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Abstract9

Macroscopic models of inertial flows in porous media have many practical applications where10

direct numerical simulations are not feasible. The Forchheimer equation describes macroscopic11

momentum transport accounting for inertial effects at the pore scale through a non-linear cor-12

rection tensor Fβ . Using up-scaling approaches such as the volume averaging method, Fβ can be13

determined through the resolution of a closure problem. However this later is non-linear and still14

depends on the intensity and orientation of the macroscopic flow, complicating its resolution.15

Moreover, while the influence of the pore Reynolds number on the Forchheimer correction has16

been studied in details, its dependency on the flow orientation has drawn much less attention. In17

this work, a system of linearized closure problem is proposed and solved, allowing to determine18

Fβ without the need to solve the full closure problems for each orientation of the macroscopic19

pressure gradient. The validity of this approach is assessed for various rectangular unit cells20

against numerical solutions of the corresponding non-linear problem, showing excellent agree-21

ment for pore Reynolds number up to unity. Then macroscopic simulations are performed to22

evaluate the importance of varying flow orientation on the macroscopic inertial flow. Numerical23

results of the general non-linear macroscopic model obtained by the volume averaging method24

highlight the necessity to account for extra-diagonal terms as well as macroscopic gradient ori-25

entation in the determination of the Forchheimer tensor.26

1 Introduction27

Inertial laminar flows in porous media are present in a wide range of environmental or industrial28

systems such as atmospheric flows in canopies [38,46], geological flows [3,14], and heat exchangers29

[4, 29, 32]. Although direct numerical simulation (DNS) of such flows can be performed at the30

pore scale, the complexity of the local geometry as well as the length scale separation between31

the pore and the macroscopic system require prohibitively massive computing resources for most32

applications.33

This has motivated the use of macroscopic models of transport phenomena in porous media,34

where macroscopic conservation equations and effective parameters can be obtained by averaging35
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the local (pore-scale) equations. For incompressible non-inertial flows, averaging Stokes equation36

results in Darcy’s law where the filtration velocity is linearly dependent on the pressure gradient37

through the intrinsic permeability tensor K∗
β [15, 19, 55]. This linearity holds for pore Reynolds38

number up to one [54]. Above this value, it is the Navier-Stokes equation that must be homogenized,39

resulting in a macroscopic equation analogous to Darcy’s law but with an additional non-linear40

term called the Forchheimer tensor F∗
β that accounts for inertial effects [19, 56]. In this case, the41

macroscopic equation that relates the seepage velocity ⟨v∗
β⟩ to the macroscopic pressure gradient42

∇⟨p∗β⟩β is known as the Forchheimer equation, and can be written in the absence of gravity as43

⟨v∗
β⟩ = −

K∗
β

µβ
· ∇⟨p∗β⟩β − Fβ · ⟨v∗

β⟩ = −
H∗

β

µβ
· ∇⟨p∗β⟩β (1)44

where H∗
β =

(
I+ F∗

β

)−1
·K∗

β is the global permeability tensor and µβ is the dynamic viscosity of45

the fluid. Here and in the rest of this article, the subscript β designates quantities defined in the46

fluid phase β, and the ∗ exponent indicates dimensional quantities.47

Recent studies identified distinct inertial flow regimes corresponding to the onset of inertia48

effects on the pore scale flow structure [1, 2, 23, 24, 31, 52]. The dependency of the Forchheimer49

correction with the Reynolds number have been largely discussed in the literature, as detailed for50

instance in Lasseux et al. 2019 [25]. Briefly, for pore Reynolds number slightly greater than one,51

a weak inertia regime characterized by a cubic correction of Darcy’s law was identified. Then52

for larger pore Reynolds numbers up to hundred, a strong inertia regime showing a quadratic53

dependency on the pore Reynolds number was found to occur for various geometries of periodic54

unit cells. Other transition regimes were observed between unsteady laminar and turbulent flows55

at pore Reynolds number around hundred. In this case, the transient nature of the flow requires a56

time-averaging procedure that assumes a linear Forchheimer correction [12,17,28,47,59]. Although57

this hypothesis is in agreement with experimental observations, its theoretical justification remains58

unclear.59

Forchheimer’s equation (Eq. (1)) has been derived by Whitaker using the volume averaging60

method [56] to formally upscale Navier-Stokes from the pore to the macroscopic scale. Note that61

the form shown in Eq. (1) neglects additional terms arising from the up-scaling procedure, in62

particular the viscous diffusion term also known as the Brinkman correction. In addition to the63

macroscopic transport equation, the volume averaging method provides a series of closure problems64

which solutions allow to determine the effective transport properties involved in the global perme-65

ability tensor. The closure problem associated with the intrinsic permeability is linear while the66

one associated with the Forchheimer correction is non-linear and still depends on a local velocity67

field [24–27,39]. To solve this non-linear problem, it has been proposed to first solve an associated68

local flow problem on a periodic unit cell for each values of the pore Reynolds number [1, 2, 24,52]69

and macroscopic pressure gradient orientation [11, 24, 37, 53]. As a result, the Forchheimer tensor70

is an implicit function of these two dimensionless parameters.71

Although the dependency of the Forchheimer tensor with the pore Reynolds number has been72

the subject of several studies leading to the classification of weak inertial flow regimes described73

above [1, 2, 23, 24, 31, 39], the influence of the macroscopic pressure gradient orientation has drawn74

much less attention. Importantly, extra-diagonal components of the tensor are not null when the75

macroscopic flow is not aligned with the elementary geometry. This aspect can become essential76
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Figure 1: Schematic of a representative elementary volume (REV) with the definitions of the pore-
scale phases and length scales.

in cases where the orientation of macroscopic flow varies with respect to the porous arrangement,77

such as in elbows or curved channels produced by additive manufacturing.78

In this work, the effect of the macroscopic flow orientation on the Forchheimer correction tensor79

is studied in two ways. First, the local inertial flow is up-scaled using the volume averaging80

method in Section 2. The resulting general closure problem is then linearized in Section 3 by81

generalizing previous work for arbitrary macroscopic pressure gradient orientation and small pore82

Reynolds number [7,31,39]. The ability to predict the Forchheimer tensor of this linearized model83

is assessed on rectangular unit cells through comparisons with the classical non-linear model [24,84

