑖, 𝑦𝑖), �̃�CFAT(𝑥𝑖, 𝑦𝑖) and �̃�VFM(𝑥𝑖, 𝑦𝑖) Load estimated by FAT, CFAT and the VFM at point (𝑥𝑖, 𝑦𝑖)
�̂�(𝑘𝑥, 𝑘𝑦), �̂�FAT(𝑘𝑥, 𝑘𝑦) and �̂�VFM(𝑘𝑥, 𝑘𝑦) Fourier transform of �̃�(𝑥, 𝑦), �̃�FAT(𝑥, 𝑦) and �̃�VFM(𝑥, 𝑦)
𝐏 Matrix used to calculate 𝑊 𝑃 (𝜉, 𝜓)
𝑝(𝑖)𝑙,𝑜 Elements of 𝐏
𝑆𝑣 Virtual Window
�̃�(𝑥, 𝑦) Out of the plane displacement of the plate
�̃�𝑜,𝑙 Displacement measured at the point �̃�(𝑥𝑖 + 𝑜𝛥, 𝑦𝑖 + 𝑙𝛥).
�̂�(𝑘𝑥, 𝑘𝑦) Fourier transform of �̃�(𝑥, 𝑦)
𝑤𝑣(𝑥, 𝑦) Virtual displacement
𝑊 𝑃 (𝜉, 𝜓) Polynomial interpolation of the displacement
𝛾00(𝑥𝑖,𝑦𝑖), 𝛾10(𝑥𝑖,𝑦𝑖), 𝛾20(𝑥𝑖,𝑦𝑖), 𝛾11(𝑥𝑖,𝑦𝑖) and 𝛾22(𝑥𝑖,𝑦𝑖)

Linear combinations of the 25 measured displacement values of
the subset used in the polynomial interpolation

𝛿4𝑥𝛥 (𝑥𝑖, 𝑦𝑖), 𝛿4𝑦𝛥 (𝑥𝑖, 𝑦𝑖), 𝛿2𝑥2𝑦𝛥 (𝑥𝑖, 𝑦𝑖)
Estimation of the fourth-order spatial derivatives of �̃�(𝑥) by
the finite differences scheme

𝛥 Distance between two measurement points
𝜂 Loss factor
�̃�𝑥(𝑥, 𝑦) and �̃�𝑦(𝑥, 𝑦) Bending curvatures of the plate
𝜅𝑣𝑥(𝑥, 𝑦) and 𝜅𝑣𝑦 (𝑥, 𝑦) Virtual curvatures
𝜇4 and 𝜈4 Corrective factors of CFAT
𝜇 Mass per unit of area
𝜈 Poisson’s ratio
𝛙 Matrix used to calculate 𝑊 𝑃 (𝜉, 𝜓)
𝜌 Density
𝜏 Half length of the edge of the virtual window

𝜏 𝑖FA

Frequency-Adapted value of the half length of the virtual window
calculated when the angular direction 𝑖 on the circle

√

𝑘2𝑥 + 𝑘2𝑦 = 𝑘f
is chosen to eliminate the singularity

𝜉 and 𝜓 Local coordinate system on the virtual window
𝛏 and 𝛙 Matrices used to calculate 𝑊 𝑃 (𝜉, 𝜓)
𝜔 Angular frequency
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Most of these methods can be used to characterise the structure locally if the analysis is carried out on a small part

of the vibration field. Some inverse methods, such as the Force Analysis Technique (FAT) or the Virtual Fields Method
(VFM), use a local approach. These two methods will be investigated in this study.
The Force Analysis Technique was first developed to identify dynamic forces using the local equation of motion. The
method uses a finite difference scheme to estimate the fourth-order spatial derivatives of the displacement field in
the local equation of motion. The method has been applied to beams [11] and plates [12]. FAT has been extended
to identify the bending stiffness and loss factor of an isotropic plate [1] and of an orthotropic plate [13]. In [14], the
method is also applied to identify the bending stiffness and shear moduli of a sandwich beam. One of the strengths of the
method is its local approach. However, estimating the spatial derivatives of the displacement amplifies the measurement
noise. In addition, the error in the method due to the estimation of the derivatives with the finite difference scheme
becomes significant when the number of measurement points becomes too small. To solve the first problem, windowing
and filtering operations are commonly used to help regularize the problem. The Corrected Force Analysis Technique
(CFAT) is a variant of FAT that corrects the bias of the finite difference pattern that appears at high frequencies. Like
FAT, CFAT was first developed to identify dynamic forces [15] but it has also been extended to identify the bending
stiffness of an isotropic plate [16]. More recently, the method has been extended to more complex panels to identify
dynamic forces [17] and bending stiffness [3, 18].
The VFM has been developed for the static or dynamic characterization of materials using full-field measurements.
The VFM is based on the Principle of Virtual Work (PVW) and consists of choosing a test function called virtual
field to solve the PVW. The VFM has been used to identify the complex bending stiffness of an isotropic structure
[19, 20], of an orthotropic structure [21, 22] and of anistropic structures [23, 24]. The method has been applied to
identify a complex stiffness distribution [25] or damages into composite plate [26]. The choice of the virtual fields
is a key point in the method since this choice can affect the accuracy of the results. In [27], virtual fields defined as
optimized were developed. These virtual fields are used to minimise the effect of measurement noise in the problem.
These optimized virtual fields have been widely used. For example, in [28] to identify the structural parameters of a
vibrating plate or in [29] to estimate the parameters of viscoelastic materials. In [30] the parameters of a plastic model
are identified using an extension of these optimized virtual fields. It is important to note, however, that these optimised
virtual fields are dependent on the vibratory response of the structure. This is a drawback of this method. The VFM
can be applied using piecewise virtual fields that are defined only over a small area called a virtual window. The PVW
is then solved locally. This approach has been used mainly to identify dynamic loads in the frequency domain [31,
32] and in the time domain [33, 34]. However, it has not yet been applied to identify the complex bending stiffness
of a plate over a wide frequency band. The use of the virtual window adds a local aspect to the method and will be
used below. It should be highlighted that this local aspect is one of the main advantages of the method. This allows
the method to be implemented without any a priori knowledge of the boundary conditions of the plate. In [35], a VFM
frequency adaptation process for the identification of dynamic forces and bending stiffness for an Euler-Bernoulli
beam has been proposed. The Frequency-Adapted Virtual Fields Method (FA VFM) enables the VFM to be applied in
the high-frequency domain. The frequency adaptation process consists in finding a Frequency-Adapted value for the
integration interval in the PVW.
In this paper, the proposed novelty is an extension to the 2D case of the FA VFM for identifying the equivalent bending
stiffness and loss factor of a bending plate and the inclusion of experimental validations. Thanks to this extension, the
characterisation of a Love-Kirchhoff plate using the VFM is possible over a large frequency range. The FA VFM
process uses polynomial interpolation of the displacement field to find at each frequency a size for the virtual window
which will enable the method to be applied at higher frequencies. The second section introduces FAT and the CFAT
and the third one, the VFM. In the fourth section the frequency adaptation process is detailed. The fifth section presents
a numerical study aimed at identifying the complex bending stiffness of a homogeneous, isotropic, highly damped and
infinite Love-Kirchhoff plate with the FA VFM. Finally, in the sixth section the FA VFM is tested on experimental
data presented in [16]. The plate considered in this study is locally damped using a square of foam glued to the panel.
Consequently, the sixth section will demonstrate in particular the ability of FA VFM to identify spatial variations in
bending stiffness and damping.
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2. Force Analysis Technique and Corrected Force Analysis Technique
2.1. Force Analysis Technique

A Love-Kirchhoff plate of thickness ℎ, density 𝜌, Young modulus 𝐸, Poisson’s ratio 𝜈 and bending stiffness
𝐷 = 𝐸ℎ3∕(12(1 − 𝜈2)) is subjected to a harmonic load 𝑝(𝑥, 𝑦, 𝑡) = �̃�(𝑥, 𝑦)𝑒j𝜔𝑡 where 𝜔 is the angular frequency,
𝑥 and 𝑦 designate cartesian coordinates on the plate surface and j= √

−1. Note that structural damping is modelled
using a complex bending stiffness. The local equation of motion is given by [15],

�̃�(𝑥, 𝑦) = −𝜌ℎ𝜔2�̃�(𝑥, 𝑦) +𝐷
(

𝜕4�̃�(𝑥, 𝑦)
𝜕𝑥4

+ 2
𝜕4�̃�(𝑥, 𝑦)
𝜕𝑥2𝜕𝑦2

+
𝜕4�̃�(𝑥, 𝑦)
𝜕𝑦4

)

, (1)

where 𝑤(𝑥, 𝑦, 𝑡) = �̃�(𝑥, 𝑦)𝑒j𝜔𝑡 denotes the out of plane displacement of the plate. In order to identify the applied force
�̃�, the Force Analysis Technique (FAT) estimates the fourth-order spatial derivatives of �̃�(𝑥, 𝑦) at the point (𝑥𝑖, 𝑦𝑖)using a finite differences scheme based on the measured displacement [16]. This approximation is obtained using the
Taylor theorem [36],
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜕4�̃�
𝜕𝑥4

)

(𝑥𝑖,𝑦𝑖)
≃ 𝛿4𝑥𝛥 (𝑥𝑖, 𝑦𝑖) =

�̃�−2,0 − 4�̃�−1,0 + 6�̃�0,0 − 4�̃�1,0 + �̃�2,0

𝛥4
,

𝜕4�̃�
𝜕𝑦4

)

(𝑥𝑖,𝑦𝑖)
≃ 𝛿4𝑦𝛥 (𝑥𝑖, 𝑦𝑖) =

�̃�0,−2 − 4�̃�0,−1 + 6�̃�0,0 − 4�̃�0,1 + �̃�0,2

𝛥4
,

𝜕4�̃�
𝜕𝑥2𝜕𝑦2

)

(𝑥𝑖,𝑦𝑖)
≃ 𝛿2𝑥2𝑦𝛥 (𝑥𝑖, 𝑦𝑖) =

1
𝛥4

(�̃�−1,−1 − 2�̃�−1,0 + �̃�−1,1 − 2�̃�0,−1 + 4�̃�0,0 − 2�̃�0,1 + �̃�1,−1 − 2�̃�1,0 + �̃�1,1).

