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Abstract
Recently, weighted ω-pushdown automata have been introduced by Droste, Ésik, Kuich. This new
type of automaton has access to a stack and models quantitative aspects of infinite words. Here,
we consider a simple version of those automata. The simple ω-pushdown automata do not use
ε-transitions and have a very restricted stack access. In previous work, we could show this automaton
model to be expressively equivalent to context-free ω-languages in the unweighted case. Furthermore,
semiring-weighted simple ω-pushdown automata recognize all ω-algebraic series.

Here, we consider ω-valuation monoids as weight structures. As a first result, we prove that for
this weight structure and for simple ω-pushdown automata, Büchi-acceptance and Muller-acceptance
are expressively equivalent. In our second result, we derive a Nivat theorem for these automata
stating that the behaviors of weighted ω-pushdown automata are precisely the projections of very
simple ω-series restricted to ω-context-free languages. The third result is a weighted logic with the
same expressive power as the new automaton model. To prove the equivalence, we use a similar
result for weighted nested ω-word automata and apply our present result of expressive equivalence
of Muller and Büchi acceptance.
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1 Introduction

Languages of infinite words or ω-languages are intensively researched due to their applications
in model checking and verification [30, 3, 9]. Context-free languages of infinite words have
been investigated in a fundamental study by Cohen and Gold [10].

Weighted languages allow us to model the use of resources. In formal language theory,
we consider a word to be in the language or not. Contrary to this, weighted languages relate
words to resources such as costs, gains, probabilities, counts, time, and of course Boolean
values. There exist generalizations to several language classes (regular, context-free, star-free
languages, etc.), to various structures (words, trees, pictures, nested words, infinite words,
etc.) and to different weight structures (semirings, valuation monoids, etc.). See [20] for
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an overview. While weighted context-free languages already date back to Chomsky and
Schützenberger [8], more recently, Droste, Ésik, Kuich [27, 19, 16] generalized context-free
languages of infinite words to the weighted setting.

In this paper, we investigate a type of weighted ω-pushdown automata called simple
ω-reset pushdown automaton in [12]. They do not allow ε-transitions and the stack can only
be altered by at most one symbol. Simple automata have been shown to be expressively
equivalent to general pushdown automata in the unweighted case for finite words [4] and
for infinite words [15] (i.e., the language classes accepted by these two kinds of automata
coincide). For continuous commutative star-omega semirings we could show in [13, 12, 14]
that for every ω-algebraic series r, there exists a simple ω-reset pushdown automaton with
behavior r.

Here, we consider ω-valuation monoids as weight structures. They include complete
semirings but also discounted and average behavior. Valuation monoids first appeared in [22]
but their idea is based on [7]. By an example, we show how a basic web server and its average
response time for requests can be modeled by a simple ω-pushdown automaton with weights
in a suitable ω-valuation monoid.

Our first main result is the expressive equivalence of Büchi and Muller acceptance for
weighted simple ω-pushdown automata; i.e., the classes of behaviors of these two weighted
automata models coincide.

Then we show several closure properties for weighted ω-pushdown automata. Our second
main result is a Nivat-like decomposition theorem [31] that shows that by the help of a
morphism, we can express the behavior of every weighted ω-pushdown automaton as the
intersection of an unweighted ω-pushdown automaton and a very simple ω-series. Nivat’s
theorem was extended to weighted automata of finite words over semirings by [21].

Büchi, Elgot, Trakhtenbrot [5, 26, 33] (BET-Theorem) proved that regular languages are
exactly those languages definable by monadic second-order logic. Their result was extended
by Lautemann, Schwentick, Thérien [29] to context-free languages. While both these former
results are for finite words, we defined a logic that is expressively equivalent to context-free
languages of infinite words (cf. [15]). The BET-Theorem has been extended to the weighted
setting [17]. Weighted logics allow the logical description of weights of finite words [17, 24, 34]
and also of infinite words [25, 18, 22].

In this paper, as the third main result, we extend the BET-Theorem to weighted simple
ω-pushdown automata. We extend the logic in [29, 11] and prove its equivalence to weighted
simple ω-pushdown automata. For the proof, we do not reinvent the wheel but use the
already existing BET-Theorem for weighted nested ω-word automata [11]. The application
of a projection allows us to lift the result on weighted nested ω-word automata to weighted
simple ω-pushdown automata. We show how the quantitative behavior of the basic web
server example mentioned above can be described in our weighted matching ω-MSO logic.

An expressive equivalence result for arbitrary weighted ω-pushdown automata, besides
our Nivat-like result, remains open at present.

We structure the paper as follows. We give basic definitions and compare Muller and Büchi
acceptance in Section 2. Then, we prove the Nivat-like result in Section 3. Section 4 defines
the logic. Section 5 summarizes the known results about weighted nested ω-word languages
and also shows the new projection. In Section 6, we prove our weighted BET-Theorem.
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2 Weight Structure and Simple ω-Pushdown Automata

This section introduces our weight structure, the ω-valuation monoids (cf. [22]), and the
weighted automata we want to discuss in this paper. At the end of this section, we give our
first main result, the comparison of Muller and Büchi acceptance.

An alphabet denotes a finite set of symbols. Let N be the set of non-negative integers.
A monoid (D,+,0) is called complete, if it is equipped with sum operations

∑
I : DI → D

for all families (ai | i ∈ I) of elements of D, where I is an arbitrary index set, such that the
following conditions are satisfied:

(i)
∑
i∈∅

di = 0,
∑
i∈{k}

di = dk,
∑

i∈{j,k}

di = dj + dk for j 6= k, and

(ii)
∑
j∈J

(∑
i∈Ij

di

)
=
∑
i∈I

di if
⋃
j∈J

Ij = I and Ij ∩ Ik = ∅ for j 6= k .

This means that a monoid D is complete if it has infinitary sum operations (i) that are an
extension of the finite sums and (ii) that are associative and commutative (cf. [28]).

For a set D we denote by C ⊆fin D that C is a finite subset of D. Let (Dfin)ω =⋃
C⊆finD

Cω. An ω-valuation monoid (D,+,Valω,0) consists of a complete monoid (D,+,0)
and an ω-valuation function Valω : (Dfin)ω → D such that Valω(di)i∈N = 0 whenever di = 0
for some i ∈ N. A product ω-valuation monoid (ω-pv-monoid) is a tuple (D,+,Valω, �,0,1)
where (D,+,Valω,0) is an ω-valuation monoid, � : D2 → D is a product function and further
1 ∈ D, V alω(1ω) = 1 and 0 � d = d � 0 = 0, 1 � d = d � 1 = d for all d ∈ D.