56] to determine its range of validity in Reynolds number and orientation of the macroscopic85

pressure gradient. Finally, in Section 4, simulations of macroscopic inertial flow with varying86

pressure gradient orientation are performed. The prediction of two macroscopic models are assessed87

against direct numerical simulation. It is shown that, in contrast to diagonal-tensor models often88

encountered in CFD softwares [11, 37, 53], the non-linear macroscopic model obtained with the89

volume averaging method is able to correctly capture inertial flow structures and pressure losses in90

an elbow channel filled with a square porous medium.91

2 Up-scaling inertial flow in porous media92

At the pore scale, two phases are considered: a Newtonian fluid (β-phase) and an immobile non-93

permeable solid (σ-phase). The flow is assumed incompressible, laminar and steady. The velocity94

field v∗
β and pressure p∗β in the fluid β verify the incompressible Navier-Stokes equations with no-95

slip boundary conditions at the fluid-solid interface Aβσ. The boundary value problem at the pore96
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scale is therefore97

∇ · v∗
β = 0 in Vβ (2a)98

ρβv
∗
β · ∇v∗

β = −∇p∗β + µβ∇2v∗
β in Vβ (2b)99

v∗
β = 0 at Aβσ (2c)100

Here ρβ and µβ are the fluid density and dynamic viscosity, while Vβ is the volume occupied by the β-101

phase (see Fig. 1). Here and along the document, the ∗ exponent denotes dimensional variables. For102

readability purpose, the notations of the differential operators, volumes and areas, and characteristic103

lengths are kept without exponents weather they are dimensional or dimensionless.104

To proceed to up-scaling by volume averaging, the general methodology [58] is to construct105

an averaging volume V of characteristic length r0 that verifies the length-scales separation lβ ≪106

r0 ≪ L where lβ and L are the characteristics lengths of the pores and the macroscopic domain107

respectively (see Fig. 1). The superficial and intrinsic averages on the averaging volume V are108

defined respectively as109

⟨ψβ⟩ =
1

V

∫
Vβ

ψβdVβ and ⟨ψβ⟩β =
1

Vβ

∫
Vβ

ψβdVβ (3)110

where ψβ is an arbitrary variable defined in the β-phase. These two definitions are related through111

the volume fraction of the β-phase εβ = Vβ/V by ⟨ψβ⟩ = εβ⟨ψβ⟩β. The averages of differential112

operators can be expressed using the following averaging theorems [58]113

⟨∇ψβ⟩ = ∇⟨ψβ⟩+
1

V

∫
Aβσ

nβσψβdA (4a)114

⟨∇ · aβ⟩ = ∇ · ⟨aβ⟩+
1

V

∫
Aβσ

nβσ · aβdA (4b)115

where aβ is an arbitrary tensor field of order n ≥ 1. These expressions involve surface integrals116

on the fluid-solid interface Aβσ contained in V and thus allow to take into account the influence117

pore-scale boundary conditions in the averaged pore-scale equations. Moreover the presence of the118

local field such as ψβ and aβ in these integrals motivates the introduction of a decomposition of119

the pore-scale fields using their intrinsic average and a corresponding spatial deviation [21]120

ψβ = ⟨ψβ⟩β + ψ̃β (5)121

Making use of these definitions and following the volume averaging method [57, 58, 60, 61], one122

can upscale the local flow description Eqs. (2) to obtain the non-closed macroscopic transport123

equations124

∇ · ⟨v∗
β⟩β = 0 (6a)125

126

ρβ⟨v∗
β⟩β · ∇⟨v∗

β⟩β + ρβ∇ · ⟨ṽ∗
βṽ

∗
β⟩β =127

−∇⟨p∗β⟩β + µβ∇2⟨v∗
β⟩β +

1

Vβ

∫
Aβσ

nβσ ·
(
−Ip̃∗β + µβ∇ṽ∗

β

)
dA (6b)128
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The validity of the above equations relies on the assumption of homogeneous porous medium129

and of the scale separation (lβ ≪ r0 ≪ L) 1. Equation (6b) is not closed since the local deviations130

of the pressure and velocity still appear in the inertial term and in the area integral that represents131

the friction forces exerted by the solid phase σ on the fluid β.132

In order to obtain a closed form of the averaged equations, one can write a boundary-value133

problem verified by the spatial deviations ṽ∗
β and p̃∗β by subtracting the averaged problem (6)134

to the pore-scale equations (2), and expand the local fields using the decomposition in spatial135

deviations Eq. (5) [21]. After some simplifications based on the above length-scale constraints, one136

obtains the local deviation problem [9,24,56,57]137

∇ · ṽ∗
β = 0 in Vβ (7a)138

ρβv
∗
β · ∇ṽ∗

β = −∇p̃∗β + µβ∇2ṽ∗
β − 1

Vβ

∫
Aβσ

nβσ ·
(
−Ip̃∗β + µβ∇ṽ∗

β

)
dA in Vβ (7b)139

ṽ∗
β = −⟨v∗

β⟩β on Aβσ (7c)140

ṽ∗
β (r+ li) = ṽ∗

β (r) ; p̃∗β (r+ li) = p̃∗β (r) ; i = 1, 2, 3 (7d)141

⟨ṽ∗
β⟩β = 0 ; ⟨p̃∗β⟩β = 0 (7e)142

where li are the periodic vector in the ei direction of the periodic unit cell. Here the deviations are143

supposed to satisfy periodic boundary conditions. Note that this does not suppose that the porous144

medium is periodic, only that the local problem is solved on a representative unit cell that satisfies145

the length scale constraints [20,41,42,58].146

Since the deviation problem is defined within the averaging volume Vβ, it is convenient to147

express the system in terms of the pore Reynolds number148

Rep =
ρβvref ℓ

µβ
(8)149

where vref is a reference velocity constant over Vβ, and ℓ is a characteristic length of the pore scale.150

In accordance, the dimensionless local variables and their deviations are defined as151

vβ =
v∗
β

vref
; pβ =

p∗βℓ

µβvref
; ṽβ =

ṽ∗
β

vref
; p̃β =

p̃∗βℓ

µβvref
(9)152

In the rest of the document, all lengths are normalized with respect to the arbitrary pore-scale153

length ℓ except stated otherwise. Therefore the dimensionless deviation problem takes the form154