(2)
where 𝛥 is the distance between two measurement points in both directions and �̃�𝑜,𝑙 = �̃�(𝑥𝑖+𝑜𝛥, 𝑦𝑖+𝑙𝛥). The pressure
at point (𝑥𝑖,𝑦𝑖) estimated by FAT is,

�̃�FAT(𝑥𝑖, 𝑦𝑖) = −𝜌ℎ𝜔2�̃�(𝑥𝑖, 𝑦𝑖) +𝐷
(

𝛿4𝑥𝛥 (𝑥𝑖, 𝑦𝑖) + 2𝛿2𝑥2𝑦𝛥 (𝑥𝑖, 𝑦𝑖) + 𝛿
4𝑦
𝛥 (𝑥𝑖, 𝑦𝑖)

)

, (3)
Applying the finite difference scheme amplifies the measurement noise present at high wavenumbers. A low-pass
wavenumber filter is therefore generally applied to the measured displacement. To avoid the Gibbs phenomenon, filtered
fields are windowed beforehand [1]. Another problem with FAT is that the application of the finite difference scheme
introduces a bias error which strongly deteriorates the results when the number of measurement points per wavelength
𝑛 = 2𝜋∕(𝑘f𝛥) becomes too small. Here 𝑘f = 4

√

𝜌ℎ𝜔2∕𝐷 is the flexural wavenumber of the plate. The Corrected Force
Analysis Technique (CFAT) is a variant of FAT that corrects this bias error.
2.2. Corrected Force Analysis Technique

The Fourier transform of eq. (1) is [16],
�̂�(𝑘𝑥, 𝑘𝑦) = �̂�(𝑘𝑥, 𝑘𝑦)(𝐷(𝑘2𝑥 + 𝑘

2
𝑦)

2 − 𝜌ℎ𝜔2), (4)
and that of eq. (3) is [16],

�̂�FAT(𝑘𝑥, 𝑘𝑦) = �̂�(𝑘𝑥, 𝑘𝑦)
(𝐷
𝛥4

(4(1 − cos(𝑘𝑥𝛥))2 + 4(1 − cos(𝑘𝑦𝛥))2 + 8(1 − cos(𝑘𝑥𝛥))(1 − cos(𝑘𝑦𝛥)) − 𝜌ℎ𝜔2
)

,
(5)

where �̂�(𝑘𝑥, 𝑘𝑦) and �̂�(𝑘𝑥, 𝑘𝑦) are the Fourier transforms of �̃� and �̃� respectively. The response of FAT in the
wavenumber domain is given by,

𝐸FAT =
�̂�FAT
�̂�

=

4(1 − cos(𝑘𝑥𝛥))2 + 4(1 − cos(𝑘𝑦𝛥))2 + 8(1 − cos(𝑘𝑥𝛥))(1 − cos(𝑘𝑦𝛥))

𝛥4
− 𝑘4f

(𝑘2𝑥 + 𝑘2𝑦)2 − 𝑘
4
f

. (6)
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The response shows a singularity on the circle of equation

√

𝑘2𝑥 + 𝑘2𝑦 = 𝑘f. The Corrected Force Analysis Technique
(CFAT) introduces two multiplying factors 𝜇4 and 𝜈4 to correct the finite difference scheme. This correction is intended
to eliminate the singularity. Using this factor, the load estimated by CFAT is,

�̃�CFAT(𝑥𝑖, 𝑦𝑖) = −𝜌ℎ𝜔2�̃�(𝑥𝑖, 𝑦𝑖) +𝐷
(

𝜇4𝛿4𝑥𝛥 (𝑥𝑖, 𝑦𝑖) + 2𝜈4𝛿2𝑥2𝑦𝛥 (𝑥𝑖, 𝑦𝑖) + 𝜇4𝛿
4𝑦
𝛥 (𝑥𝑖, 𝑦𝑖)

)

. (7)
The CFAT response is then [15],

𝐸CFAT =

4𝜇4(1 − cos(𝑘𝑥𝛥))2 + 4𝜇4(1 − cos(𝑘𝑦𝛥))2 + 8𝜈4(1 − cos(𝑘𝑥𝛥))(1 − cos(𝑘𝑦𝛥))

𝛥4
− 𝑘4f

(𝑘2𝑥 + 𝑘2𝑦)2 − 𝑘
4
f

. (8)

The factor 𝜇4 is obtained by zeroing the numerator of eq. (6) when 𝑘𝑥 = 0 and 𝑘𝑦 = 𝑘f [15] :

𝜇4 =
𝛥4𝑘4f

(2 − 2 cos(𝑘f𝛥))2
. (9)

The factor 𝜈4 is obtained by zeroing the numerator when 𝑘𝑥 = 𝑘f∕
√

2 and 𝑘𝑦 = 𝑘f∕
√

2 [15] :

𝜈4 =
𝛥4𝑘4f

8

(

1 − cos

(

𝑘f𝛥
√

2

))2
− 𝜇4. (10)

Note that it is possible to choose other points where the numerator is set to zero. The arbitrary choice presented in
this article is the same as in the study presented in [15]. However, other approaches can be chosen, such as the one
used in [17], which involves using a least-squares approach to estimate the corrective factors. Finally, FAT and CFAT
responses for 𝑛 = 4 and 𝑛 = 2.5 are shown in figure 1. The singularity on the circle of equation

√

𝑘2𝑥 + 𝑘2𝑦 = 𝑘f is
clearly visible on the FAT plots. The effects of the correction are visible on the CFAT plots.
FAT response includes a low-pass wavenumber filter of the transverse displacements. The filter is particularly useful for
avoiding aliasing effects. Indeed, Shannon’s sampling criterion stipulates that for a given value of 𝑛, the wavenumber
components 𝑘𝑥 and 𝑘𝑦 must be such that :

√

𝑘2𝑥 + 𝑘2𝑦∕𝑘f < 𝑛∕2 (11)

The magnitude of the response of the method must therefore be low on the circle
√

𝑘2𝑥+𝑘2𝑦
𝑘f

= 𝑛
2 and beyond. This is the

case for FAT thanks to this filter. For example on the 𝑛 = 4 plot, the maximum value of FAT response on the circle
√

𝑘2𝑥 + 𝑘2𝑦∕𝑘f = 2 (dark dotted circle in figure 1a) is −8 dB. One of the advantages of CFAT is that this low-pass
wavenumber filter is retained by the correcting factors. Indeed, on the 𝑛 = 4 graph, the maximum value of the CFAT
response on the circle

√

𝑘2𝑥 + 𝑘2𝑦∕𝑘f = 2 (dark dotted circle in figure 1c) is −6 dB. It is worth noting that, thanks to
this low-pass filter, CFAT can be applied to identify either a dynamic load or a bending stiffness down to 𝑛 = 1.85,
below the Shannon criterion (𝑛 = 2) [15].
2.3. FAT and CFAT for equivalent bending stiffness identification

FAT and CFAT can be used to identify the plate equivalent complex bending stiffness 𝐷∕(𝜌ℎ). Considering a
position (𝑥, 𝑦) where the applied pressure �̃�(𝑥, 𝑦) is zero, eq. (1) becomes,

𝐷
𝜌ℎ

=
𝜔2�̃�(𝑥, 𝑦)

𝜕4�̃�(𝑥, 𝑦)
𝜕𝑥4

+ 2
𝜕4�̃�(𝑥, 𝑦)
𝜕𝑥2𝜕𝑦2

+
𝜕4�̃�(𝑥, 𝑦)
𝜕𝑦4

. (12)
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(d)
Figure 1: Responses of FAT and CFAT in the wavenumber domain as a function of 𝑘𝑥∕𝑘f and 𝑘𝑦∕𝑘f, (a) FAT response
in the wavenumber domain for 𝑛 = 4, (b) FAT response in the wavenumber domain for 𝑛 = 2.5, (c) CFAT response in
the wavenumber domain for 𝑛 = 4, (d) CFAT response in the wavenumber domain for 𝑛 = 2.5. The dark dotted circle

represents the Nyquist circle
√

𝑘2𝑥 + 𝑘2𝑦∕𝑘f = 𝑛∕2.

The fourth order spatial derivatives of �̃�(𝑥, 𝑦) are again estimated using the same finite difference scheme. The
equivalent complex bending stiffness estimated by FAT at point (𝑥𝑖, 𝑦𝑖) is given by :

(

𝐷
𝜌ℎ

)FAT

(𝑥𝑖,𝑦𝑖)
=

𝜔2�̃�(𝑥𝑖, 𝑦𝑖)

𝛿4𝑥𝛥 (𝑥𝑖, 𝑦𝑖) + 2𝛿2𝑥2𝑦𝛥 (𝑥𝑖, 𝑦𝑖) + 𝛿
4𝑦
𝛥 (𝑥𝑖, 𝑦𝑖)

. (13)

As presented in section 2.2, CFAT corrects the FAT estimate of the fourth-order spatial derivatives by means of
two corrective factors 𝜇4 and 𝜈4. When FAT is applied to identify an equivalent complex bending stiffness, the bias
introduced by the finite difference scheme when 𝑛 is small is always present. Therefore, to identify this equivalent
complex bending stiffness when 𝑛 < 4, the corrective factors are again used to correct the estimate of the fourth-order
spatial derivatives :

(

𝐷
𝜌ℎ

)CFAT

(𝑥𝑖,𝑦𝑖)
=

𝜔2�̃�(𝑥𝑖, 𝑦𝑖)

𝜇4𝛿4𝑥𝛥 (𝑥𝑖, 𝑦𝑖) + 2𝜈4𝛿2𝑥2𝑦𝛥 (𝑥𝑖, 𝑦𝑖) + 𝜇4𝛿
4𝑦
𝛥 (𝑥𝑖, 𝑦𝑖)

. (14)

The main advantage of FAT and CFAT is their local aspect. Indeed, when the methods are applied to identify a dynamic
load or an equivalent complex bending stiffness at a given point (𝑥𝑖, 𝑦𝑖) of the plate, the only required information is the
displacement field at the 13 points used in the finite difference scheme. In particular, this aspect allows both methods
to be applied with any boundary conditions of the plate.
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3. Virtual Fields Method for dynamic forces and equivalent bending stiffness identification
The VFM is based on the Principle of Virtual Work (PVW). This principle is a weak form of equilibrium.