A monoid (D,+,0) is called idempotent if d+d = d for all d ∈ D. An ω-valuation monoid
(D,+,Valω,0) is equally called idempotent if its underlying monoid (D,+,0) is idempotent.

In [11, 22], ω-valuation monoids are classified by specific properties. More specific ω-
valuation monoids will later lead to more loose restrictions on our logic. Due to space
constraints, we omit properties on ω-valuation monoids here and refer the interested reader
to [11]. Additionally, we will only present one possible restriction on our logic.

I Example 1 (ω-valuation monoids). The first two examples are inspired by [7].
1. Let R̄ = R ∪ {−∞,∞} and −∞+∞ = −∞. Then (R̄, sup, lim avg,+,−∞, 0) is an ω-pv-

monoid where lim avg(di)i∈N = lim infn→∞ 1
n

∑n−1
i=0 di.

2. Let R̄+ = {x ∈ R | x ≥ 0} ∪ {−∞}. Then (R̄+, sup,discλ,+,−∞, 0) for 0 < λ < 1 is an
ω-pv-monoid where discλ(di)i∈N = limn→∞

∑n
i=0 λ

idi.
3. Any complete semiring (S,⊕,⊗,0,1) is an ω-pv-monoid (S,⊕,

⊗
,⊗,0,1).

As it simplifies the logical characterization, we follow [23, 15] and use a restricted type
of pushdown automaton. We call it simple ω-pushdown automaton. For the unweighted
setting, we proved in [15] that this automaton model is expressively equivalent to general
ω-pushdown automata; for finite words, this equivalence is hidden in [4]. For the weighted
case and for continuous semirings, we show a corresponding result for finite words in [13].
For weights in continuous semirings and for infinite words, we showed in [12, 14] that all
ω-algebraic series are recognized by weighted simple ω-pushdown automata.

Simple ω-pushdown automata are realtime, i.e. they do not use ε-transitions. Additionally,
we restrict transitions in a way to only allow either to keep the stack unaltered, to push one
symbol or to pop one symbol. Thus, let S(Γ) = ({↓} × Γ) ∪ {#} ∪ ({↑} × Γ) be the set of
stack commands for a stack alphabet Γ. Note that this implies that the automaton can only
read the top of the stack when popping it. Additionally, for technical reasons, we start runs
with an empty stack and therefore allow to push onto the empty stack.

FSTTCS 2020
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I Definition 2. An (unweighted) ω-pushdown automaton (ωPDA) over the alphabet Σ is a
tuple M = (Q,Γ, T, I, F ) where

Q is a finite set of states,
Γ is a finite stack alphabet,
T ⊆ Q× Σ×Q× S(Γ) is a set of transitions,
I ⊆ Q is the set of initial states,
F ⊆ Q is a set of (Büchi-accepting) final states.

I Definition 3. A weighted ω-pushdown automaton (ωWPDA) over the alphabet Σ and the
ω-valuation monoid (D,+,Valω,0) is a tuple M = (Q,Γ, T, I, F,wt) where

(Q,Γ, T, I, F ) is an unweighted ω-pushdown automaton over Σ,
wt : T → D is a weight function.

I Definition 4. A Muller-accepting ω-pushdown automaton over the alphabet Σ is a tuple
M = (Q,Γ, T, I,F) where Q,Γ, T, I are defined as for ωPDA, but F ⊆ 2Q is a set of Muller-
accepting subsets of Q. Similarly, a weighted Muller-accepting ω-pushdown automaton over
the alphabet Σ and the ω-valuation monoid D is a tuple M = (Q,Γ, T, I,F ,wt).

A configuration of an ωPDA or ωWPDA is a pair (q, γ), where q ∈ Q and γ ∈ Γ∗. We
define the transition relation between configurations as follows. Let γ ∈ Γ∗ and t ∈ T . For
t = (q, a, q′, (↓, A)), we write (q, γ) `tM (q′, Aγ). For t = (q, a, q′,#), we write (q, γ) `tM (q′, γ).
Finally, for t = (q, a, q′, (↑, A)), we write (q, Aγ) `tM (q′, γ). These three types of transitions
are called push, internal and pop transitions, respectively.

We denote by label(q, a, q′, s) = a the label and by state(q, a, q′, s) = q the state of
a transition. Both, as well as the function wt will be extended to infinite sequences of
transitions by letting label((ti)i≥0) = (label(ti))i≥0 ∈ Σω for the infinite word constructed
from the labels and similar for state((ti)i≥0) ∈ Qω and for wt((ti)i≥0) ∈ Dω.

An infinite sequence of transitions ρ = (ti)i≥0 with ti ∈ T is called a run of the ωWPDA
or ωPDA M on w = label(ρ) iff there exists an infinite sequence of configurations (pi, γi)i≥0
with p0 ∈ I and γ0 = ε such that (pi, γi) `tiM (pi+1, γi+1) for each i ≥ 0. We abbreviate a run
ρ = (ti)i≥0 with (p0, γ0) `t0M (p1, γ1) `t1M · · · where label(ti) = ai by ρ : (p0, γ0) a0−→ (p1, γ1)
a1−→ · · · such that the word becomes visible.

For an infinite sequence of states (qi)i≥0, let Inf((qi)i≥0) =
{
q | q = qi for infinitely many

i ≥ 0
}
be the set of states that occur infinitely often. For Büchi-accepting automata, a run ρ

is called successful if Inf(state(ρ)) ∩ F 6= ∅. For Muller-accepting automata, a run ρ is called
successful if Inf(state(ρ)) ∈ F . For an ωPDA M = (Q,Γ, T, I, F ), the language accepted by
M is denoted by L(M) = {w ∈ Σω | ∃ successful run of M on w}. A language L ⊆ Σω is
called ωPDA-recognizable if there exists an ωPDA M with L(M) = L. For an ωWPDA M ,
we introduce the following function ‖M‖ : Σω → D which is called the behavior of M and
which is defined by ‖M‖(w) =

∑
(Valω(wt(ρ)) | ρ successful run ofM on w).

An ωPDA or ωWPDA M over Σ is called unambiguous if there exists at most one
successful run of M on every word w ∈ Σω. If there exists an unambiguous ωPDA M with
L(M) = L, the language L is called unambiguous.

Any function s : Σω → D is called a series over Σ and D. The set of all such series is
denoted by D〈〈Σω〉〉. Every series s : Σω → D which is the behavior of some ωWPDA over
D is called ωWPDA-recognizable.