∇ · ṽβ = 0 in Vβ (10a)155

Repvβ · ∇ṽβ = −∇p̃β +∇2ṽβ − 1

Vβ

∫
Aβσ

nβσ · (−Ip̃β +∇ṽβ) dA in Vβ (10b)156

ṽβ = −⟨vβ⟩β on Aβσ (10c)157

1In fact, the scale separation should be written lβ ≪ r0 ≪ (Lv, Lv2, Lp1) where Lv, Lv2 and Lp1 are characteristic
length-scales of variation of the fields ⟨vβ⟩β , ∇∇⟨vβ⟩β and ∇⟨pβ⟩β respectively. Because these length-scales are of
the same order of magnitude as the characteristic length of the macroscopic domain L, assuming the separation of
length-scales lβ ≪ r0 ≪ L is usually equivalent to those constraints.
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ṽβ (r+ li) = ṽβ (r) ; p̃β (r+ li) = p̃β (r) ; i = 1, 2, 3 (10d)158

⟨ṽβ⟩β = 0 ; ⟨p̃β⟩β = 0 (10e)159

Due to the inertial effects introduced by the term on the left hand side of Eq. (10b), the system160

is non-linear and non-intrinsic in the sense that it still depends on the value of the flow field. Two161

approaches are proposed in the next section to deal with this difficulty.162

3 Determination of the Forchheimer tensor163

In this section, two approaches are proposed to account for the non-linearity in the deviation164

problem (10) and to determine the Forchheimer tensor. First a general approach based on [24]165

relying on the preliminary computation of a local problem for each Reynolds and macroscopic166

flow orientation is detailed. Then a methodology is proposed to linearize the closure problem,167

eliminating the need for preliminary local computations. Finally, the value of the Forchheimer168

tensor computed with the two methods are compared to determine the domain of validity of the169

linearized approach.170

3.1 The general non-linear closure problem171

By analogy with the up-scaling procedure of Stokes flow where the deviation problem is linear, only172

the macroscopic source term in Eq. (10c) is considered to map the deviations of the velocity and173

pressure ṽβ and p̃β as [56]174

ṽβ = D · ⟨vβ⟩β (11a)175

p̃β = d · ⟨vβ⟩β (11b)176

where D and d are dimensionless closure variables. Implicitly, Eqs. (11) assumes that the convec-177

tive velocity is known in the inertial term of Eq. (10b). Although this might seem like a strong178

simplification of the non-linear closure problem, this practical approximation is widely made in the179

literature [1, 3, 9, 24, 36, 40, 47, 51, 52, 56, 59], resulting in good predictions of macroscopic models180

against DNS [10,30,47,48,50,59] and consistent with experiments [18].181

Introducing Eqs. (11) into Eqs. (6), the closed macroscopic equations describing inertial flow in182

a porous medium is obtained [24,40,56]183

∇ · ⟨v∗
β⟩β = 0 (12a)184

ρβ⟨v∗
β⟩β · ∇⟨v∗

β⟩β = −∇⟨p∗β⟩β + µβ∇2⟨v∗
β⟩β − µβH

∗−1
β · ⟨v∗

β⟩ (12b)185

The global permeability tensor H∗
β = Hβℓ

2 appears as an effective property. It is defined in its186

dimensionless form as187

εβH
−1
β = − 1

Vβ

∫
Aβσ

nβσ · (−Id+∇D) dA (13)188

and can be related to the Forchheimer tensor F∗
β = Fβ and the intrinsic permeability tensor189

K∗
β = Kβℓ

2 through H−1
β = K−1

β · (I+Fβ). Note that when the viscous diffusion term is neglected190

in Eq. (12b), the well known Darcy-Forchheimer equation (1) is recovered.191
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Introducing the closure variable Eqs. (11) into the deviation problem (10), the closure problem192

is obtained [56]193

∇ ·D = 0 in Vβ (14a)194

Repvβ · ∇D = −∇d+∇2D− 1

Vβ

∫
Aβσ

nβσ · (−Id+∇D) dA in Vβ (14b)195

D = −I on Aβσ (14c)196

D (r+ li) = D (r) ; d (r+ li) = d (r) ; i = 1, 2, 3 (14d)197

⟨D⟩β = 0 ; ⟨d⟩β = 0 (14e)198

This boundary-value problem is integro-differential. To facilitate its numerical resolution, it is199

convenient to introduce the following change of variables200

D′ = ε−1
β (D+ I) ·Hβ ; d′ = ε−1

β d ·Hβ (15)201

to obtain a more practical form of the closure problem202

∇ ·D′ = 0 in Vβ (16a)203

Repvβ · ∇D′ = −∇d′ +∇2D′ + I in Vβ (16b)204

D′ = 0 on Aβσ (16c)205

D′ (r+ li) = D′ (r) ; d′ (r+ li) = d′ (r) ; i = 1, 2, 3 (16d)206

⟨D′⟩β = ε−1
β Hβ ; ⟨d′⟩β = 0 (16e)207

The closure problem (16) is non-linear and still depend on the local dimensionless velocity208

vβ. Lasseux et al. [24] proposed to deal with this non-linearity by introducing the decomposition209

pβ = ⟨pβ⟩β+ p̃β in the local problem (2), and consider the solution of the system in a representative210

periodic unit cell211

∇ · vβ = 0 in Vβ (17a)212

Repvβ · ∇vβ = −∇p̃β +∇2vβ −∇⟨pβ⟩β in Vβ (17b)213

vβ = 0 on Aβσ (17c)214

vβ (r+ li) = vβ (r) ; p̃β (r+ li) = p̃β (r) ; i = 1, 2, 3 (17d)215

⟨p̃β⟩β = 0 (17e)216

Decomposing once more the macroscopic pressure gradient ∇⟨pβ⟩β = |∇⟨pβ⟩β|e∇p, it is clear that217

this form of the local problem is dependent on three dimensionless parameters: the magnitude218

|∇⟨pβ⟩β| and the orientation e∇p of the macroscopic pressure gradient, as well as the pore Reynolds219

number Rep = ρβvref ℓ/µβ. To reduce this dependency to two parameters, the reference velocity220

appearing in the pore Reynolds number and the dimensionless variables is taken so that |∇⟨pβ⟩β| =221