Consequently, the continuity conditions of the variables involved in the principle are weaker than that required by eq.
(1) on which CFAT and FAT are based and which is a strong form [37]. For an isotropic, homogeneous Love-Kirchhoff
plate, the PVW is given by [31],

∫𝑆𝑣
�̃�(𝑥, 𝑦)𝑤𝑣(𝑥, 𝑦)dS = 𝐷 ∫𝑆𝑣

(

�̃�𝑥(𝑥, 𝑦) + �̃�𝑦(𝑥, 𝑦)
)

(

𝜅𝑣𝑥(𝑥, 𝑦) + 𝜅
𝑣
𝑦 (𝑥, 𝑦)

)

dS − 𝜌ℎ𝜔2
∫𝑆𝑣

�̃�(𝑥, 𝑦)𝑤𝑣(𝑥, 𝑦)dS, (15)

where �̃�𝑥 = −𝜕2�̃�(𝑥, 𝑦)∕𝜕𝑥2 and �̃�𝑦 = −𝜕2�̃�(𝑥, 𝑦)∕𝜕𝑦2 denote bending curvatures along 𝑥 and 𝑦 respectively. The
terms 𝑤𝑣, �̃�𝑣𝑥 and �̃�𝑣𝑦 designate virtual displacement and curvatures, respectively. The VFM consists in choosing the
virtual displacement to solve the PVW. When a load or a structural parameter is to identified, the chosen virtual
displacement needs to be a kinematically admissible and 𝐶1 function [37]. For example, if a simply supported plate is
considered, the transverse displacement is zero at the edges of the structure. Therefore, to be kinematically admissible,
the virtual displacement 𝑤𝑣 must also be zero at the edges of the structure. Provided they comply with the above
conditions, an infinite number of possible virtual fields can be used to solve the Principle of Virtual Work [31]. This
freedom is one of the advantages of the VFM. Here, eq (15) is written considering that the virtual displacement is
defined as a piecewise function which is zero over the entire surface of the plate, with the exception of a small area
called the virtual window 𝑆𝑣. It is an extension of the virtual segment used in [35] in the case of an Euler-Bernoulli
beam. The 𝐶1 condition is then satisfied by using a virtual displacement that vanishes at the limit of the integration
domain, and whose first-order spatial derivatives also vanish at the limit of the integration domain. Note that 𝐷, ℎ and
𝜌 are now and hereafter assumed to be constant over the virtual window. In addition, if the virtual window is small, the
external pressure can be assumed constant over 𝑆𝑣. It should be noted that this approach is identical to that adopted
by Berry et al. to identify dynamic forces in [31] and [32] and is based on a similar idea to that adopted by Mei et
al. in [38] to identify inhomogeneous distributions of elastic properties. In practice, the vibration field of the plate is
measured on a regular mesh grid. Then, as shown in figure 2, the virtual window scans the entire surface of the plate
and for each of its positions, the PVW is solved and the applied pressure is identified locally.

Figure 2: An example of a 5 × 5 virtual window 𝑆𝑣 scanning the plate surface.

3.1. Virtual Fields Method for equivalent bending stiffness identification
The VFM can also be applied to identify the equivalent complex bending stiffness (hereinafter referred to as

complex bending stiffness). Assuming that 𝐷, 𝜌 and ℎ are constant over 𝑆𝑣 and considering a point (𝑥, 𝑦) where
no external load is applied, the PVW becomes,

(

𝐷
𝜌ℎ

)VFM
=

𝜔2
∫𝑆𝑣

�̃�(𝑥, 𝑦)𝑤𝑣(𝑥, 𝑦) dS

∫𝑆𝑣

(

�̃�𝑥(𝑥, 𝑦) + �̃�𝑦(𝑥, 𝑦)
)

(

𝜅𝑣𝑥(𝑥, 𝑦) + 𝜅
𝑣
𝑦 (𝑥, 𝑦)

)

dS
. (16)
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Here, it is the cancellation of the pressure term in eq. (15) that allows the VFM to be applied to identify a complex
bending stiffness. The conditions relating to the virtual fields introduced above are unchanged. They must still be any
kinematically admissible and 𝐶1 function and the choice of defining them piecewise on a virtual window is retained.
The practical implementation of the method remains the same as for force identification. The virtual window scans the
surface of the plate and, for each of its positions, the complex bending stiffness is identified locally. The application
of the VFM with a virtual window provides a local aspect to the method. Thanks to this local aspect, the VFM can
be applied to identify either a dynamic load or a complex bending stiffness at a given position (𝑥𝑖, 𝑦𝑖) without any
knowledge of the displacement field outside the area covered by the virtual window. The principles presented in this
section are used in the following section to develop the Frequency-Adapted VFM formalism.

4. Frequency-Adapted Virtual Fields Method
In this section, the frequency adaptation process of the VFM is recalled [35]. As detailed later in the section, this

process consists mainly in determining a Frequency-Adapted size for the virtual window 𝑆𝑣.
4.1. Polynomial interpolation of the displacement field

As in the case of the Euler-Bernoulli beam [35], the first step in the frequency adaptation process is to interpolate
the displacement field using a polynomial. In [35], the Newton formula was used. Thus, a 2D extension of this formula,
Newton’s bivariate polynomial interpolation [39], is applied here. Again, as in [35], interpolation of the displacement
field enables integrals to be calculated analytically in the PVW (eq. (16)). As highlighted in section 4.3, this calculation
is essential for the development of the FA VFM formalism. The𝑁×𝑀 rectangular experimental mesh shown in figure
3 is considered. The transverse displacement is known at each mesh node. The polynomial function that interpolates

(1,1)

(N,M)

(1,M)

(N,1)

(1,2)

Figure 3: An experimental mesh of size 𝑁 ×𝑀 with local coordinates 𝜉 and 𝜓

the displacement measured on the mesh is given by [39],
𝑊 𝑃 (𝜉, 𝜓) = 𝛏𝑇𝐏𝛙, (17)

where

𝛏 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
𝜉 − 𝜉1

(𝜉 − 𝜉1)(𝜉 − 𝜉2)
⋮

(𝜉 − 𝜉1)(𝜉 − 𝜉2)...(𝜉 − 𝜉𝑁−1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and 𝛙 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
𝜓 − 𝜓1

(𝜓 − 𝜓1)(𝜓 − 𝜓2)
⋮

(𝜓 − 𝜓1)(𝜓 − 𝜓2)...(𝜓 − 𝜓𝑁−1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (18)
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are dimensionless coordinates whose expression is given in section 4.2. Assuming that 𝑁 ≥𝑀 , the matrix 𝐏 is given
by [40],

𝐏 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑝(0)0,0 𝑝(1)0,1 … 𝑝(𝑀)
0,𝑀

𝑝(1)1,0 𝑝(1)1,1 … 𝑝(𝑀)
1,𝑀

⋮ ⋮ ⋱ ⋮

𝑝(𝑀)
𝑀,0 𝑝(𝑀)

𝑀,1 … 𝑝(𝑀)
𝑀,𝑀

𝑝(𝑀+1)
𝑀+1,0 𝑝(𝑀+1)

𝑀+1,1 … 𝑝(𝑀+1)
𝑀+1,𝑀

⋮ ⋮ ⋱ ⋮

𝑝(𝑁)
𝑁,0 𝑝(𝑁)

𝑁,1 … 𝑝(𝑁)
𝑁,𝑀

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (19)

with,

𝑝(𝑖)𝑙,𝑜 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑝(𝑖−1)𝑙,𝑜 − 𝑝(𝑖−1)𝑙−1,𝑜

𝜉𝑙 − 𝜉𝑙−𝑖
if 𝑜 < 𝑖 and 𝑙 ≥ 𝑖,

𝑝(𝑖−1)𝑙,𝑜 − 𝑝(𝑖−1)𝑙,𝑜−1

𝜓𝑜 − 𝜓𝑜−𝑖
if 𝑙 < 𝑖 and 𝑜 ≥ 𝑖,

𝑝(𝑖−1)𝑙,𝑜 + 𝑝(𝑖−1)𝑙−1,𝑜−1 − 𝑝
(𝑖−1)
𝑙−1,𝑜 − 𝑝

(𝑖−1)
𝑙,𝑜−1

(𝜓𝑜 − 𝜓𝑜−𝑖)(𝜉𝑙 − 𝜉𝑙−𝑖)
if 𝑙 ≥ 𝑖 and 𝑜 ≥ 𝑖,

𝑝(𝑖−1)𝑙,𝑜 if 𝑙 < 𝑖 and 𝑜 < 𝑖,

𝑝(0)𝑙,𝑜 = �̃�𝑙+1,𝑜+1,

(20)

where �̃�𝑙+1,𝑜+1 denotes the measured displacement at node (𝑙 + 1, 𝑜 + 1) in figure 3.
4.2. Virtual Fields Method for 𝑀 = 5 and 𝑁 = 5

The case where 𝑀 = 𝑁 = 5 is now considered. These values of 𝑀 and 𝑁 are chosen to be consistent with
the 13-points finite difference scheme used in FAT and CFAT. The displacement interpolation zone is a subset of the
measurement mesh centered at point 𝑖 with coordinates (𝑥𝑖, 𝑦𝑖). This zone is illustrated in figure 4. Newton’s formula
described in section 4.1 is applied for 𝜉 ∈ [−2, 2], and 𝜓 ∈ [−2, 2] as shown on figure 4b

�̃�(𝑥, 𝑦) ≃ 𝑊 𝑃 (𝜉, 𝜓) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
𝜉 + 2

(𝜉 + 2)(𝜉 + 1)
𝜉(𝜉 + 2)(𝜉 + 1)

(𝜉 − 1)𝜉(𝜉 + 2)(𝜉 + 1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝑇
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑃1,1 𝑃2,1 𝑃3,1 𝑃4,1 𝑃5,1
𝑃1,2 𝑃2,2 𝑃3,2 𝑃4,2 𝑃5,2
𝑃1,3 𝑃2,3 𝑃3,3 𝑃4,3 𝑃5,3
𝑃1,4 𝑃2,4 𝑃3,4 𝑃4,4 𝑃5,4
𝑃1,5 𝑃2,5 𝑃3,5 𝑃4,5 𝑃5,5

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
𝜓 + 2

(𝜓 + 2)(𝜓 + 1)
𝜓(𝜓 + 2)(𝜓 + 1)

(𝜓 − 1)𝜓(𝜓 + 2)(𝜓 + 1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (21)

where here 𝜉 = 𝑥−𝑥𝑖
𝛥 and 𝜓 = 𝑦−𝑦𝑖

𝛥 . The elements of the 𝐏 matrix are detailed in Appendix A. The polynomial
interpolations of the curvatures �̃�𝑥 and �̃�𝑦 are obtained by a second-order derivation of eq. (21) :

�̃�𝑥 ≃ 𝐾𝑃
𝑥 = − 1

𝛥2
𝜕2𝑊 𝑃 (𝜉, 𝜓)

𝜕𝜉2
and �̃�𝑦 ≃ 𝐾𝑃

𝑦 = − 1
𝛥2
𝜕2𝑊 𝑃 (𝜉, 𝜓)

𝜕𝜓2
. (22)