An ωWPDA M = (Q,Γ, T, I, F,wt) that only uses internal transitions, i.e., for which
Γ = ∅ and for all transitions t = (q, a, q′, s) ∈ T holds s = #, is called a weighted finite
automaton, or short ωWFA. Series that are the behavior of some ωWFA are called ωWFA-
recognizable.
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1 2

req, (↓, X) : 0

ans, (↑, X) : 0

wait,# : 1
call, (↓, Y ) : 1
ret, (↑, Y ) : 1

Figure 1 Example 5: Weighted ω-pushdown automaton over the alphabet Σ = {req, ans,
call, ret,wait} and the ω-valuation monoid R̄. The value after the “:” are the used weights 0 and 1.

1 2

3 4

M ′:

⇒

1 2

3 4

1̄

3̄

M ′′:

Figure 2 Proof of Theorem 6: The states 1, 2, 3, and 4 stand for the set of states that are
initial and final, initial but not final, final but not initial, or neither initial nor final, respectively.
Groups 1 and 3 are copied into 1̄ and 3̄. Transitions into 1̄ and 3̄ are only allowed from originally
non-accepting states.

I Example 5 (ωWPDA). We extend the ω-pv-monoid 1 of Example 1 as (R̄, sup, specialavg,
+,−∞, 0) where we define a new ω-valuation function to count and take the average of the
counted values. Let h be a function that maps natural numbers to strings as follows.

h : N→ {0, 1}∗, n 7→ 0 11 . . . 1︸ ︷︷ ︸
n-times

0

Then we extend h to infinite sequences of natural numbers h : Nω → {0, 1}ω in the natural way.
We will consider its inverse where we have for instance h−1(011100110011110 . . .) = 324 . . ..
Then let specialavg = lim avg ◦h−1. For w /∈ (01∗0)ω we set specialavg(w) = −∞.

Now, we define an automaton A as shown in Figure 1. We let A = ({1, 2}, {X,Y },
T, {1}, {1},wt) be an ωWPDA over the alphabet Σ = {req, ans, call, ret,wait}, where T is
defined as shown in the Figure and the weights are indicated after the colon symbol.

The automaton simulates some kind of (web) server that takes requests from clients and
answers them. For every request, the server has to call some amount of other services and
await their returns. Only when all calls have been returned, the server answers the original
request. This is a context-free property. Only runs that always eventually return to state 1
to serve new clients are considered valid.

Every call, return, or wait takes one second to operate and this operation time is accounted
for in the weight. The specialavg operation sums up all the waiting time per request and
returns the long run average response time.

We now state our first main result.

I Theorem 6. Let s : Σω → D be a series. The following are equivalent:
s is recognizable by a Büchi-accepting ωWPDA,
s is recognizable by a Muller-accepting ωWPDA.

Proof Idea. In the direction Büchi to Muller acceptance, the standard approach works also
in the weighted case.

FSTTCS 2020



44:6 Nivat-Theorem and Logic for Weighted ω-Pushdown Automata

For the other direction, the standard approach usually employs a special set of accepting
states that have to be traversed to be accepted. This construction needs to be adjusted as it
creates infinitely many possible runs in the Büchi automaton for every run of the Muller
automaton.

A solution to this problem was presented in [25] whose construction allows exactly one
entry point into the special set of accepting states. Entering the group of accepting states is
forbidden from a state that is already accepting. In this way, the only successful runs are
the ones that switch from the original states to the new group of accepting states at the last
possible moment. In contrast to [25], we cannot assume an initially normalized automaton
to solve the remaining question of the initial states that are also final.

Instead, the automaton decides non-deterministically if it will eventually see a non-final
state in the run. If not, and only in this case, it already starts in the new group of accepting
states. Figure 2 depicts the idea of the construction. J

3 Closure Properties

Let Σ, ∆ be alphabets and h : Σ→ ∆ a mapping. We can extend h to infinite words in the
natural way by setting h(w) = h(a0)h(a1)h(a2) · · · ∈ ∆ω for w = a0a1a2 · · · ∈ Σω.

Let now h : ∆→ Σ and let h−1(w) = {v ∈ ∆ω | h(v) = w}. Then for a series s : ∆ω → D,
we define the series h(s) : Σω → D by h(s)(w) =

∑
v∈h−1(w) s(v) for all w ∈ Σω.

I Lemma 7. Let Σ, ∆ be alphabets, (D,+,Valω,0) an ω-valuation monoid and h : ∆→ Σ
a mapping. If s : ∆ω → D is ωWPDA-recognizable, then so is h(s) : Σω → D.

Let g : Σ→ D be a mapping. We denote by Valω ◦ g : Σω → D the series defined for all
w ∈ Σω by (Valω ◦ g)(w) = Valω(g(w)).

I Lemma 8. Let Σ be an alphabet, (D,+,Valω,0) an ω-valuation monoid and g : Σ→ D a
mapping. Then Valω ◦ g is ωWFA-recognizable by an ωWFA with only one state.

Let (D,+,Valω,0) be an ω-valuation monoid, s : Σω → D an ωWFA-recognizable series
and L ⊆ Σω an ωPDA-recognizable language. By s ∩ L : Σω → D, we denote the series that
assigns the weights of s to the words accepted by L. Formally, for words u ∈ Σω,

(s ∩ L)(u) =
{
s(u), if u ∈ L
0, otherwise .

I Lemma 9. Let (D,+,Valω,0) be an ω-valuation monoid, s : Σω→D an ωWFA-recognizable
series and L ⊆ Σω an ωPDA-recognizable language.
1. If L is unambiguous, then the series s ∩ L : Σω → D is ωWPDA-recognizable.
2. If D is idempotent, then the series s ∩ L : Σω → D is ωWPDA-recognizable.

Proof Idea. To allow final states of both original Büchi-accepting automata to be visited
alternately, we use the standard construction for intersecting unweighted Büchi automata for
infinite words, see [32] for details. The assumptions of (1), respectively (2), imply that the
weights for s ∩ L are computed correctly (cf. [2]). J

Intersection with inherently ambiguous languages over non-idempotent ω-valuation
monoids might not be ωWPDA-recognizable. For a counterexample, consider the ω-valuation
monoid (N∞,+,

∏
, 0) of natural numbers or ∞ with the natural operations, an inherently

ambiguous language like e.g. L = {aibjckdω | i = j or j = k} and intersect it with the
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constant series s(u) = 1 for all u ∈ Σω. But then, the intersection (s ∩ L) is no longer
ωWPDA-recognizable which can be seen as follows. An automaton M for the series (s ∩ L)
would yield the value 1 precisely for the words in L. Since the ω-valuation monoid N∞ only
allows non-negative integers or ∞ as weights, each word in L can have only one successful
run in M . Stripping M of its weights while only keeping transitions with non-zero weight,
we obtain an unweighted pushdown automaton M ′. The new automaton M ′ has only one
successful run for every input u ∈ L and is thus unambiguous; moreover, M ′ accepts the
language L. This contradicts L being inherently ambiguous.