1, that is to say vref = |∇⟨p∗β⟩β|ℓ2/µβ and so Rep = ρβ|∇⟨p∗β⟩β|ℓ3/µ2β. It follows that Eq. (17b)222

simplifies to223

Repvβ · ∇vβ = −∇p̃β +∇2vβ − e∇p in Vβ (18)224

where the only source terms left are the pore Reynolds number and the flow orientation.225
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Knowing vβ from the solution of Eqs. (17) with (18) on a representative elementary volume,226

one can solve the closure problem (16b) and obtain the global permeability tensor. Note that the227

dimensionless local velocity field vβ depends on both the orientation of the macroscopic pressure228

gradient e∇p appearing as a source term, and inRep linked to the flow intensity. Therefore the global229

permeability tensor also depends on these macroscopic dimensionless quantities Hβ (Rep, e∇p). The230

procedure to solve the general non-linear closure problem will be detailed in Section 3.3.231

3.2 The linearized closure problem232

In order to deal with the non-linear inertial term in the closure problem and avoid having to solve233

an associated local problem as presented above, an alternative approach leading to a linearized234

closure problem is proposed using regular perturbation theory [7, 31,39].235

Let us consider the dimensionless deviation problem (10). In the case where Rep = 0, the lower236

limit of a purely viscous Stokes flow is recovered. This suggests to linearize the deviation problem237

around that special case which is already linear and self-consistent. Using regular perturbation238

theory, any field ψβ in the deviation equations can be expanded as a power series around Rep239

ψβ =
+∞∑
k=0

ψβkRe
k
p (19)240

Using decomposition (19) for the spatial deviations ṽβ and p̃β and the local velocity vβ, it is241

possible to convert the non-linear deviation problem (10) into countable series of linearized deviation242

problems for each order of the Reynolds number Rep. The details of this linearization procedure243

are given in Appendix A up to order 2, although the methodology can be applied to any higher244

order. The main results are summarized here.245

The decompositions of the velocity and deviations are introduced in the deviation problem246

(10), and the terms in the different orders of Reynolds number are gathered. Starting at order247

0, the terms in Re0p form a system of equations identical to the one obtained for a purely viscous248

Stokes flow. The deviations at order 0 can then be decomposed in closure variables (B,b) that249

are solution of the same closure system as the one for a Stokes flow. This allows to compute the250

intrinsic permeability tensor Kβ. Then at order 1, collecting the terms in Re1p leads to a deviation251

problem which structure is similar to an inertial flow, but where the non-linear term only involves252

terms at order 0. Therefore it can be expressed in terms of the closure variables at order 0 and253

be treated as a source term. One can then decompose the deviations at order 1 in terms of new254

closure variables (C,C) that are the solution of a closure problem at order 1 (Eqs. (A.9)). A new255

effective tensor Hβ can be identified as a correction of the permeability tensor at order 1. The256

same procedure is carried at order 2, where the non-linear term only depends on variables at lower257

orders and therefore can be treated as a source term. It is shown that the closure variables at order258

2, defined as (E , E), are solution of a closure problem (Eqs. (A.20)), where a new effective tensor259

Jβ correcting the permeability at order 2 is identified.260

Introducing the definition of the closure variables at different orders in the power series decom-261

position of the velocity and pressure deviations (Eq. (19)), they can be written as expansions of262

the macroscopic source terms263

ṽβ = B · ⟨vβ⟩β + C : Rep⟨vβ⟩β⟨vβ⟩β + E
... Re2p⟨vβ⟩β⟨vβ⟩β⟨vβ⟩β + ... (20)264
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p̃β = b · ⟨vβ⟩β +C : Rep⟨vβ⟩β⟨vβ⟩β + E
... Re2p⟨vβ⟩β⟨vβ⟩β⟨vβ⟩β + ... (21)265

Inserting these decompositions in the non-closed macroscopic equation (6b), and identifying the266

corrective effective tensors at each order, the linearized form of the global permeability tensor up267

to second order can be written as268

H−1
β = K−1

β ·
(
I+RepHβ · ⟨vβ⟩β +Re2pJβ : ⟨vβ⟩β⟨vβ⟩β + ...

)
. (22)269

In this expression, the Forchheimer correction tensor is directly identified as270

Fβ = RepHβ · ⟨vβ⟩β +Re2pJβ : ⟨vβ⟩β⟨vβ⟩β + ... (23)271

This procedure can easily be carried at higher orders, although each additional order requires272

to solve a new closure problem with each time a higher dimension closure variable. It should273

be emphasized that, in contrast to the general non-linear approach, each of the effective tensors274

appearing in the definition above are obtained from the solution of closure problems that are275

independent of the Reynolds number and pressure gradient orientation, and thus do not require276

the a priori solution of a local flow field velocity. Therefore at the macroscopic scale, the above277

expression can be directly used in the average equation to determine the velocity and pressure field.278

3.3 Influence of the flow intensity and orientation on the Forchheimer tensor279

3.3.1 Resolution of the closure problems280

Figure 2: Example of geometries of the 2D unit cells on which the closure problems were solved
(here εβ = 0.75).