The VFM is applied with a square virtual window 𝑆𝑣 = [−𝜏, 𝜏] × [−𝜏, 𝜏], where 𝜏 ≤ 2.5, as shown in figure 4b.
The 𝜏 ≤ 2.5 limit is set to strictly cover the 5 × 5 points used in the interpolation of measured displacements and
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)

(a)

)

(b)
Figure 4: Schematic of the interpolation zone for 𝑁 =𝑀 = 5, (a) The experimental mesh with: in red the points used in
the interpolation of the displacement field and in green the virtual window. The red points circled in black are those used
in the finite difference scheme involved in FAT and CFAT, (b) Local coordinates over the interpolation area.

thus avoid extrapolation. Note that the value of 𝜏 is the quantity that will be adapted as a function of frequency. This
window is divided into four quadrants, as shown in figure 5 [31]. The virtual displacement here is based on Hermite16

21

11

22

12 S

Sv

Figure 5: Virtual window 𝑆𝑣 divided into four quadrants placed over a plate of surface 𝑆,

interpolation functions that respect the conditions detailed in section 3 [37, 31]. The virtual displacement is defined
over each quadrant separately [31] :

𝑤𝑣(𝜉, 𝜓) = 𝐻2

(

2𝜉
𝜏

+ 1
)

𝐻2

(

2𝜓
𝜏

+ 1
)

for 𝜉 ∈ [−𝜏, 0] and 𝜓 ∈ [−𝜏, 0], on quadrant 11,

𝑤𝑣(𝜉, 𝜓) = 𝐻1

(

2𝜉
𝜏

− 1
)

𝐻2

(

2𝜓
𝜏

+ 1
)

for 𝜉 ∈ [0, 𝜏] and 𝜓 ∈ [−𝜏, 0], on quadrant 12,

𝑤𝑣(𝜉, 𝜓) = 𝐻2

(

2𝜉
𝜏

+ 1
)

𝐻1

(

2𝜓
𝜏

− 1
)

for 𝜉 ∈ [−𝜏, 0] and 𝜓 ∈ [0, 𝜏], on quadrant 21,

𝑤𝑣(𝜉, 𝜓) = 𝐻1

(

2𝜉
𝜏

− 1
)

𝐻1

(

2𝜓
𝜏

− 1
)

for 𝜉 ∈ [0, 𝜏] and 𝜓 ∈ [0, 𝜏], on quadrant 22,

(23)



4 FREQUENCY-ADAPTED VIRTUAL FIELDS METHOD 11
where𝐻1(𝜉′) =

1
4

(

2 + 𝜉′
) (

1 − 𝜉′
)2 and𝐻2(𝜉′) =

1
4

(

2 − 𝜉′
) (

1 + 𝜉′
)2. The virtual curvatures are then calculated on

each quadrant using :

𝜅𝑣𝑥(𝑥, 𝑦) = −
𝜕2𝑤𝑣(𝑥, 𝑦)

𝜕𝑥2

𝜅𝑣𝑦 (𝑥, 𝑦) = −
𝜕2𝑤𝑣(𝑥, 𝑦)

𝜕𝑦2

(24)

The virtual displacement and virtual curvatures are shown in figure 6. The VFM is applied using eqs. (21), (23) and

(a) (b)

(c)
Figure 6: Virtual fields for 𝜏 = 2.5, (a) Virtual displacement 𝑤𝑣, (b) Virtual curvature 𝜅𝑣𝑥 , (c) Virtual curvature 𝜅𝑣𝑦 .

(24) to identify the applied pressure at point 𝑖 :

�̃�VFM(𝑥𝑖, 𝑦𝑖)∫

𝜏

−𝜏 ∫

𝜏

−𝜏
𝑤𝑣(𝜉, 𝜓)d𝜉d𝜓 = 𝐷 ∫

𝜏

−𝜏 ∫

𝜏

−𝜏

(

𝐾𝑃
𝑥 (𝜉, 𝜓) +𝐾

𝑃
𝑦 (𝜉, 𝜓)

)(

𝜅𝑣𝑥(𝜉, 𝜓) + 𝜅
𝑣
𝑦 (𝜉, 𝜓)

)

d𝜉d𝜓

− 𝜌ℎ𝜔2
∫

𝜏

−𝜏 ∫

𝜏

−𝜏
𝑊 𝑃 (𝜉, 𝜓)𝑤𝑣(𝜉, 𝜓)d𝜉d𝜓.

(25)

Here, the term �̃�VFM is the averaged pressure on the virtual window. Note that the integration on the left-hand side of
eq. (25) acts like a low-pass wavenumber filter. The integrals of eq. (25) can be calculated exactly since the integrands
are polynomials. The pressure is then,

�̃�VFM(𝑥𝑖, 𝑦𝑖) =
𝐷
𝛥4

(

𝐵0𝛾
00
(𝑥𝑖,𝑦𝑖)

+ 𝐵1𝛾
11
(𝑥𝑖,𝑦𝑖)

+ 𝐵2𝛾
22
(𝑥𝑖,𝑦𝑖)

+ 𝐵3𝛾
21
(𝑥𝑖,𝑦𝑖)

+ 𝐵4𝛾
20
(𝑥𝑖,𝑦𝑖)

+ 𝐵5𝛾
10
(𝑥𝑖,𝑦𝑖)

)

− 𝜌ℎ𝜔2
(

𝐴0𝛾
00
(𝑥𝑖,𝑦𝑖)

+ 𝐴1𝛾
11
(𝑥𝑖,𝑦𝑖)

+ 𝐴2𝛾
22
(𝑥𝑖,𝑦𝑖)

+ 𝐴3𝛾
21
(𝑥𝑖,𝑦𝑖)

+ 𝐴4𝛾
20
(𝑥𝑖,𝑦𝑖)

+ 𝐴5𝛾
10
(𝑥𝑖,𝑦𝑖)

)

,
(26)
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with

𝛾00(𝑥𝑖,𝑦𝑖) = �̃�0,0, 𝛾11(𝑥𝑖,𝑦𝑖) = �̃�1,−1 + �̃�−1,1 + �̃�−1,−1 + �̃�1,1, 𝛾22(𝑥𝑖,𝑦𝑖) = �̃�−2,2 + �̃�2,−2 + �̃�−2,−2 + �̃�2,2,

𝛾21(𝑥𝑖,𝑦𝑖) = �̃�−1,2 + �̃�1,2 + �̃�−2,1 + �̃�2,1 + �̃�1,−2 + �̃�2,−1 + �̃�−2,−1 + �̃�−1,−2,

𝛾20(𝑥𝑖,𝑦𝑖) = �̃�0,2 + �̃�−2,0 + �̃�0,−2 + �̃�2,0, 𝛾10(𝑥𝑖,𝑦𝑖) = �̃�0,1 + �̃�−1,0 + �̃�0,−1 + �̃�1,0,

(27)

where �̃�𝑜,𝑙 = �̃�(𝑥𝑖+𝑜𝛥, 𝑦𝑖+𝑙𝛥). The coefficients𝐴𝑖 and𝐵𝑖 are polynomial functions of 𝜏, that are detailed in appendix
B.
4.3. Wavenumber analysis

Thanks to the polynomial interpolation described in section 4.1, eq. (26) provides an expression for �̃�VFM as a
linear combination of the values of the displacement measured at each node of the 5 × 5 mesh. In order to find the
Frequency-Adapted value of 𝜏, the Fourier transform of eq. (26) is computed,

�̂�VFM(𝑘𝑥, 𝑘𝑦) =
𝐷
𝛥4

[

𝐵0 + 4𝐵1𝐶𝑥𝐶𝑦 + 4𝐵2(2𝐶2
𝑥 − 1)(2𝐶2

𝑦 − 1) + 4𝐵3(2𝐶𝑥𝐶2
𝑦 + 2𝐶2

𝑥𝐶𝑦 − 𝐶𝑥 − 𝐶𝑦)+

4𝐵4(𝐶2
𝑥 + 𝐶

2
𝑦 − 1) + 2𝐵5(𝐶𝑥 + 𝐶𝑦)

]

−𝜌ℎ𝜔2
[

𝐴0 + 4𝐴1𝐶𝑥𝐶𝑦 + 4𝐴2(2𝐶2
𝑥 − 1)(2𝐶2

𝑦 − 1)+

4𝐴3(2𝐶𝑥𝐶2
𝑦 + 2𝐶2

𝑥𝐶𝑦 − 𝐶𝑥 − 𝐶𝑦) + 4𝐴4(𝐶2
𝑥 + 𝐶

2
𝑦 − 1) + 2𝐴5(𝐶𝑥 + 𝐶𝑦)

]

,

(28)

with 𝐶𝑥 = cos(𝑘𝑥𝛥) and 𝐶𝑦 = cos(𝑘𝑦𝛥). The VFM response is then given by,

𝐸VFM =
�̂�VFM
�̂�

= 1
(𝑘2𝑥 + 𝑘2𝑦)2 − 𝑘

4
f
×
[ 1
𝛥4

(

𝐵0 + 4𝐵1𝐶𝑥𝐶𝑦 + 4𝐵2(2𝐶2
𝑥 − 1)(2𝐶2

𝑦 − 1)+

4𝐵3(2𝐶𝑥𝐶2
𝑦 + 2𝐶2

𝑥𝐶𝑦 − 𝐶𝑥 − 𝐶𝑦) + 4𝐵4(𝐶2
𝑥 + 𝐶

2
𝑦 − 1) + 2𝐵5(𝐶𝑥 + 𝐶𝑦)

)

−𝑘4f
(

𝐴0+

4𝐴1𝐶𝑥𝐶𝑦 + 4𝐴2(2𝐶2
𝑥 − 1)(2𝐶2

𝑦 − 1) + 4𝐴3(2𝐶𝑥𝐶2
𝑦 + 2𝐶2

𝑥𝐶𝑦 − 𝐶𝑥 − 𝐶𝑦)+

4𝐴4(𝐶2
𝑥 + 𝐶

2
𝑦 − 1) + 2𝐴5(𝐶𝑥 + 𝐶𝑦)

)]

.