I Definition 10. Let Σ be an alphabet and (D,+,Valω,0) an ω-valuation monoid.
We denote by Drec〈〈Σω〉〉 the family of ωWPDA-recognizable series over Σ and D. Let

further DN 〈〈Σω〉〉 (with N meaning Nivat) denote the set of series s over Σ and D such that
there exist an alphabet ∆, mappings h : ∆→ Σ and r : ∆→ D and an ωPDA-recognizable
language L ⊆ ∆ω such that

s = h((Valω ◦ r) ∩ L) .

We further define DNunamb〈〈Σω〉〉 (DNdet〈〈Σω〉〉) like DN 〈〈Σω〉〉 with the difference that L is
an unambiguous (deterministic, respectively) ωPDA-recognizable language.

I Example 11. We extend the ω-pv-monoid 1 of Example 1 as (Ṙ, sup,partialavg,+,−∞, 0)
where we add a new value d that will later be ignored, i.e., Ṙ = R̄∪{d}. We set sup(−∞, d) = d

and sup(r, d) = r for every r ∈ R. We define a new ω-valuation function to ignore d and take
the average of the remaining values. Let now h be defined as follows.

h : Ṙ→ R̄∗, r 7→ r, for r ∈ R̄

d 7→ ε

Then we extend h to infinite sequences h : Ṙω → R̄ω in the natural way. Now let partialavg =
lim avg ◦h and Σ = {a, b}. We make the following definitions:

∆ = Σ× {0, 1, . . . , 6} ,
L =

{
(σ1, d1)(σ2, d2)(σ3, d3) · · · | di = i mod 7, σi ∈ Σ

}
,

r(b, i) = d for all i ∈ {0, . . . , 6} and r(a, i) =
{

1, if 5 ≤ i ≤ 6
0, otherwise ,

h(σ, i) = σ

The language L ⊆ ∆ω is obviously ωPDA-recognizable. As we will see in the following
theorem, the series s = h((Valω ◦ r) ∩ L) ∈ ṘN 〈〈Σω〉〉 is ωWPDA-recognizable because Ṙ is
idempotent. The series s calculates the greatest accumulation point of the ratio of events a
happening at the weekend (days 5 and 6) compared to all occurrences of events a.

The following is the second main Nivat-like decomposition result.

I Theorem 12. Let Σ be an alphabet and (D,+,Valω,0) an ω-valuation monoid. Then,

Drec〈〈Σω〉〉 = DNdet〈〈Σω〉〉 = DNunamb〈〈Σω〉〉 ⊆ DN 〈〈Σω〉〉 .

If D is idempotent, DN 〈〈Σω〉〉 = Drec〈〈Σω〉〉.

Proof. First, we show Drec〈〈Σω〉〉 ⊆ DNdet〈〈Σω〉〉: Let s ∈ Drec〈〈Σω〉〉. Thus there exists an
ωWPDA M = (Q,Γ, T, I, F, wt) over Σ such that ‖M‖ = s. We will show that there exist
∆, h, r and L such that s = h((Valω ◦ r) ∩ L).

FSTTCS 2020



44:8 Nivat-Theorem and Logic for Weighted ω-Pushdown Automata

Let ∆ = T and let r = wt: ∆→ D. We define h : ∆→ Σ by h((q, a, q′, s)) = a. Note that
the automaton does not allow ε-transitions and therefore, h is well-defined. We construct an
unweighted ωPDA M ′ = (Q,Γ, T ′, I, F ) over ∆ with

T ′ = {(q, (q, a, p, s), p, s) | (q, a, p, s) ∈ T} .

Note that M ′ accepts exactly the successful runs of M . As there is at most one transition of
M ′ with label (q, a, p, s), M ′ is deterministic (and unambiguous). Define L = L(M ′).

Let w ∈ Σω. Therefore,

h((Valω ◦ r) ∩ L)(w) =
∑(

((Valω ◦ r) ∩ L)(w′) | w′ ∈ Σω and h(w′) = w
)

=
∑(

(Valω ◦ r)(w′) | w′ ∈ L and h(w′) = w
)

=
∑

(Valω(wt(w′)) | w′ successful run of M on w)

= ‖M‖(w) = s(w) .

The inclusionsDNdet〈〈Σω〉〉⊆DNunamb〈〈Σω〉〉⊆DN 〈〈Σω〉〉 is true by definition. The converse
DNunamb〈〈Σω〉〉⊆Drec〈〈Σω〉〉 is proven by the closure properties of Lemmas 7, 8 and 9(1).

If D is idempotent, by Lemmas 7, 8 and 9(2), we get DN 〈〈Σω〉〉 ⊆ Drec〈〈Σω〉〉. J

The inclusion DN 〈〈Σω〉〉 ⊆ Drec〈〈Σω〉〉 does not hold in general for non-idempotent D.
For the proof, one can consider an adaptation of the counterexample after Lemma 9.

4 Logic for Weighted ω-Pushdown Automata

The third main goal of this paper is a logical characterization of weighted ω-context-free
languages. This section introduces this logic. It is based on [15, 17, 29].

Our logic has three components. The first component is a monadic second-order logic
(MSO). By Büchi, Elgot, Trakhtenbrot [5, 6, 26, 33], MSO has the same expressive power on
finite and infinite words as finite automata.

The second component adds the weights to the logic. Here, this is done by a new layer of
formulas that are to be interpreted quantitatively, using the operations of the ω-pv-monoid.
Formulas of the unweighted part of the logic will be interpreted as 0 or 1 in the ω-pv-monoid.

The third component is a dyadic second-order predicate – a binary relation that is called
matching relation. Every formula will be allowed to use exactly one such predicate to link
positions in words. A matching relation has a specific shape that makes it possible to argue
about the stack in pushdown automata or the brackets in Dyck languages or even about the
nesting in nested words.

Let w ∈ Σω. The set of all positions of w is N. A binary relation M ⊆ N × N is a
matching (cf. [29]) if M is compatible with <, i.e., (i, j) ∈M implies i < j, if each element i
belongs to at most one pair in M , and if M is noncrossing, i.e., (i, j) ∈ M and (k, l) ∈ M
with i < k < j imply i < l < j. Let Match(N) denote the set of all matchings in N× N.

Let V1, V2 denote countable and pairwise disjoint sets of first-order and second-order
variables, respectively. We fix a matching variable µ /∈ V1 ∪ V2. Let V = V1 ∪ V2 ∪ {µ}.
Furthermore, D is always an ω-pv-monoid (D,+,Valω, �,0,1).