The non-linear closure problem Eqs. (16) was solved for various values of the pore Reynolds281

number Rep and pressure gradient orientations e∇p on the two-dimensional unit cells shown in282

Fig. 2. Two obstacle geometries were considered: squares and rectangles of aspect ratio 1:2. For283

each geometry, three volume fractions were examined (εβ = 0.25, 0.5, and 0.75).284

Concerning the linearized approach, each linearized closure problem was solved numerically in285

an incremental manner, starting from order 0, allowing to solve order 1, and then order 2. In286

this work, closure problems up to order 2 were solved in order to evaluate the global permeability287
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tensor from Eq. (23). Preliminary computations at orders up to 6 were performed but did not show288

significant improvement on the prediction of the permeability tensor within the range of validity of289

the linearized closure problem (data not shown).290

The closure problems were solved using COMSOL Multiphysics software. The systems having291

the same structure as the Navier-Stokes equations, the “Laminar Flow” module was used with292

custom source terms added using the “Volume Force” node. For the linearized closure problem,293

the same mesh for the three closure problems was used in order to avoid mesh interpolations when294

computing the source terms.295

To facilitate the comparison between the results from the two approaches, a definition of the296

Reynolds number based on the intrinsic permeability Rek was used [39]297

Rek =
ρβ|⟨v∗

β⟩|
√
k∗

µβ
= Rep|⟨vβ⟩|

√
k (24)298

where k = k∗/ℓ2 is the mean of the diagonal components of the intrinsic permeability tensor299

k = (Kxx + Kyy)/2, and |⟨v∗
β⟩| = (⟨v∗

β⟩ · ⟨v∗
β⟩)1/2 = |⟨vβ⟩|vref . The flow orientation angle θ is300

defined such as e∇p = cos θex + sin θey. In all computations, dimensionless values are given with301

respect to the characteristic length ℓ representing the size of a unit cell (see Fig. 2).302

3.3.2 Computation of the Forchheimer tensor: comparison between non-linear and303

linearized closure problems304

The values of the xx component of the Forchheimer tensor obtained from the numerical solution305

of the non-linear and linearized closure problems are shown in Fig. 3 as a function of the Reynolds306

number and pressure gradient orientation. For Reynolds number Rek up to about 0.1, results from307

the linearized closure problem are in excellent agreement with the one obtained from the non-linear308

problem. The component Fxx of the Forchheimer correction tensor shows a quadratic dependency309

on the Reynolds number Fβ ∼ ARe2k as previously reported in the weak inertia regime [1, 24].310

Notably, the linearized Forchheimer tensor (Eq. (23)) allows to express the proportionality tensor311

as A = ε−2
β k−1Jβ : evev where ev = ⟨vβ⟩β/|⟨vβ⟩β| is the unit vector giving the direction of the312

averaged velocity on the studied unit cell. This expression assumes thatHβ the linearized correction313

tensor at order 1 is negligible, which is the case for symmetric and periodic unit cells [7,31,39] and314

is numerically verified here.315

For Reynolds number between 0.1 and 1, the system enters a stronger inertia regime, and316

the Forcheimer tensor transitions to a linear function of the Reynolds number. Results from the317

linearized closure problem truncated at order 2 start to deviate from the general non-linear case318

in a manner that depend on the porosity and flow orientation [39]. Including higher orders for319

the linearization only improves marginally the range of validity compared to the non-linear closure320

problem (data not shown).321

Fig. 3(d-f) represents the evolution of the component Fxx of the Forchheimer correction tensor322

as a function of the angle θ of the macroscopic pressure gradient for different porosities and fixed323

Reynolds number Rek. The agreement between the linearized and non-linear closure problem324

solutions are confirmed for all flow orientations in the weak inertial regime. With increasing pore325

Reynolds number above 0.1 and for large porosities, discrepancies between the two approaches are326

observed.327
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Figure 3: Comparison between non-linear and linearized component Fxx of the Forchheimer cor-
rection tensor for a square solid as a function of the pore Reynolds number (a-c), and as a function
of the pressure gradient angle (d-f).

For completeness, the closure problems were solved on lower symmetry unit cell, namely rect-328

angular obstacles with aspect ratio 1:2. The xx component of the Forchheimer tensor Fxx are329

shown in 4 for three different porosities as a function of the pore Reynolds number Rek and flow330

orientation θ. Similarly to the square unit cell, the linearized closure problem approach shows a331

good agreement with the non-linear closure problem in the weak inertia regime up to Rek ∼ 0.3,332

but fails to capture the linear dependency on the Reynolds number in the strong inertia regime.333

Interestingly, for low porosities εβ, the Forchheimer correction shows a sharp maximum at334

pressure gradient angle θ equal to π/2. This behavior can be explained in the limit where the side335

of the rectangular obstacles reach the vertical boundaries of the unit cell, effectively producing a336

series of impermeable channels.337

A comparison of the computational cost of solving the non-linear versus linear closure problems338

is presented in Appendix B. Briefly, the computational time required to solve the linear closure339

problem at order 2 is about nine time larger than for the non-linear problem. However, a single run340

of the linear problem gives values of the Forchheimer correction for all pore Reynold number Rek341
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Figure 4: Comparison between non-linear and linearized component Fxx of the Forchheimer cor-
rection tensor for a square rectangular as a function of the pore Reynolds number (a-c), and as a
function of the pressure gradient angle (d-f).

and flow orientation θ within the domain of validity. This is not the case for the non-linear problem342

which requires to be solved for each values of the couple (Rek, θ). Therefore the linear closure343

problem is computationally advantageous when a tabulation of at least ten values of (Rek, θ) is344

needed.345

4 Effect of flow orientation on macroscopic inertial flow346

In the previous section, the inertial correction to the permeability was computed as a function of the347

flow intensity and orientation. Although the linearized approach gave accurate results for a limited348

range in Reynolds, both approaches highlighted a non-trivial dependency of the Forchheimer tensor349

with the orientation of the pressure gradient. In order to explore this relationship, macroscopic sim-350

ulations of the non-linear general model were performed and compared with two methods commonly351

used in engineering studies: direct numerical simulations (DNS) and diagonal-tensor macroscopic352

models.353
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4.1 Implementation of the macroscopic models354

4.1.1 General non-linear macroscopic model355

For convenience, the macroscopic transport equations (Eqs. (12a) and (12b)) are normalized with356

respect to a global macroscopic velocity U , representing in our case the bulk velocity imposed at357

the inlet of the macroscopic system. Written in their superficial form, the closed averaged equations358

are359

∇ · ⟨v+
β ⟩ = 0 (25a)360

361

ε−2
β ReU ⟨v+

β ⟩ · ∇⟨v+
β ⟩ = −∇⟨p+β ⟩

β + ε−1
β ∇2⟨v+

β ⟩ −H−1
β · ⟨v+

β ⟩ (25b)362

where the global Reynolds number is ReU = ρβUℓ/µβ, v
+
β = v∗

β/U , and p+β = p∗βℓ/(µβU). Note that363

because ℓ is used as the reference length scale in both the pore and global Reynolds numbers Rep364

and ReU respectively, the definition of the dimensionless effective tensor Hβ remains unchanged.365