(29)

It should be noted that the calculation of this response is essential for finding the Frequency-Adapted value of 𝜏. It
turns out that, without interpolation, the expression for the pressure given by eq. (26) would not have been obtained
and therefore the calculation of the response introduced eq. (29) would not have been possible. The VFM response
again shows a singularity on the circle

√

𝑘2𝑥 + 𝑘2𝑦 = 𝑘f. With CFAT the singularity is corrected using the coefficients
𝜇4 and 𝜈4. The VFM can be Frequency-Adapted by choosing the value of the half-length of the virtual window, 𝜏,
which will make the numerator of eq. (29) be zero on a point of the circle

√

𝑘2𝑥 + 𝑘2𝑦 = 𝑘f. The point 𝑘𝑥 = 𝑘f, 𝑘𝑦 = 0
is considered. This Frequency-Adapted value of 𝜏 therefore has to satisfy the equation :

( 𝑛
2𝜋

)4
[

(

8𝐵2 + 8𝐵3 + 4𝐵4
)

cos
(2𝜋
𝑛

)2
+
(

4𝐵1 + 4𝐵3 + 2𝐵5
)

cos
(2𝜋
𝑛

)

+ 𝐵0 − 4𝐵2 − 4𝐵3 + 2𝐵5

]

−

(

8𝐴2 + 8𝐴3 + 4𝐴4
)

cos
(2𝜋
𝑛

)2
+
(

4𝐴1 + 4𝐴3 + 2𝐴5
)

cos
(2𝜋
𝑛

)

+ 𝐴0 − 4𝐴2 − 4𝐴3 + 2𝐴5 = 0,
(30)

where the coefficients 𝐴𝑖, 𝐵𝑖, which depend on 𝜏 are detailed in appendix B. The solution of eq. (30) is obtained
using the Matlab® symbolic toolbox. Four solutions are obtained, but only one lies in the interval [0, 2.5] as long as
𝑛 > 2, which is the Nyquist limit. Only this solution is therefore compatible with the problem. It corresponds to the
Frequency-Adapted value of the half-length of the virtual window 𝜏FA :

𝜏0FA =

√

√

√

√

√

14𝜋2sin
(𝜋
𝑛

)2
− 9

√

√

√

√

35 𝑛4 sin
(𝜋
𝑛

)4
+

196𝜋4 sin
(𝜋
𝑛

)4

81
+

392𝜋4sin
(𝜋
𝑛

)2

27
− 119𝜋4

9
+ 42𝜋2

3𝜋
|

|

|

|

sin
(𝜋
𝑛

)

|

|

|

|

. (31)
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Frequency adaptation of the virtual window size can be performed using any point on the circle of equation

√

𝑘2𝑥 + 𝑘2𝑦 =
𝑘f for which the numerator of eq. (29) is null. Each point on the first quarter-circle will give a different value for
the Frequency-Adapted window side length. Figure 7 shows the evolution of 𝜏0FA as a function of 𝑛 (eq. (31)). The
Frequency-Adapted values of 𝜏 obtained using the points

(

𝑘f∕
√

2, 𝑘f∕
√

2
)

and
(

𝑘f∕2,
√

3𝑘f∕2
)

are also shown.
Note that the value of 𝜏0FA is the same as the Frequency-Adapted value of the virtual segment found in the 1D case

2 5 10 15 20

n=2 /k
f

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

F
A

Figure 7: Frequency-Adapted value of the half length of the virtual window in the VFM as a function of 𝑛 ∈ [2, 20] and
for various points on the circle

√

𝑘2𝑥 + 𝑘2𝑦 = 𝑘f. In red 𝜏 = 𝜏0FA : (𝑘f, 0), in black 𝜏 = 𝜏𝜋∕4FA :
(

𝑘f∕
√

2, 𝑘f∕
√

2
)

and in dotted

blue 𝜏 = 𝜏𝜋∕3FA :
(

𝑘f∕2,
√

3𝑘f∕2
)

[35]. With the exception of strong variations at low values of 𝑛, 𝜏0FA, 𝜏𝜋∕4FA and 𝜏𝜋∕3FA are almost constant with 𝑛 and
therefore with frequency. Also, 9 of the 13 points used in the FAT and CFAT finite difference schemes are covered
by the Frequency-Adapted virtual window. The VFM response for 𝜏 = 0.5 in the wavenumber domain is shown in
figure 8 for 𝑛 = 4 and 𝑛 = 2.5. The figure also shows the responses obtained with the Frequency-Adapted VFM
using 𝜏 = 𝜏0FA. When 𝜏 = 0.5 the singularity is clearly visible on the circle

√

𝑘2𝑥 + 𝑘2𝑦 = 𝑘f for both values of 𝑛. The
Frequency-Adapted VFM eliminates it satisfactorily. However, it remains more present than in CFAT (see figures 1c
and 1d), particularly for 𝑛 = 2.5 (figure 8d). This is due to the fact that CFAT uses two correction factors and therefore
corrects the response at two points (𝑘f, 0) and

(

𝑘f∕
√

2, 𝑘f∕
√

2
)

, whereas the VFM is Frequency-Adapted using a
single point. Figures 8c and 8d also show that using of 𝜏0FA suppresses the singularity at both points (𝑘f, 0) and (0, 𝑘f).
This is because 𝐸VFM(0, 𝑘f) = 𝐸VFM(𝑘f, 0). Figure 9 shows the Frequency-Adapted VFM responses using 𝜏 = 𝜏𝜋∕3FA
and 𝜏 = 𝜏𝜋∕4FA for 𝑛 = 2.5 (the subscripts 𝜋∕3 and 𝜋∕4 indicate the angular direction on the circle chosen to eliminate
the singularity). The choice of this angular direction clearly influences the frequency adaptation. The singularity is
always eliminated at the chosen point. However, the removal of the singularity on the rest of the circle depends on the
choice of this direction. The singularity is not well suppressed for 𝜏 = 𝜏𝜋∕4FA and even less so for 𝜏 = 𝜏𝜋∕3FA . Frequency
adaptation using 𝜏0FA will be used next. Like FAT, the VFM response for 𝜏 = 0.5 presents a low-pass wavenumber
filter, and like CFAT, the Frequency-Adapted VFM always preserves this low-pass wavenumber filter.
4.4. Identification of the complex bending stiffness with the Frequency-Adapted VFM

Considering a position (𝑥𝑖, 𝑦𝑖) where no external load is applied, eq. (26) can be used to identify the complex
bending stiffness :

(

𝐷
𝜌ℎ

)VFM

(𝑥𝑖,𝑦𝑖)
=
𝜔2

(

𝐴0𝛾00(𝑥𝑖,𝑦𝑖) + 𝐴1𝛾11(𝑥𝑖,𝑦𝑖) + 𝐴2𝛾22(𝑥𝑖,𝑦𝑖) + 𝐴3𝛾21(𝑥𝑖,𝑦𝑖) + 𝐴4𝛾20(𝑥𝑖,𝑦𝑖) + 𝐴5𝛾10(𝑥𝑖,𝑦𝑖)
)

1
𝛥4

(

𝐵0𝛾00(𝑥𝑖,𝑦𝑖) + 𝐵1𝛾11(𝑥𝑖,𝑦𝑖) + 𝐵2𝛾22(𝑥𝑖,𝑦𝑖) + 𝐵3𝛾21(𝑥𝑖,𝑦𝑖) + 𝐵4𝛾20(𝑥𝑖,𝑦𝑖) + 𝐵5𝛾10(𝑥𝑖,𝑦𝑖)
) . (32)
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Figure 8: Responses of the VFM for 𝜏 = 0.5 and of the Frequency-Adapted VFM as a function of 𝑘𝑥∕𝑘f and 𝑘𝑦∕𝑘f, (a) VFM
response for 𝜏 = 0.5 in the wavenumber domain for 𝑛 = 4, (b) VFM response for 𝜏 = 0.5 in the wavenumber domain for
𝑛 = 2.5, (c) Frequency-Adapted VFM response using 𝜏 = 𝜏0FA in the wavenumber domain for 𝑛 = 4, (d) Frequency-Adapted
VFM response using 𝜏 = 𝜏0FA in the wavenumber domain for 𝑛 = 2.5. The dark dotted circle represents the Nyquist circle
√

𝑘2𝑥 + 𝑘2𝑦∕𝑘f = 𝑛∕2.
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Figure 9: Responses of the Frequency-Adapted VFM in the wavenumber domain as a function of 𝑘𝑥∕𝑘f and 𝑘𝑦∕𝑘f for
𝑛 = 2.5 using different values of 𝜏FA, (a) Using 𝜏 = 𝜏FA

𝜋∕4, (b) Using 𝜏 = 𝜏FA
𝜋∕3. The dark dotted circle represents the Nyquist

circle
√

𝑘2𝑥 + 𝑘2𝑦∕𝑘f = 𝑛∕2.

As seen in section 4.3, the Frequency-Adapted VFM consists in determining a Frequency-Adapted value for the virtual
window length. Once done, the method can be applied to identify a dynamic force or complex bending stiffness. This
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Frequency-Adapted length is determined using eq. (31). This equation uses the number of measurement points per
wavelength 𝑛 = 2𝜋∕𝑘f𝛥 which is a function of 𝑘f and therefore of the complex bending stiffness. The parameter 𝑛 is
known in a force identification problem, since the material is known a priori. However, this is not the case when it
comes to identifying a complex bending stiffness. For 2D structures CFAT faces the same problem [16]. So, like CFAT,
an iterative process is used to solve this problem. The VFM is applied with a given virtual window. A first value of
𝐷∕(𝜌ℎ) is then obtained using eq. (32) and so 𝑘f can be determined, from which 𝑛 is known and the Frequency-Adapted
VFM can be used to choose the adapted virtual window size. To refine the estimated value, the process is applied 10
times. This number of iterations was determined empirically, based on the observation that after 10 iterations, the
estimated bending stiffness values no longer varied. This iterative process always converges and does not depend on
the initial value of the virtual window size.