I Definition 13. Let Σ be an alphabet. The set ωMSO(D,Σ) of weighted matching ω-MSO
formulas over Σ and D is defined by the extended Backus-Naur form

β ::= Pa(x) | x ≤ y | x ∈ X | µ(x, y) | ¬β | β ∨ β | ∃x. β | ∃X.β
ϕ ::= d | β | ϕ⊕ ϕ | ϕ⊗ ϕ |

⊕
x ϕ |

⊕
X ϕ | Valx ϕ

where a ∈ Σ, d ∈ D, x, y ∈ V1 and X ∈ V2. We call all formulas β boolean formulas.
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Table 1 The semantics of boolean (left) and weighted (right) ωMSO(D,Σ) formulas.

(w, σ) |= Pa(x) iff aσ(x) = a Jϕ⊕ ψK(w, σ) = JϕK(w, σ) + JψK(w, σ)
(w, σ) |= x ≤ y iff σ(x) ≤ σ(y) Jϕ⊗ ψK(w, σ) = JϕK(w, σ) � JψK(w, σ)
(w, σ) |= x ∈ X iff σ(x) ∈ σ(X) J

⊕
x ϕK(w, σ) =

∑
i∈N(JϕK(w, σ[x/i]))

(w, σ) |= µ(x, y) iff (σ(x), σ(y)) ∈ σ(µ) J
⊕

X ϕK(w, σ) =
∑
I⊆N(JϕK(w, σ[X/I]))

(w, σ) |= ¬ϕ iff (w, σ) 6|= ϕ JValx ϕK(w, σ) = Valω((JϕK(w, σ[x/i]))i∈N)

(w, σ) |= ϕ ∨ ψ
(w, σ) |= ∃x. ϕ

iff (w, σ) |= ϕ or (w, σ) |= ψ

iff ∃j ∈ N. (w, σ[x/j]) |= ϕ
JβK(w, σ) =

{
1, if (w, σ) |= β,

0, otherwise

(w, σ) |= ∃X.ϕ iff ∃J ⊆ N. (w, σ[X/J ]) |= ϕ JdK(w, σ) = d

Variables denote positions in the word. Pa(x) is a predicate indicating that the x-th letter
of the word is a. Furthermore, µ(x, y) says that x and y will be matched. The operations ⊕
and ⊗ evaluate to the operations + and � of the ω-pv-monoid D, respectively. The formulas⊕

x and
⊕

X sum up over all possible instances of x and X, respectively. Valx ϕ applies
Valω to the sequence of infinitely many ϕ, each of them instantiated with a position x ∈ N.

Let V̄ be the collection of all V-assignments, i.e., mappings σ : V → N ∪ 2N ∪Match(N)
where σ(V1) ⊆ N, σ(V2) ⊆ 2N and σ(µ) ∈ Match(N). Let σ be a V-assignment. For x ∈ V1
and j ∈ N, the update σ[x/j] is the V-assignment σ′ with σ′(x) = j and σ′(y) = σ(y) for all
y ∈ V \ {x}. The updates σ[X/J ] and σ[µ/M ] are defined similarly.

Let ϕ ∈ ωMSO(D,Σ) be a formula, w = a0a1a2 . . . ∈ Σω and let σ be a V-assignment.
We inductively define (w, σ) |= ϕ if ϕ is boolean and JϕK : Σω × V̄ → D if ϕ is non-boolean
over the structure of ϕ as shown in the Table 1, where a ∈ Σ, d ∈ D, x, y ∈ V1 and X ∈ V2.
The logical counterparts ∧, →, ∀x. ϕ, ∀X.ϕ, x 6= y, x < y and i < j < k can be gained from
negation and the existing operators.

Note how formulas φ⊗ ψ are evaluated by the product operation � in the ω-pv-monoid
and also note that our ωWPDAs do not have direct access to this operation. However, the
first two layers of our logic, the ωMSO(D,Σ) formulas, will be translated into weighted
nested ω-word automata and simple series of those automata are closed under intersection
and therefore, � can be translated by a product construction.

We now define MATCHING(µ) ∈ ωMSO(D,Σ) which ensures that µ ∈ Match(N). Let

MATCHING(µ) = ∀x∀y. (µ(x, y)→ x < y)∧
∀x∀y∀k.

(
(µ(x, y) ∧ k 6= x ∧ k 6= y)→ ¬µ(x, k) ∧ ¬µ(k, x) ∧ ¬µ(y, k) ∧ ¬µ(k, y)

)
∧

∀x∀y∀k∀l.
(
(µ(x, y) ∧ µ(k, l) ∧ x < k < y) → x < l < y

)
.

IDefinition 14. The set of formulas of weighted matching ω-logic over Σ and D,ωML(D,Σ),
denotes the set of all formulas ψ of the form

ψ =
⊕

µ

(
ϕ⊗MATCHING(µ)

)
,

for short ψ =
⊕match

µ ϕ, where ϕ ∈ ωMSO(D,Σ).

Let ψ =
⊕match

µ ϕ, w ∈ Σω and let σ be a V-assignment. Then,

JψK(w, σ) =
∑

M∈Match(N)

(JϕK(w, σ[µ/M ])) .
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Let ψ ∈ ωML(D,Σ). We denote by Free(ψ) ⊆ V the set of free variables of ψ. A formula
ψ with Free(ψ) = ∅ is called a sentence. For a sentence ψ, JψK(w, σ) does not depend on
σ. It will therefore be omitted and we only write JψK(w) where the series JψK : Σω → D is
called defined by ψ. A series s : Σω → D is weighted-ωML-definable if there exists a sentence
ψ ∈ ωML(D,Σ) such that JψK = s.

I Example 15. Here we define a logical sentence that defines the same series as in Example 5.
Consider the same ω-pv-monoid (R̄, sup, specialavg,+,−∞, 0) as there.

The subformula pstructure ensures that the first symbol is a request and that requests
occur directly after answers. The formula pmatching relates corresponding call and returns
and forbids calls without returns and vice versa. Furthermore, calls must be returned before
giving the answer to the clients. Finally, the server has to serve clients infinitely often.

next(x, y) = x < y ∧ ¬(∃z. x ≤ z ≤ y)
first(x) = ∀y. x ≤ y
pstructure = ∀x. (first(x)→ Preq(x)) ∧ ∀x∀y.next(x, y)→ (Pans(x)↔ Preq(y))
pmatching = ∀x. Pcall(x)→ ∃y. Pret(y) ∧ µ(x, y)

∧ ∀y. Pret(y)→ ∃x. Pcall(x) ∧ µ(x, y)
∧ ∀x. ∀y.

[
µ(x, y)→ ¬

(
∃z. x ≤ z ≤ y ∧ Pans(z)

)]
∧ ∀x. ∀y.