Additionally, it is worth noticing that the global Reynolds number ReU reflects the effect of the366

macroscopic boundary conditions on the system and is constant within the whole domain, while367

the pore Reynolds number Rep reflects the flow intensity and orientation at every point of the368

continuous macroscopic porous medium, and is therefore space dependent. This later affects the369

values of the effective tensor. For this reason the global permeability tensor Hβ was tabulated370

over a range of pore Reynolds numbers and pressure gradient orientations by solving the non-371

linear closure problem on a two dimensional square unit cell (see Section 3.1 for details). The372

macroscopic transport equations (Eqs. (25)) with a space-dependent permeability tensor were then373

solved numerically on the macroscopic domain.374

As shown in Fig. 5, three macroscopic geometries were considered: a two-dimensional straight375

pipe, an elbow and a diverging pipe of 1:3 expansion ratio, all partially filled with a porous medium376

of constant porosity εβ0 = 0.75 constituted of an array of squares. A symmetry boundary condition377

is imposed at the top wall of the straight and diverging pipes, so that the total height of the channel378

in both geometries is 20ℓ at the inlet. The system is constituted of fluid domains at the inlet and379

outlet, and a porous domain in the center of the pipes. A fully developed parabolic flow is imposed380

at the entrance, while a zero pressure is imposed at the outlet, and a no-slip boundary condition is381

imposed at the pipe walls382

⟨v+
β ⟩ =

3

2

(
2y

h
− y2

h2

)
ex at inlet (26a)383

⟨p+β ⟩
β = 0 at outlet (26b)384

⟨v+
β ⟩ = 0 at pipe walls (26c)385

with h = 10 the half height of the channel (see Fig. 5). As a reminder, all lengths are normalized386

with the pore length scale ℓ representing the size of a unit cell (see Fig. 2). Note that since the387

inlet and outlet are fully fluid domains, the averages are equivalent to the point fluid velocity and388

pressures.389

In order to avoid to deal with boundary conditions at the fluid-porous interfaces, a one-domain390

modeling approach is adopted [10, 13, 22]. The principle is based on the observation that in the391

limit where the porosity tends to 1 (εβ → 1), the inverse of the permeability tensor tends to 0392
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Figure 5: Geometries used for the macroscopic simulations. (a) Two-dimensional pipe partially
filled with resolved square obstacles used for DNS. (b) Two-dimensional pipe partially filled with an
effective continuous porous region. (c) Two-dimensional elbow partially filled with resolved square
obstacles used for DNS. (d) Two-dimensional elbow partially filled with an effective continuous
porous region. (e) Two-dimensional diverging pipe with expansion ratio 1:3 partially filled with
resolved square obstacles used for DNS. (f) Two-dimensional diverging pipe with expansion ratio
1:3 partially filled with an effective continuous porous region.

(H−1
β → 0), so that the macroscopic equations (12a) and (12b) tend to the incompressible Navier-393

Stokes equations. Therefore they can be solved on the entire domain, provided that the porosity394

depends on space such as εβ(x) = 1 in the fluid region, and εβ(x) = εβ0 = 0.75 in the porous region.395

To facilitate the transition from the fluid to porous regions, a smooth function of the porosity was396

built based on resolved fluid porous-interfaces used for direct numerical simulations (DNS) (see397

Fig. 5). Briefly, the space dependent porosity was defined as the cellular average of the β-phase398

indicator function [30, 41, 42] leading to a smooth transition of the porosity with a linear slope.399

Finally, to ease the evaluation of the effective permeability tensor at the fluid-porous interfacial400

region without having to compute it for the whole range of porosity, its values in the transition401
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regions was assumed to follow402

H−1
β (x) = γtr (x)H

−1
β (Rep, θ) (27)403

where the region-indicator function was defined as γtr(x) = [1− εβ(x)] / [1− εβ0]. Note that this404

approach can be applied only to the fluid-porous interface, but not to the solid-porous interface.405

To avoid singular values at the solid-porous interface, values of the region-indicator functions were406

computed in the bulk of the pipes/elbow and were then extrapolated using constant extrapolation407

through the cross-section.408

4.1.2 Direct numerical simulations and diagonal tensor model409

For validation, results from the general non-linear model were compared against two common410

approaches to model inertial flows in porous media: direct numerical simulations (DNS), and411

macroscopic momentum transport models with a diagonal global permeability tensor.412

Direct numerical simulations (DNS) As a reference case against which to validate the results413

from the macroscopic models, DNS were performed. In this case, the geometric details of the porous414

medium are resolved (see Fig. 5a & c), and the incompressible Navier-Stokes equation are solved415

in the whole fluid domain including in the pore space. The same boundary conditions Eqs. (26)416

were applied at the inlet, outlet, and pipe walls with the averages equal to the point velocities and417

pressures. Additionally, a no-slip boundary condition was set at the fluid-solid interface between the418

fluid and the square obstacles constituting the porous medium. In order to facilitate comparisons419

with the homogenized macroscopic models, the velocity and pressure fields were averaged using the420

cellular average [16,41–45].421

Diagonal tensor model simulations As a complementary comparison, the non-linear general422

model was compared to a commonly used macroscopic version where the global permeability tensor423

is diagonal and independent of the macroscopic flow orientation [11, 37]. Such model is routinely424

used in state of the art CFD softwares, where instead of solving a closure problem to determine the425

components of the permeability tensor, an incompressible flow at a given Reynolds number is solved426

on a representative volume, and the diagonal components of the permeability tensor are obtained427

by relating the mass flow rate to the pressure drop through a simplified Darcy-Forchheimer law428

⟨v+
β ⟩ = −Hβ(Rep) · ∇⟨p+β ⟩

β.429

4.1.3 Numerical implementation430

All models were solved numerically using the finite element commercial software COMSOL Multi-431

physics 6.1 with the “Laminar Flow” module. The additional macroscopic terms were implemented432

as volume forces in order to obtain their values iteratively in the domain. For the general non-linear433

macroscopic model, the values of the inertial permeability tensor were tabulated a priori using the434

results of the non-linear general closure problem. The tabulated values were interpolated linearly435

with respect to the pore Reynolds number and the angle of the superficial averaged velocity.436
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Figure 6: Comparison of macroscopic results of an inertial flow at global Reynolds number ReU = 30
in a pipe partially filled with a porous medium constituted of square obstacles of porosity εβ = 0.75.
(a) Magnitude of the cellular average of the velocity field obtained from DNS. (b) Magnitude of the
superficial average of the velocity field obtained from the diagonal tensor model. (c) Magnitude of
the superficial average of the velocity field obtained from the general non-linear model. (d) Cross
section average pressure (cellular for DNS, intrinsic for homogenized models) as a function of x.