5. Numerical study for complex bending stiffness identification
5.1. Simulated plate

In order to demonstrate the efficiency of the FA VFM, a numerical study was carried out to identify the complex
bending stiffness of an isotropic, homogeneous and infinite Love-Kirchhoff plate. The simulation was performed on a
0.39×0.58 m2 portion of an infinite Love-Kirchhoff plate. The plate is subjected to a harmonic load. The displacement
is simulated at each frequency using the following Green’s function [8] :

�̃�(𝑥 − 𝑥0, 𝑦 − 𝑦0) =
1

8𝑘2f𝐷
(𝐻 (1)

0 (𝑘f𝑟) −𝐻
(1)
0 (𝑗𝑘f𝑟)). (33)

Here, 𝑥0 and 𝑦0 represent the coordinates of the point force. The origin of the coordinate system is the bottom left-hand
corner of the simulated portion of the plate. The parameter 𝑟 = √

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 is the distance from a point
of coordinates (𝑥, 𝑦) to the source and 𝐻 (1)

0 is the cylindrical Hankel function of the first type of order 0. Note that
here, the panel response consists of a propagative wave emitted at the excitation point and is therefore quite distinct to
the low-frequency, modal response of a lightly-damped, finite-dimension plate. However, this situation is closer to the
experimental configuration reported in section 6 and should apply to the high-frequency range concerned by the FA
VFM approach.
The simulation parameters are chosen to be consistent with the damped case of the experimental study presented in
section 6. The frequency range investigated is [100, 6400] Hz. Moreover, in the experimental study, a rope is passed
through successive holes along a third of the plate’s contour. The bending waves are therefore attenuated at the edges
of the structure. This aspect of the experimental set-up justifies an infinite plate model in this numerical study. The
source coordinates are 𝑥0 = 0.11 m and 𝑦0 = 0.17 m. The Young’s modulus is considered to be complex to take
account of structural dissipation: �̃� = 𝐸(1 + j𝜂), where 𝜂 is the structural loss factor. In the experimental study, the
plate is locally damped using a foam glued to the plate. It is assumed that the foam adds no stiffness to the plate. The
simulations are carried out using the parameter corresponding to the locally damped zone of the plate. The complex
bending stiffness normalised by the mass per unit area to be identified is (𝐷∕𝜇)with Damp. = 2.14 m4/s2. Since foam is
supposed to considerably increase structural dissipation, the loss factor in the simulation is 𝜂 = 0.35. The mesh in this
study is made up of 28 × 41 points with a spacing of 14.5 mm. The flexural wavelength (which depends on 𝐷 and 𝜇)
is supposed to be known a priori, therefore the number of measurement points per flexural wavelength is supposed to
be known as well. It varies from 21.1 (at 𝑓 = 100 Hz) to 2.5 (at 𝑓 = 6400 Hz).
5.2. Frequency least squares results

First, CFAT and the FA VFM are applied with the frequency least squares to obtain a map of the identified bending
stiffness and loss factor. The objective of the frequency least squares is to obtain a spatial mapping of frequency-
averaged (in the least squares sense) values of 𝐷∕𝜇. The complex bending stiffness identified at each point (𝑥, 𝑦) of
the mesh is given by :

(

𝐷
𝜇

)

(𝑥,𝑦)
=
𝐁𝐻𝜔 𝐍𝜔
𝐁𝐻𝜔 𝐁𝜔

, (34)

The elements of the column vector 𝐁𝜔 correspond to the estimate of the denominator of eq. (32) with the term 𝜔2

for the VFM (eq. (14) for CFAT) for each frequency at the point where 𝐷∕𝜇 is identified. Similarly, the elements
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of the column vector 𝐍𝜔 correspond to the estimate of the numerator of eq. (32) for VFM (eq. (14) for CFAT) for
each frequency at the point of identification. Here, as the number of points per bending wavelength is known, the
Frequency-Adapted length of the virtual window and the CFAT correction factors can be directly calculated using
eqs. (31), (9) and (10) respectively. The identified bending stiffness is the real part of the complex bending stiffness
calculated with the two methods, while the loss factor is the ratio between the imaginary part and the real part of the
identified complex bending stiffness :

𝜂 =
Im(𝐷∕𝜇)
Re(𝐷∕𝜇)

. (35)
Frequency least squares are applied using 1001 frequency points in the interval [1000, 5000] Hz. The results are shown
in figure 10. The bending stiffness identified with CFAT and the FA VFM is consistent with the simulated value (figures

(a) (b)

(c) (d)
Figure 10: Bending stiffness and loss factor identified with CFAT and the Frequency-Adapted VFM using frequency least
squares over the frequency range [1000, 5000] Hz and simulated data, (a) Real part of the complex bending stiffness
identified with CFAT, (b) Real part of the complex bending stiffness identified with the Frequency-Adapted VFM, (c)
Loss factor (ratio between the imaginary part and real part) identified with CFAT, (d) Loss factor identified with the
Frequency-Adapted VFM.

10a and 10b). A disturbance in the maps is observed at the coordinates of the point force. These perturbations are created
by the fact that the zero external force assumption on which CFAT and the FA VFM are based is no longer respected at
the position of the point force, which leads to an erroneous identification of the complex bending stiffness. The results
of CFAT and the FA VFM are similar. With regard to the loss factor (figures 10c and 10d), the results obtained with
the methods are consistent with the expected value of 0.35. The loss factor identified at the position of the point force
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is again erroneous. Overall, these results show that the FA VFM can be used to map complex bending stiffness. The
similarities between the results of the FA VFM and those of CFAT validate the development of the method.
5.3. Spatial least squares results

The frequency least squares approach is used to obtain a spatial identification of the complex bending stiffness. In
order to obtain a frequency-dependent identification, spatial least squares are applied. The objective of the spatial least
squares is to obtain the frequency dependence of spatially-averaged (in the least squares sense) values of 𝐷∕𝜇. The
complex bending stiffness estimated at 𝜔 using spatial least squares is given by :

(

𝐷
𝜇

)

𝜔
= 𝜔2𝐁𝐻𝐍

𝐁𝐻𝐁
, (36)

where 𝐁 and 𝐍 are column vectors. At frequency 𝜔, each element of 𝐁 corresponds to the estimate at 𝜔 of the
denominator of eq. (32) at a measurement point. The elements of 𝐍 are obtained in the same way but using the
numerator of eq. (32) without the term 𝜔2. The measurement points used to estimate 𝐁 and 𝐍 are located in a zone
where no external load is applied. The number of points used in the application of the spatial least squares is 449. The
results obtained are shown figure 11. The bending stiffness identified using the methods and spatial least squares is
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Figure 11: Bending stiffness and loss factor identified with the Frequency-Adapted VFM and CFAT using spatial least
squares and simulated data, (a) Bending stiffness, (b) Loss factor. For each plot, the horizontal dotted black line represents
the reference value.

consistent with the expected values over the entire frequency range (figure 11a). It is important to note that CFAT and
the FA VFM results differ at high frequencies. Indeed, the bending stiffness identified with the FA VFM above 4000
Hz is slightly underestimated compared to the reference and CFAT results. This result can be explained by the fact that
the singularity present in the response of the VFM in the wavenumber domain (figure 8) is less suppressed than in the
case of CFAT (figure 1). With regard to the loss factor (figure 11b), the same conclusions can be drawn from the results.
The results of the methods are consistent with the expected values. However, the FA VFM slightly overestimates it.
As 𝜂 is given here by the ratio between the imaginary part and the real part of the identified complex bending stiffness,
this result is consistent with the underestimation of the real part of the bending stiffness by the FA VFM observed in
figure 11a. Indeed, the imaginary part of the complex bending stiffness identified by CFAT is similar to that identified
by the FA VFM over the whole frequency range, which shows that the overestimation of the loss factor by the FA VFM
observed in figure 11b is indeed linked to the underestimation of the bending stiffness. The results of these simulations
demonstrate that the FA VFM can be used to identify the complex bending stiffness of a damped panel over a wide
range of frequencies. In the next section, the method will be applied to estimate the complex bending stiffness using
experimental data.

6. Experimental study for complex bending stiffness identification
6.1. Experimental set-up

The experimental study is based on measurements carried out and used in [16]. The measurements were performed
on a 0.51 × 0.71 m2 rectangular panel of thickness ℎ = 0.965 mm with free-free boundary conditions. The thickness
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of the plate has been accurately measured via its surface area and weight. The panel is made of aluminum (𝜌 = 2700
kg/m3, Poisson’s ratio of 0.35 and𝐸 = 69GPa). Young’s modulus is still considered complex to take account structural
dissipation �̃� = 𝐸(1 + j𝜂), where 𝜂 is the structural loss factor. Therefore, in the following results, the structural loss
factor is once again extracted from the imaginary part of the complex bending stiffness. As mentioned in section 5.1,
a third of the contour of the plate was covered with a rope passed through successive holes to limit the reverberation
time of the structure, in order to maintain reasonable measurement times. This configuration is used to show that the
methods can be applied with any boundary conditions. A damping zone was created by adding a 15 × 15 cm2 square
of foam which was glued to the panel. The mass per unit area is then modified locally, as is the complex bending
stiffness. Outside the damping zone, the complex bending stiffness to be identified (i.e. derived from the actual material
properties) is (𝐷∕𝜇)w/o Damp. = 2.26m4/s2 whereas within this zone, it is (𝐷∕𝜇)with Damp. = 2.14m4/s2. Here 𝜇 denoted
the mass per unit area. The value of the real part of the bending stiffness normalised to mass per unit area in the damped
zone is considered constant with frequency and as in the numerical study it is calculated using the modified value of the
mass per unit area : 𝜇 = 𝜇alu. + 𝜇foam, with 𝜇alu. = 2.6 kg/m2 and 𝜇foam = 0.15 kg/m2, while the bending stiffness of
the foam material is considered negligible. The plate was attached to a frame by means of a clamping point and excited
by a pseudo-random noise in the frequency range [100, 6400] Hz using a shaker. The position of the clamping point
on the plate is (0.26, 0.52) m and the force is injected at the point (0.20, 0.23) m. The coordinates are given relative to
the bottom left corner of the plate. The shaker is mounted on the plate using a nylon stinger. The displacement field
was measured using a scanning laser vibrometer. The mesh consists again of 28×41 points with a spacing of 𝛥 = 14.5
mm. The dimensions of the measured area are 0.39 × 0.58 m2. The set-up is shown in figure 12.

(a)

Shaker

Clamping point

m

m

m

m

(b)
Figure 12: Presentation of the experimental set-up, (a) Photo of the experimental set-up, (b) Scheme of the experimental
set-up, the red rectangle bounds the measurement area and the blue area shows the added damping material. Figure from
[16].