[
µ(x, y)→

(
(Preq(x) ∧ Pans(y)) ∨ (Pcall(x) ∧ Pret(y))

)]
pinf_serving = ∀x. ∃y. (x < y ∧ Preq(y))
ϕunweighted = pstructure ∧ pmatching ∧ pinf_serving

The weights of the words are distributed depending on the symbol and the formula ϕweighted
also applies the Valω function to the resulting sequence of weights.

ϕweighted = Valx
[(
Preq(x) ∨ Pans(x)

)
⊕
(
(Pcall(x) ∨ Pret(x) ∨ Pwait(x))⊗ 1

)]
Then, we we quantify over the matching variable and only consider the weight calculated in
ϕweighted if the formula ϕunweighted is true:

ψ =
⊕match

µ ϕunweighted ⊗ ϕweighted

Finally, we have JψK = ‖A‖ for the ωWPDA A of Example 5.

The weighted matching ω-logic, ωML(D,Σ), contains exactly one predicate µ and exactly
one quantification over it. This corresponds to the behavior of pushdown automata where
exactly one pushdown tape is used. In contrast, the pushdown automaton uses the ω-valuation
function Valω only once per run and never recursively. As formulas ValxValy ϕ ∈ ωMSO(D,Σ)
are not always translatable into automata, we follow [11, 17, 22] and define some possible
restrictions of our logic.

The set of almost boolean formulas is the smallest set of all formulas of ωMSO(D,Σ)
containing all constants d ∈ D and all boolean formulas which is closed under ⊕ and ⊗.

I Definition 16 ([11, 22]). Let ϕ ∈ ωMSO(D,Σ). We call ϕ
1. strongly-⊗-restricted if for all subformulas µ⊗ ν of ϕ:

either µ and ν are almost boolean or µ is boolean or ν is boolean.
2. Val-restricted if for all subformulas Valx µ of ϕ, µ is almost boolean.
3. syntactically restricted if it is both Val-restricted and strongly-⊗-restricted.
Let now ψ =

⊕match
µ ϕ ∈ ωML(D,Σ). For X ∈ {strongly-⊗,Val, syntactically}, we also say

that ψ is X-restricted if ϕ is X-restricted.



M. Droste, S. Dziadek, and W. Kuich 44:11

The following will be the third main result. Regular ω-pv-monoids will be defined in
the next section on page 11 as they depend on nested ω-word automata. We will prove the
following theorem in Section 6.

I Theorem 17. Let D be a regular ω-pv-monoid and s : Σω → D be a series. The following
are equivalent:
1. s is ωWPDA-recognizable
2. There is a syntactically restricted ωML(D,Σ)-sentence ϕ with JϕK = s.

5 Weighted Nested ω-Word Languages

The ωMSO(D,Σ) formulas correspond exactly to weighted nested ω-word languages [11]
(cf. [1]). In fact, without considering the existential quantification over the matching relation
∃matchµ, the matching must explicitly be encoded in the words; the result is a nested word.
Because of limited space, we refrain from a detailed definition of weighted nested ω-word
automata and refer the reader to [11].

A nested ω-word nw over Σ is a pair (w, ν) = (a0a1a2 . . . , ν) where w ∈ Σω is an ω-word
and ν ∈ Match(N) is a matching relation over N. Let NWω(Σ) denote the set of all nested
ω-words over Σ. For two positions i, j ∈ N with ν(i, j), we call i a call position and j a
return position. If i is neither call nor return, we call it an internal position. A position i for
i ∈ N is called top-level if there exist no positions j, k ∈ N with j < i < k and ν(j, k).

A weighted stair Muller nested word automaton (ωWNWA) as defined in [11] is a Muller
automaton on nested ω-words (w, ν) that for every return position has access to the state at
the corresponding call position. The stair Muller acceptance condition is a Muller acceptance
condition used exclusively on top-level position, i.e., only the states occurring infinitely often
in the infinite sequence of top-level positions are considered.

Every function s : NWω(Σ)→ D is called a nested ω-word series (nw-series). Every nw-
series s which is the behavior of some ωWNWA over D is called ωWNWA-recognizable.

We will now discuss how ωMSO is an equivalent logic to ωWNWAs. Note that ωMSO(D,Σ)
formulas may contain the free variable µ. Given a nested word nw = (w, ν), we let σ(µ) = ν

and make no difference between (w, σ) ∈ Σω × ({µ} → Match(N)) and the nested word nw.
We extend the semantics definitions as follows. Let ϕ ∈ ωMSO(D,Σ) and Free(ϕ) ⊆ {µ},
then we define JϕKnw : NWω(Σ)→ D by letting

JϕKnw(w, ν) = JϕK(w, σ) for σ(µ) = ν .

Let d ∈ D denote the constant series with value d, i.e., d(nw) = d for each nw ∈ NWω(Σ).
An ω-pv-monoid D is called regular if all constant series of D are ωWNWA-recognizable.

In other words, D is regular if for any alphabet Σ, we have: For each d ∈ D, there exists an
ωWNWA Ad with ‖Ad‖ = d.

Note that for this paper, regularity of ω-pv-monoids is defined by the means of ωWNWAs.
In the proof of Theorem 18, this is used in the structural induction as a logical formula
ϕ = d, for a weight d, can otherwise not necessarily be translated into an automaton.

Sufficient properties for an ω-pv-monoid to be regular are shown in [22]. Especially
left-multiplicative and left-Valω-distributive ω-pv-monoids are regular, i.e., if we have d �
Valω((di)i∈N) = Valω((d � di)i∈N) or d � Valω((di)i∈N) = Valω(d � d0, (di)i≥1) for all d ∈ D
and (di)i∈N ∈ Dω, then D is regular because we can easily construct ωWNWAs (and even
ωWFAs) for every constant series. All ω-pv-monoids in Example 1 are regular.
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I Theorem 18 ([11]). Let D be a regular ω-pv-monoid and s : NWω(Σ)→ D be a nw-series.
The following are equivalent:
1. s is ωWNWA-recognizable
2. There is a syntactically restricted ωMSO(D,Σ)-formula ϕ with Free(ϕ) ⊆ {µ} and

JϕKnw = s.

The mapping π : NWω(Σ)→ Σω removes the nesting relation from the nested word, i.e.,
for nw = (w, ν), we define π(nw) = w. This can be extended to nw-series s : NWω(Σ)→ D

by setting π(s)(w) =
∑
nw∈π−1(w) s(nw) which equals π(s)(w) =

∑
M∈Match(N) s(w, ∅[µ/M ]).

The following is crucial for the rest of the paper.

I Lemma 19. Let s : NWω(Σ)→ D be an ωWNWA-recognizable nw-series. Then the series
π(s) : Σω → D is ωWPDA-recognizable.