4.2 Macroscopic simulation results437

Macroscopic simulations of inertial flows in conduits filled with porous media were first performed438

for validation in a straight pipe filled with a porous medium. Then, to assess the influence of the439

extra-diagonal terms and of the macroscopic pressure gradient orientation on the global permeabil-440

ity tensor, an elbow filled with porous medium was considered. In all cases, values of the global441

Reynolds number ReU = ρβUℓ/µβ were tested for 1, 10, 30, and 50. Finally, a diverging pipe442

geometry was considered.443

4.2.1 Inertial flow in a straight pipe partially filled with a porous medium444

Fig. 6 compares the simulations results from the three models for of an inertial flow with global445

Reynolds number ReU = 30 in a two-dimensional pipe partially filled with a porous medium. The446

averaged DNS simulations hold as the reference against which the homogenized models, namely447

the diagonal tensor model and the general non-linear model, are compared. As seen in Fig. 6, very448

little difference is observed between the models. All three models show a very good agreement in449

the inlet fluid region, validating the use of the one-domain approach to describe the fluid part. In450

the central porous region, the flow becomes uniform. It can be noticed that the two homogenized451

models slightly under-predict the thickness of the wall boundary layer at the porous-solid interface452

compared to DNS. Finally, in the outlet fluid region, although the homogenized models capture453

the overall flow behavior, they fail to predict the small recirculation zone at the corner between454
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Table 1: Dimensionless pressure loss between inlet and outlet of a pipe partially filled with a porous
medium as a function for different values of the global Reynolds numbers for DNS and the two
homogenized models.

∆⟨p+β ⟩β Relative difference to DNS (%)

ReU DNS Diag. tensor Gen. non-linear Diag. tensor Gen. non-linear
0 1618 1566 1566 3.2 3.2
1 1618 1566 1566 3.2 3.2
10 1641 1583 1583 3.5 3.5
30 1714 1630 1634 4.9 4.7
50 1771 1657 1668 6.5 5.8

the fluid-porous interface and the wall, as predicted by DNS. These limitations of the homogenized455

models are due to the difficulty to define a representative elementary volume that satisfies the456

length-scale separation close to a wall or a fluid interface. Although some jump conditions have457

been proposed for two-domain approaches [5,6,8,33–35], these are generally limited to non-inertial458

flows. More recently a methodology to account for the influence of porous media macroscopic459

boundaries on inertial flows was proposed [50] . Such model refinements are out of the scope of the460

current study.461

As seen in Fig. 6d, the evolution of the cross section average of the pressure as a function of the462

distance from the entrance also show very similar results between the three models, although both463

homogenized models slightly under-predict the inlet pressure by less than 5% compared to DNS.464

Given that the outlet pressure is set to zero, these results point to the fact that the homogenized465

models underestimate the singular head losses at the fluid-porous interfaces and the distributed466

head-losses at the porous-wall interfaces, leading to an overall lower pressure loss between the inlet467

and outlet.468

Simulations for various global Reynolds number up to ReU = 50 were performed, giving the469

same qualitative behavior as for the case ReU = 30 (data not shown). For completeness, the total470

pressure drop and their relative difference with the DNS results are summarized in Table 1. Relative471

differences in pressure losses of the two homogenized models compared to DNS remain lower than472

7% for all the cases considered, confirming the relevance of these models. The general non-linear473

model and diagonal tensor models are equivalent at low global Reynolds number, with a relative474

difference in pressure loss compared to DNS remaining blow 3.5% for ReU = 10. This relative475

difference in pressure loss increases with larger values of the Reynolds number, with the diagonal476

tensor model having larger differences than the general non-linear model. This discrepancy can be477

explained by the appearance of recirculation zones with increasing Reynolds numbers, leading to478

local streamlines having a non-zero angle with the x-axis. Although the influence of flow orientation479

in the unit cell is accounted for in the general non-linear model during the determination of the480

effective permeability tensor, this is not the case in the diagonal tensor model.481

To investigate further the effect of flow orientation on inertial flow in porous media, an elbow482

partially filled with a porous medium is considered in the next section.483
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Figure 7: Comparison of macroscopic results of inertial flows in a 90◦ elbow partially filled with a
porous medium constituted of square obstacles of porosity εβ = 0.75. Results are shown for three
global Reynolds numbers: (a, d, g, j) ReU = 1, (b, e, h, k) ReU = 30, (c,f, i, l) ReU = 50. (a-c)
Magnitude of the cellular average of the velocity field obtained from DNS. (d-f) Magnitude of the
superficial average of the velocity field obtained from the diagonal tensor model. (g-i) Magnitude of
the superficial average of the velocity field obtained from the general non-linear model. (j-l) Cross
section average pressure (cellular for DNS, superficial for homogenized models) as a function of the
arclength s.
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4.2.2 Inertial flow in an elbow partially filled with a porous medium484

In order to test the importance of the pressure gradient orientation on the macroscopic inertial485

flow in a porous medium, the three models were solved in a 90◦ elbow partially filled with a porous486

medium (see Fig. 5c & d). Importantly, the porous medium is the same as the one used in the487

straight pipe, namely square obstacles of porosity εβ = 0.75 where the unit cell geometry is not488

rotated to follow the curvature of the domain. As a consequence, the angle between the average489

flow and the x-axis of the square obstacle varies from 0◦ at the entrance of the porous medium to490

−90◦ at its exit.491

Comparison between the results obtained by DNS, the diagonal-tensor macroscopic model, and492

the general non-linear macroscopic model are presented in Fig. 7 for global Reynolds number of493