6.2. Identification of the complex bending stiffness with the Frequency-Adapted VFM and CFAT
The measured displacement field is first filtered. The filtering is performed in the wavenumber domain, using the

following low-pass wavenumber filter response:
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(37)

with 𝑘𝑐 = 𝑎𝑘f the cut-off wavenumber where 𝑎 is a scalar greater than 1. The filtering operations are performed using
the solution proposed in [41] which involves extrapolating the displacement field beyond the measured region. This
extrapolation reduces the Gibbs phenomenon at the frontier of the measured region and avoids having to window the
measured field. First, the displacement field is padded with zeros outside of the measured region. The wavenumber
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transform of the zero-padded displacement field is calculated and low-passed filtered in the wavenumber domain using
the filter described by eq. (37). An inverse wavenumber transform of the filtered field is computed to recover the
displacement in the physical domain. Once this operation has been carried out, the measured field has been slightly
extrapolated over the area where the zeros were added by the zero-padding operation. The area initially composed
solely of the measured field has also been modified. Since these changes were not yet desired, the filtered displacement
is replaced by the initial measured displacement into this zone. These operations are repeated until the difference
between the displacement fields between two iterations is sufficiently small. At the end of the process, the low-passed
displacement field is kept in the measurement region. This field has been passed through the low-pass filter of eq. (37)
and, thanks to extrapolation, it is not affected by the Gibbs phenomenon without having been windowed.
Unlike the numerical study presented in section 5, the number of measurements points per wavelength at each frequency
is unknown since wavelength depends on bending stiffness. Now, as indicated in section 4.4 it must be identified to apply
the Frequency-Adapted VFM. This identification is achieved by applying the iterative process described in section 4.4.
To do so, the complex bending stiffness is estimated at 𝜔 using the spatial least squares. The formalism of the spatial
least squares is the same as the one introduced in section 5.3. The measurement points used to estimate 𝐁 and 𝐍 are
located in a zone where no external load is applied and no damping is added. An average value of 𝜏0FA is used as the
initial value. Indeed, as pointed out in section 4.3, the values of 𝜏0FA, 𝜏𝜋∕3FA or 𝜏𝜋∕4FA do not depend strongly on 𝑛. Referring
to figure 7, this value is taken to be 𝜏0

FA mean = 1.58. Consequently, the iterative process is started using 𝜏 = 1.58 and
after the first estimate of 𝑛, the value 𝜏0FA is determined using eq. (31). The process is carried out with 10 iterations.
An advantage of this choice of initialization is that, since the first value of 𝜏 in the process is close to the true value of
𝜏0FA for most values of 𝑛, the process converges easily and quickly.
Next, frequency least squares are applied. The formalism is the same as that described in section 5.2. The frequency
least squares provide a map of the frequency averaged (in a least squares sense) identified bending stiffness (real part
of the complex bending stiffness) and loss factor (ratio between the imaginary part and the real part of the identified
complex bending stiffness). The results of this procedure using 1001 frequency points in the interval [1000, 5000] Hz
are shown in figure 13. The complex bending stiffness identified with CFAT and the Frequency-Adapted VFM are
well recovered in the area where no external load is applied. Results of both methods are similar. The damping zone
is clearly visible on the plots. Indeed, a decrease in the identified mass-normalised bending stiffness can be observed
at the point where the damped material is glued. This decrease is caused by the added mass per unit area of the foam.
In plots showing the loss factor, the damping zone is even more visible. In the region where the damped material is
glued, a significant increase in the loss factor is observed on both maps (figures 13c and 13d). However, the loss factor
identified with the Frequency-Adapted VFM is slightly higher than that identified with CFAT in the damping zone. At
the clamping point and at the excitation point, singularities are present on all the maps. The reason, as already pointed
in section 5.2, is that, in these zones, eqs. (14) and (32) are no longer valid, since a load is applied. The complex bending
stiffness estimated by CFAT and the VFM is therefore erroneous. At the boundary between the damped and undamped
zones, the finite-differences scheme, or virtual window, covers both zones. At this boundary, an average value for the
loss factor or bending stiffness is obtained. However, as the domains remain large relative to the size of the virtual
window or finite difference scheme, this problem is negligible. Overall, as both zones are clearly visible in figures 13b
and 13d, the ability of FA VFM to identify a spatial distribution of stiffness and damping is well demonstrated and
worthy of note.
Since the complex bending stiffness is correctly mapped, spatial least squares estimation can be applied to specific
zones corresponding to zones with or without damping. So far, the complex bending stiffness has only been identified
in space and the results presented in figure 13 correspond to an average value in a least squares sense of the complex
bending stiffness over the frequency range [1000, 5000] Hz. Therefore, to complete the caracterisation of the structure,
identification at each frequency point is necessary. The Frequency-Adapted VFM and CFAT are then used to identify
the bending stiffness and the loss factors of each zone. Calculations are performed in such a way that the finite difference
scheme in CFAT, or the Newton interpolation zone in the VFM, is exclusively in a zone with or without damping. The
complex bending stiffness estimated with CFAT at𝜔with the spatial least squares is obtained by the same process as the
VFM (eq. (36)) but using eq. (14) instead of eq. (32). Now and below, the spatial least squares results at each frequency
point and for each zone are obtained by considering all possible measurement points in each zone. To illustrate the
beneficial use of the Frequency-Adapted virtual window length, Figure 14 shows the bending stiffness identified in a
zone without damping or external forces for 𝜏 = 0 and for 𝜏 = 𝜏0FA as a function of frequency. The case where 𝜏 = 0 is
equivalent to a vanishingly small virtual window in eq. (32). The results below 1000 Hz are dominated by measurement
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(a) (b)

(c) (d)
Figure 13: Bending stiffness and loss factor identified with CFAT and the Frequency-Adapted VFM using frequency least
squares over the frequency range [1000, 5000] Hz, (a) Real part of the complex bending stiffness identified with CFAT, (b)
Real part of the complex bending stiffness identified with the Frequency-Adapted VFM, (c) Loss factor (ratio between the
imaginary part and real part) identified with CFAT, (d) Loss factor identified with the Frequency-Adapted VFM.

noise. Indeed, if the size of the virtual window or finite difference scheme is small compared to the bending wavelength,
the identified complex bending stiffness will be sensitive to measurement noise. As a consequence, the VFM for 𝜏 = 0
and for 𝜏 = 𝜏0FA will underestimate the complex bending stiffness. The effects of the Frequency-Adaptation process
are clearly visible in figure 14. The bending stiffness identified with the VFM when 𝜏 = 0 is overestimated at most
frequencies, while that estimated when 𝜏 = 𝜏0FA is close to the reference value at all frequencies above 1000 Hz. The
overestimation observed when 𝜏 = 0 is due to the singularity in the response of the method in the wavenumber domain.
When 𝜏 = 𝜏0FA, the singularity is removed and, as a result, the complex bending stiffness is correctly identified at most
frequencies.
Figure 15 shows the bending stiffness and loss factor obtained with the methods for both zones. Identification with
the methods remains inaccurate below 1000 Hz. This error is again due to measurement noise. Above 1000 Hz, for
both zones, the bending stiffness is well identified with both methods. Outside of the damped zone (figure 15a), the
results of both methods match the reference values of 2.26 m4/s2 while inside the damped zone (figure 15b) the results
of CFAT and FA VFM match the reference value of 2.14 m4/s2 calculated using the added mass per unit area of the
damping material. The CFAT results are slightly different from those obtained with the Frequency-Adapted VFM,
particularly at high frequencies. Regarding the loss factor, outside the damping zone, the values to be identified are too
low for the methods to identify it correctly. However, in the damping zone, both methods show a significant increase
in the identified loss factor. The Frequency-Adapted VFM estimate of the loss factor is higher than the CFAT estimate.
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Figure 14: Identified bending stiffness with the VFM for 𝜏 = 0 (black line) and for 𝜏 = 𝜏0FA using eq. (31) (red line). The
horizontal black dotted line corresponds to (𝐷∕𝜇)w/o Damp.
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Figure 15: Bending stiffness and loss factor identified with the Frequency-Adapted VFM and CFAT using spatial least
squares, (a) Bending stiffness identified on the zone without damping (the horizontal black dotted line corresponds to
(𝐷∕𝜇)w/o Damp.), (b) Bending stiffness identified on the zone with damping (the horizontal black dotted line corresponds
to (𝐷∕𝜇)with Damp.), (c) 𝜂 identified on the zone without damping, (d) 𝜂 identified on the zone with damping.

This observation is similar to that made with regard to the results presented in section 5.3 in the numerical study. The
poorer suppression of the singularity in the FA VFM response may be the reason for these slight differences. Overall,
the consistency between the CFAT and the FA VFM results validates the proposed FA VFM.
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6.3. Use of an average value of 𝜏FAThe iterative process used at the beginning of section 6.2 is a drawback of both CFAT and the FA VFM. Although
this process cannot be avoided when CFAT is applied, the use of the average value of 𝜏FA mentioned in section 6.2
may be a solution to eliminate this iterative process when the FA VFM is applied. So, instead of calculating the
corresponding value of 𝜏FA at each frequency, it is possible to use 𝜏0

FA mean = 1.58 over the whole frequency range
considered in the study. It is, then, no longer necessary to determine the number of points per wavelength, since the
exact value of 𝜏FA is not determined at every frequency. As a result, the iterative process is no longer necessary. Note
that, in [35], this mean value has already been used to determine the bending stiffness of an Euler-Bernoulli beam.
The results presented in section 6.2 are reintroduced, but now also using 𝜏0

FA mean. First, frequency least squares are
applied using eq. (34) and the mean value of 𝜏0

FA mean. Figure 16 shows the resulting maps of the bending stiffness and
loss factor. The bending stiffness (figure 16a) is well identified in both zones. Once again, singularities are observed

(a) (b)
Figure 16: Bending stiffness and loss factor identified with the VFM for 𝜏 = 𝜏0

FA mean using frequency least squares over the
frequency range [1000, 5000] Hz, (a) Real part of the complex bending stiffness, (d) Loss factor.

at the clamping point and at the excitation point. In addition, the damping zone is correctly identified as a zone of
decreased bending stiffness. With regard to the loss factor (figure 16b), the results are also consistent. The damped
zone shows a large increase of the loss factor. The results are similar to those obtained with FA VFM (figure 13).
Indeed, between [1000, 5000], the number of points per wavelength is between 6.62 and 2.97. So, referring to figure
7, for most of the frequency points considered in this interval, the exact value of 𝜏0

FA is close to the mean value.
Once again, the results presented in figure 16 only show a spatial mapping of the frequency-averaged identified complex
bending stiffness. Therefore, an additional identification based on spatial least squares is now applied using eq. (36).
Figure 17 shows the bending stiffness and loss factor identified with VFM for 𝜏 = 𝜏0

FA mean on each zone. The results
are compared with those of FA VFM. In the undamped and damped zones, the bending stiffness is well identified
at most frequencies (figures 17a and 17b). Again, below 1000 Hz, the results are dominated by measurement noise,
leading to an underestimation of the identified bending stiffness. With regard to the loss factor, outside the damped
zone (figure 17c), the values are once again too low to be properly identified. In the damped zone (figure 17d), the
increase in the loss factor due to the added damped material is clearly observed. Globally, the results obtained with
VFM for 𝜏 = 𝜏0

FA mean are then generally in line with those obtained with CFAT and the FA VFM. The main differences
are in the bending stiffness plots (figures 17a and 17b). Although the results remain in line with those of FA VFM, it
should be pointed out that as frequency increases, the VFM estimate of bending stiffness in both zones for 𝜏 = 𝜏0