For unweighted languages, there is a similar proof in [4, 15]. Here, the proof is more
complicated because the acceptance conditions differ. We have to construct a Büchi-accepting
pushdown automaton from a stair Muller nested-word automaton.

Proof. By Theorem 6, it suffices to construct a Muller-accepting ωWPDA from a given
ωWNWA. We simulate the transitions of the ωWNWA by pushing states onto the stack.
Additionally, we enrich the states by the information if we are top-level or not. This
information is also pushed onto the stack for the reconstruction of the top-level property
upon popping. Furthermore, we allow the new Muller-accepting ωWPDA to visit arbitrary
subsets of states that are not top-level in between the original Muller-accepting states. J

6 Equivalence of Logic and Automata

This section proves the equivalence of ωML(D,Σ) and weighted simple ω-pushdown automata.

I Lemma 20. Let D be a regular ω-pv-monoid and s : Σω → D be an ωWPDA-recognizable
series. Then s is ωML-definable by a syntactically restricted ωML(D,Σ)-sentence.

Proof. The proof builds a syntactically restricted ωML(D,Σ)-sentence θ such that JθK = s.
The sentence θ defines exactly the behavior of an ωWPDA. Hereby, we proceed similarly
to [15] and [17, 34, 11]. J

I Lemma 21. Let D be a regular ω-pv-monoid and let ψ be a syntactically restricted
ωML(D,Σ)-sentence. Then JψK : Σω → D is ωWPDA-recognizable.

Proof. Let ψ =
⊕Match

µ ϕ for ϕ ∈ ωMSO(D,Σ). Apply Theorem 18 to infer that JϕKnw is
ωWNWA-recognizable. Now, we use the projection π : NWω(Σ)→ Σω of Section 5 to get
π(JϕKnw)(w) =

∑
M∈Match(N)(JϕK(w, ∅[µ/M ])) = JψK(w). By Lemma 19, JψK = π(JϕKnw) is

ωWPDA-recognizable. J

Proof of Theorem 17. This is immediate by Lemmas 20 and 21. J

7 Conclusion

We defined ω-pv-monoids and ω-pushdown automata with weights from ω-pv-monoids. We
first generalized a fundamental result of unweighted automata theory: Büchi acceptance and
Muller acceptance are expressively equivalent; we can show that this remains the case for
weighted simple pushdown automata of infinite words.
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For the class of languages recognized by our automata, we proved several closure properties
and, as our second main result, a Nivat-like decomposition theorem. It states that the weighted
languages in our class are induced by an unweighted context-free language and a very simple
weighted part; the two components can be intersected and a projection of this intersection
gives us the original language.

The third main result is an expressively equivalent logic. This logic has three layers. The
first layer basically describes nested ω-word-languages. The first two layers together describe
weighted nested ω-word-languages. The third layer existentially quantifies the matching
variable and corresponds to a projection from nested words to context-free languages. In
this way, we can apply the Büchi-Elgot-Trakhtenbrot-Theorem for weighted regular nested
ω-word-languages to obtain our equivalence result.

The present result raises the question how weighted simple ω-pushdown automata on ω-
valuation monoids and therefore also our weighted matching ω-logic relate to a corresponding
notion of weighted context-free ω-grammars; for weighted simple ω-pushdown automata over
commutative complete star-omega semirings, this was described in [12].

In Theorem 17, it would be desirable to generalize the notion of regular ω-pv-monoids
to only require ωWPDA instead of ωWNWA. The classical inductive proof method of
Theorem 18 not longer works in this case. However it seems that ω-pv-monoids where
constant series are ωWPDA-recognizable but not ωWNWA-recognizable are very artificial.

References
1 R. Alur and P. Madhusudan. Visibly pushdown languages. In ACM Symposium on Theory of

Computing (STOC 2004), pages 202–211, 2004. doi:10.1145/1007352.1007390.
2 P. Babari and M. Droste. A Nivat theorem for weighted picture automata and weighted MSO

logics. J. Comput. Syst. Sci., 104:41–57, 2019. doi:10.1016/j.jcss.2017.02.009.
3 C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008.
4 A. Blass and Y. Gurevich. A note on nested words. Microsoft Research, 2006. URL: https:

//www.microsoft.com/en-us/research/publication/180-a-note-on-nested-words/.
5 J. R. Büchi. Weak second-order arithmetic and finite automata. Mathematical Logic Quarterly,

6:66–92, 1960. doi:10.1002/malq.19600060105.
6 J. R. Büchi. Symposium on decision problems: On a decision method in restricted second order

arithmetic. In Logic, Methodology and Philosophy of Science, volume 44 of Studies in Logic and
the Foundations of Mathematics, pages 1–11. Elsevier, 1966. doi:10.1016/S0049-237X(09)
70564-6.

7 K. Chatterjee, L. Doyen, and T. A. Henzinger. Quantitative languages. In Computer Science
Logic (CSL 2008), pages 385–400. Springer, 2008. doi:10.1007/978-3-540-87531-4_28.

8 N. Chomsky and M. P. Schützenberger. The algebraic theory of context-free languages. In
Studies in Logic and the Foundations of Mathematics, volume 35: Computer Programming
and Formal Systems, pages 118–161. Elsevier, 1963. doi:10.1016/S0049-237X(08)72023-8.

9 E. M Clarke, T. A Henzinger, H. Veith, and R. P. Bloem. Handbook of Model Checking.
Springer, 2016. doi:10.1007/978-3-319-10575-8.

10 R. S. Cohen and A. Y. Gold. Theory of ω-languages I: Characterizations of ω-context-free
languages. Journal of Computer and System Sciences, 15(2):169–184, 1977. doi:10.1016/
S0022-0000(77)80004-4.

11 M. Droste and S. Dück. Weighted automata and logics for infinite nested words. Information
and Computation, 253:448–466, 2017. doi:10.1016/j.ic.2016.06.010.

12 M. Droste, S. Dziadek, and W. Kuich. Greibach normal form for ω-algebraic systems and
weighted simple ω-pushdown automata. In Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2019), volume 150 of LIPIcs, pages 38:1–38:14, 2019. doi:
10.4230/LIPIcs.FSTTCS.2019.38.

13 M. Droste, S. Dziadek, and W. Kuich. Weighted simple reset pushdown automata. Theoretical
Computer Science, 777:252–259, 2019. doi:10.1016/j.tcs.2019.01.016.

FSTTCS 2020

https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1016/j.jcss.2017.02.009
https://www.microsoft.com/en-us/research/publication/180-a- note-on-nested-words/
https://www.microsoft.com/en-us/research/publication/180-a- note-on-nested-words/
https://doi.org/10.1002/malq.19600060105
https://doi.org/10.1016/S0049-237X(09)70564-6
https://doi.org/10.1016/S0049-237X(09)70564-6
https://doi.org/10.1007/978-3-540-87531-4_28
https://doi.org/10.1016/S0049-237X(08)72023-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1016/S0022-0000(77)80004-4
https://doi.org/10.1016/S0022-0000(77)80004-4
https://doi.org/10.1016/j.ic.2016.06.010
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.38
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.38
https://doi.org/10.1016/j.tcs.2019.01.016


44:14 Nivat-Theorem and Logic for Weighted ω-Pushdown Automata

14 M. Droste, S. Dziadek, and W. Kuich. Greibach normal form for ω-algebraic systems and
weighted simple ω-pushdown automata, 2020. Submitted. arXiv:2007.08866.

15 M. Droste, S. Dziadek, and W. Kuich. Logic for ω-pushdown automata. Information and
Computation, 2020. Special issue on "Weighted Automata", Accepted for publication.

16 M. Droste, Z. Ésik, and W. Kuich. The triple-pair construction for weighted ω-pushdown
automata. In Conference on Automata and Formal Languages (AFL 2017), volume 252 of
Electronic Proceedings in Theoretical Computer Science, pages 101–113, 2017. doi:10.4204/
EPTCS.252.12.

17 M. Droste and P. Gastin. Weighted automata and weighted logics. Theoretical Computer
Science, 380(1-2):69–86, 2007. doi:10.1016/j.tcs.2007.02.055.

18 M. Droste and P. Gastin. Weighted automata and weighted logics. In M. Droste, W. Kuich, and
H. Vogler, editors, Handbook of Weighted Automata, EATCS Monographs in Theoretical Com-
puter Science, chapter 5, pages 175–211. Springer, 2009. doi:10.1007/978-3-642-01492-5_5.

19 M. Droste and W. Kuich. A Kleene theorem for weighted ω-pushdown automata. Acta
Cybernetica, 23:43–59, 2017. doi:10.14232/actacyb.23.1.2017.4.

20 M. Droste, W. Kuich, and H. Vogler, editors. Handbook of Weighted Automata. EATCS Mono-
graphs in Theoretical Computer Science. Springer, 2009. doi:10.1007/978-3-642-01492-5.

21 M. Droste and D. Kuske. Weighted automata. In J.-E. Pin, editor, Handbook of Automata
Theory, chapter 4. European Mathematical Society, to appear.

22 M. Droste and I. Meinecke. Weighted automata and weighted MSO logics for average and
long-time behaviors. Information and Computation, 220:44–59, 2012. doi:10.1016/j.ic.
2012.10.001.

23 M. Droste and V. Perevoshchikov. A logical characterization of timed pushdown languages. In
Computer Science Symposium in Russia (CSR 2015), volume 9139 of LNCS, pages 189–203.
Springer, 2015. doi:10.1007/978-3-319-20297-6_13.

24 M. Droste and V. Perevoshchikov. Logics for weighted timed pushdown automata. In Fields of
Logic and Computation II, pages 153–173. Springer, 2015. doi:10.1007/978-3-319-23534-9_
9.

25 M. Droste and G. Rahonis. Weighted automata and weighted logics on infinite words. In
Developments in Language Theory (DLT 2006), volume 54, pages 49–58. Springer, 2006.
doi:10.1007/11779148_6.

26 C. C. Elgot. Decision problems of finite automata design and related arithmetics. Transactions
of the American Mathematical Society, 98:21–51, 1961. doi:10.2307/2270940.

27 Z. Ésik and W. Kuich. A semiring-semimodule generalization of ω-context-free languages.
In Theory Is Forever, volume 3113 of LNCS, pages 68–80. Springer, 2004. doi:10.1007/
978-3-540-27812-2_7.

28 D. Krob. Monoides et semi-anneaux complets. Semigroup Forum, 36:323–339, 1987. doi:
10.1007/BF02575025.

29 C. Lautemann, T. Schwentick, and D. Thérien. Logics for context-free languages. In Computer
Science Logic (CSL 1994), volume 933 of LNCS, pages 205–216. Springer, 1994. doi:10.1007/
BFb0022257.

30 K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993. doi:10.1007/
978-1-4615-3190-6.

31 M. Nivat. Transductions des langages de Chomsky. Annales de l’Institut Fourier, 18(1):339–455,
1968. doi:10.5802/aif.287.

32 W. Thomas. Automata on infinite objects. In Handbook of Theoretical Computer Science,
volume B: Formal Models and Semantics, chapter 4, pages 133–191. Elsevier, 1990. doi:
10.1016/B978-0-444-88074-1.50009-3.

33 B. A. Trakhtenbrot. Finite automata and the logic of single-place predicates. Doklady Akademii
Nauk, 140(2):326–329, 1961. In Russian. URL: http://mi.mathnet.ru/dan25511.

34 H. Vogler, M. Droste, and L. Herrmann. A weighted MSO logic with storage behaviour
and its Büchi-Elgot-Trakhtenbrot theorem. In Language and Automata Theory and Ap-
plications (LATA 2016), volume 9618 of LNCS, pages 127–139. Springer, 2016. doi:
10.1007/978-3-319-30000-9_10.

http://arxiv.org/abs/2007.08866
https://doi.org/10.4204/EPTCS.252.12
https://doi.org/10.4204/EPTCS.252.12
https://doi.org/10.1016/j.tcs.2007.02.055
https://doi.org/10.1007/978-3-642-01492-5_5
https://doi.org/10.14232/actacyb.23.1.2017.4
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1016/j.ic.2012.10.001
https://doi.org/10.1016/j.ic.2012.10.001
https://doi.org/10.1007/978-3-319-20297-6_13
https://doi.org/10.1007/978-3-319-23534-9_9
https://doi.org/10.1007/978-3-319-23534-9_9
https://doi.org/10.1007/11779148_6
https://doi.org/10.2307/2270940
https://doi.org/10.1007/978-3-540-27812-2_7
https://doi.org/10.1007/978-3-540-27812-2_7
https://doi.org/10.1007/BF02575025
https://doi.org/10.1007/BF02575025
https://doi.org/10.1007/BFb0022257
https://doi.org/10.1007/BFb0022257
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.5802/aif.287
https://doi.org/10.1016/B978-0-444-88074-1.50009-3
https://doi.org/10.1016/B978-0-444-88074-1.50009-3
http://mi.mathnet.ru/dan25511
https://doi.org/10.1007/978-3-319-30000-9_10
https://doi.org/10.1007/978-3-319-30000-9_10

	Introduction
	Weight Structure and Simple omega-Pushdown Automata
	Closure Properties
	Logic for Weighted omega-Pushdown Automata
	Weighted Nested omega-Word Languages
	Equivalence of Logic and Automata
	Conclusion