FA mean
becomes less accurate. Indeed, when 𝑛 becomes small, 𝜏0

FA mean starts to deviate from the true value of 𝜏0FA (figure 7)
and, therefore, a larger estimation error can be expected. This was observed in [35]. However, although the results
deteriorate in higher frequencies, they remain consistent. This result can be explained by the fact that if 𝜏0

FA mean is
far from the exact value of 𝜏0FA when 𝑛 is small, it is not for other angular directions in the calculation of 𝜏FA. So,
when 𝜏0

FA mean is used, the singularity at the circle
√

𝑘2𝑥 + 𝑘2𝑦 = 𝑘f remains suppressed even when 𝑛 is small. It is not
suppressed at the point of the circle with angular direction 𝜃 = 0 but at another point. Therefore, even if 𝑛 is small,
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Figure 17: Bending stiffness and loss factor identified with the Frequency-Adapted VFM and the VFM for 𝜏 = 𝜏0

FA mean
using spatial least squares, (a) Bending stiffness identified on the zone without damping (the horizontal black dotted line
corresponds to (𝐷∕𝜇)w/o Damp.) (b) Bending stiffness identified on the zone with damping (the horizontal black dotted line
corresponds to (𝐷∕𝜇)with Damp.), (c) 𝜂 identified on the zone without damping, (d) 𝜂 identified on the zone with damping

using 𝜏0
FA mean instead of the exact value of 𝜏0

FA still yields consistent values. However, as pointed out in section 4.3,
the value 𝜏0FA remains the value of 𝜏FA that best suppresses the singularity at the circle

√

𝑘2𝑥 + 𝑘2𝑦 = 𝑘f. It is therefore
logical that the results deteriorate as the value used for 𝜏 is further away from the actual value of 𝜏0FA.
Note that the error in this case remains reasonably small because the minimum value of 𝑛 in this study is 2.6. If the
minimum value of 𝑛 had been lower, the error obtained using 𝜏0

FA mean should have been greater.
6.4. Comparison between the Frequency-Adapted VFM and the Conventional-VFM

The Frequency-Adapted VFM is now compared with the classical VFM approach, referred to as the Conventional-
VFM (C-VFM) for the sake of clarity. In the Conventional-VFM, the PVW integrals in eq. (16) are calculated
numerically using trapezoidal integration whereas in the Frequency-Adapted VFM they are calculated analytically.
Since a large number of measurement points is required to estimate the PWV integrals correctly, the measured
displacement field is oversampled by multiplying the number of measurement points by 3 using the Matlab® interp2
function. As a result of this interpolation operation, the spacing between measurement points is divided by 3, from
𝛥 = 14.5 mm to 𝛥𝑖 = 4.8 mm. Curvatures are obtained by numerical differentiation of oversampled displacements.
Note that this operation follows the same idea as that used with FA VFM when the displacement field is interpolated.
Indeed, as indicated in the section 4.2, interpolation consists of increasing the number of points used in the calculation
of integrals, which makes it possible to obtain a better estimate. The Conventional-VFM is then applied to identify the
complex bending stiffness of the plate using a 9 × 9 virtual window placed over the oversampled fields. The size of
the virtual window has been determined to be consistent with the sizes proposed in [31]. Note that the virtual fields
are the same as those used for the Frequency-Adapted VFM. The Conventional-VFM is first applied to identify the
bending stiffness at each frequency using the spatial least-squares approach (eq. (36)) in the zone with damping and in
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the zone without damping. The results are shown in figure 18. These results are compared with those of the Frequency-
Adapted VFM. Figures 18a and 18b show that the bending stiffness of the plate identified with the Conventional-VFM
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Figure 18: Bending stiffness and loss factor identified with the Frequency-Adapted VFM and the Conventional-VFM
using spatial least squares, (a) Bending stiffness identified on the area without damping (the horizontal black dotted line
corresponds to (𝐷∕𝜇)w/o Damp.), (b) Bending stiffness identified on the area with damping (the horizontal black dotted line
corresponds to (𝐷∕𝜇)with Damp.), (c) 𝜂 identified on the area without damping, (d) 𝜂 identified on the area with damping

is underestimated below 3 kHz and overestimated above 3 kHz as compared to the Frequency-Adapted VFM. The
results in the damping zone (figure 18b) are those where the identified bending stiffness is furthest from the reference
value. These results may be explained by the lack of measurement points on the virtual window and therefore in the
PVW interval estimation (eq. (16)). This lack of points is due to the small size of the damping zone. Note that the
loss factor 𝜂 identified with the Conventional-VFM is consistent with that identified with the Frequency-Adapted VFM
inside the damping zone (figure 18d). Outside the damping zone, the loss factor to be identified is too low for the
Conventional-VFM to identify it correctly. Finally, the Conventional-VFM is applied to identify the complex bending
stiffness at each point of the structure using all frequencies in the interval 𝑓 ∈ [1000, 5000] Hz and the frequency
least squares approach (eq. (34)). As in sections 6.2 and 6.3, these results complete the characterisation of the structure
carried out by the method. They are shown in figure 19. The results obtained with the Conventional-VFM compare well
with those obtained with the Frequency-Adapted VFM. The bending stiffness is clearly identified for each zone, as is
the loss factor. Indeed, the decrease in bending stiffness and the increase in the loss factor can be clearly seen on both
maps at the location of the damping material. Note that the singularities at the clamping point and the force injection
point are also clearly visible on the maps. Overall, the Conventional-VFM performs well. However, the method requires
a large number of points to estimate the integrals in the PVW. These good results are mainly due to the oversampling
of the displacement field, which multiplies the number of points per wavelength by 3 in this case. On the other hand,
thanks to polynomial interpolation, the Frequency-Adapted VFM does not need a large number of measurement points
to give good results, so no oversampling is required. This is an advantage of the proposed approach.
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(a) (b)
Figure 19: Bending stiffness and loss factor identified with the Conventional-VFM using frequency least squares over the
frequency range [1000, 5000] Hz, (a) Real part of the complex bending stiffness, (b) Loss factor.

7. Conclusion
This paper has presented the extension of the Frequency-Adapted VFM presented in [35] to the 2D case to

identify the bending stiffness and loss factor of a Love-Kirchhoff plate. The VFM consists in choosing a test function
called virtual displacement to solve the Principle of Virtual Work. In this work, virtual fields are piecewise functions
defined over a virtual window. The Frequency-Adaptation process involves polynomial interpolation of the measured
displacement field and finding the virtual window size that removes the singularity of the method at the free bending
wavenumber. Indeed, the response of the method in the wavenumber domain presents a singularity on a circle of
radius equal to the bending wavenumber of the plate. The Frequency-Adapted size for the virtual window is the one
that eliminates the singularity at a given point on the circle. Experimental results based on Laser Doppler Velocimetry
(LDV) data on an aluminum plate partially covered with a damping material from [16] have been presented. Spatial and
frequency least squares have been applied to identify the complex bending stiffness in both space and frequency. These
experimental results have shown that the FA VFM can be used to identify complex bending stiffness over a wide range
of frequencies. Using frequency least squares, the ability of Frequency-Adapted VFM to identify spatial variations in
bending stiffness and damping was well demonstrated. This was illustrated by the presentation of bending stiffness
and damping maps, where damped and undamped areas are clearly visible. The Frequency-Adapted VFM results
were compared with CFAT and the Conventional-VFM results. The results of the FA VFM are almost always similar
with of those of CFAT. In the Conventional-VFM, PVW integrals are calculated using trapezoidal integration and the
displacement field must therefore be oversampled before applying the method. In future work, the Frequency-Adapted
VFM will be extended to more complex panels to identify bending stiffness and loss factor.
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Appendix A : Interpolation of the measured displacement field
The matrix 𝐏 in eq. (21) is defined by :

𝐏 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑃1,1 𝑃2,1 𝑃3,1 𝑃4,1 𝑃5,1
𝑃1,2 𝑃2,2 𝑃3,2 𝑃4,2 𝑃5,2
𝑃1,3 𝑃2,3 𝑃3,3 𝑃4,3 𝑃5,3
𝑃1,4 𝑃2,4 𝑃3,4 𝑃4,4 𝑃5,4
𝑃1,5 𝑃2,5 𝑃3,5 𝑃4,5 𝑃5,5

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

with,

𝑃1,1 = �̃�1,1, 𝑃2,1 = �̃�1,2 − �̃�1,1, 𝑃3,1 =
�̃�1,1

2
− �̃�1,2 +

�̃�1,3

2
, 𝑃4,1 =

�̃�1,2

2
−
�̃�1,1

6
−
�̃�1,3

2
+
�̃�1,4

6

𝑃5,1 =
�̃�1,1
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−
�̃�1,2

6
+
�̃�1,3

4
−
�̃�1,4

6
+
�̃�1,5

24
, 𝑃1,2 = �̃�2,1 − �̃�1,1, 𝑃2,2 = �̃�1,1 − �̃�1,2 − �̃�2,1 + �̃�2,2,
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+
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24
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Appendix B : Coefficients 𝐴𝑖 and 𝐵𝑖
The coefficients 𝐴𝑖 and 𝐵𝑖 in eq. (26) are given by,

𝐴0 = 1 − 5𝜏2
14

+ 131𝜏4
2352

− 5𝜏6
1176

+ 𝜏8

7056
, 𝐵0 =

49
2

− 45𝜏2
7

+ 25𝜏4
49

,

𝐴1 =
4𝜏4
441

− 2𝜏6
1323

+ 𝜏8

15876
, 𝐵1 =

32
9

− 16𝜏2
7

+ 100𝜏4
441

,

𝐴2 =
𝜏4

28224
− 𝜏6

42336
+ 𝜏8

254016
, 𝐵2 =

1
72

− 𝜏2

28
+ 25𝜏4

1764
,

𝐴3 = − 𝜏4

1764
+ 5𝜏6

21168
− 𝜏8

63504
, 𝐵3 = −2

9
+ 5𝜏2

14
+ 25𝜏4

441
,

𝐴4 = − 𝜏2

168
+ 43𝜏4

14112
− 𝜏6

2352
+ 𝜏8

42336
, 𝐵4 =

17
12

− 9𝜏2
14

+ 25𝜏4
294

,

𝐴5 =
2𝜏2
21

− 11𝜏4
441

+ 𝜏6

392
− 𝜏8

10584
and 𝐵5 = −32

3
+ 27𝜏2

7
− 50𝜏4

147
.

(B.1)
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