ReU = 1, 30, and 50. At ReU = 1, the velocity profiles obtained for the macroscopic simulations are494

very similar to the one obtained from averaged DNS. Although averaged DNS results show some495

oscillations in average velocity field close to the walls due the contact of some solid obstacles with496

the wall, overall the three simulations predict a constant averaged velocity profile along the length497

of the porous region. For larger global Reynolds numbers of ReU = 30 and 50, inertial effects induce498

variations of the average velocity profile along the length of the elbow, as shown by the averaged499

DNS (Fig. 7e & i). This behavior is not captured by the diagonal tensor model which predicts a500

constant average velocity profile in each section of the porous region (Fig. 7f & j). In contrast, the501

general non-linear model does reproduce well the non-uniform velocity profile predicted by DNS502

(Fig. 7g & k). The difference between the predictions of the two homogenized model increases with503

the global Reynolds number as inertial effects become more and more present. Interestingly, it is504

clear from the streamlines at ReU = 30 and 50 that the inertial flow follows preferential paths at505

angles θ = 0, π/4, and π/2 as shown in the DNS and general closure model. This is due to the506

choice of the unit cell geometry with the regular arrangement of square obstacles.507

The difference of predictions between the homogenized models is even more evident from the508

values of the averaged intrinsic pressures. The evolution of the cross-section averaged pressure509

along the length of the elbow is shown in Fig. 7d, h, & l, and the values of the pressure losses510

and relative difference to DNS are given in Table 2. As inertial effects increase, both DNS and the511

general non-linear model predict a significantly larger pressure loss between the inlet and outlet512

(more than a 40% increase in pressure at ReU = 50 compared to ReU = 1), as well as a deviation513

from a linear pressure evolution in the porous region. In contrast, the diagonal tensor model only514

predicts a mild increase in pressure (about 5% at ReU = 50 compared to ReU = 1) and maintains515

a linear decrease in pressure along the elbow. Importantly, in the fully inertial regime, the general516

non-linear model remains within the 5% of the pressure drop predicted by DNS, while the diagonal517

tensor model shows differences up to 42.6% at ReU = 50.518

The ability of the general non-linear model to capture realistically the variation of average519

velocity field along the elbow is due to the dependency of the global permeability tensor on the520

pressure gradient orientation. Indeed, in the elbow the flow is diverted by a 90◦ angle while the521

unit cell geometry remains with the same orientation. As a consequence, the global permeability522

tensor displays non-negligible extra-diagonal terms and a dependency of its components to the flow523

orientation compared to the unit cell geometry. While these two features are accounted for in the524

general non-linear model, they are not captured in the diagonal tensor model which fails to account525

for the change of tortuosity and permeability (including inertial corrections) induced by the change526
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Table 2: Pressure loss between inlet and outlet of a 90◦ elbow partially filled with a porous medium
as a function for different values of the global Reynolds numbers for DNS and the two homogenized
models.

∆⟨p+β ⟩β Relative difference to DNS (%)

ReU DNS Diag. tensor Gen. non-linear Diag. tensor Gen. non-linear
0 3611 3508 3508 2.8 2.8
1 3617 3510 3519 3.0 2.7
10 3846 3550 3729 7.7 3.0
30 4995 3659 4811 26.8 3.7
50 6491 3727 6173 42.6 4.9

of flow orientation relative to the pore unit geometry.527

4.2.3 Inertial flow in a diverging pipe partially filled with a porous medium528

Finally, a diverging pipe filled with a porous medium is considered (see Fig. 5e-f). A Reynolds529

number of ReU = 50 is imposed at the entrance to ensure a strong inertial but laminar flow regime.530

As seen in Fig. 8, the general observations on the different macroscopic models are similar to the531

ones from the elbow geometry: the diagonal model fails to capture the change of average velocity532

orientation and predicts a more uniform flow field than the one obtained with the general closure533

model which is much closer to DNS results. Some discrepancies between the general model and534

DNS remain, particularly near the pipe walls due to the macroscopic boundary layer and at the535

fluid/porous interfaces. Once again, the evolution of the section average pressure along the channel536

shows that the diagonal model largely under-predicts the head loss (19.5% difference with DNS)537

while the general model successfully predicts the head loss within 3.05% of the DNS values.538

5 Conclusion539

Incompressible inertial flows in porous media are well described by the Forchheimer equation, where540

inertial effects are accounted for through a corrective tensor Fβ to the intrinsic permeability. Using541

up-scaling techniques such as the volume averaging method [24,56], one can compute the effective542

tensor from the solution of a non-linear closure problem on a representative unit cell. However543

this closure problem requires that, for each flow orientation and for each pore Reynolds number, an544

associated local problem must be solved before solving the non-linear closure problem. To deal with545

this difficulty, in this work, a linearized approach where the resulting linear closure problems are546

independent of the flow orientation was proposed and assessed. Then, macroscopic simulations were547

carried to study the importance of the macroscopic flow orientation, highlighting the importance548

of extra-diagonal components in the Forchheimer correction tensor.549

The non-linear closure problem obtained with the volume averaging method [24] was linearized550

into a series of linear problems independent of the macroscopic flow orientation. This procedure is551

a generalization of previous works for weakly inertial flows [7,31,39] leading to linear and intrinsic552

closure problems independent of the macroscopic flow orientation. Developments were pushed up to553

order 2 with respect to the pore Reynolds number, resulting in a Forchheimer correction expressed554

as a quadratic polynomial of Rek. The limit of validity of this approach was assessed by comparison555

20



Figure 8: Comparison of macroscopic results of an inertial flow at global Reynolds number ReU = 50
in a diverging pipe with expansion ratio 1:3, partially filled with a porous medium constituted of
square obstacles of porosity εβ = 0.75. (a) Magnitude of the cellular average of the velocity field
obtained from DNS. (b) Magnitude of the superficial average of the velocity field obtained from
the diagonal tensor model. (c) Magnitude of the superficial average of the velocity field obtained
from the general non-linear model. (d) Cross section average pressure (cellular for DNS, intrinsic
for homogenized models) as a function of x.

with a general non-linear closure problem. The effect of flow orientation and intensity was studied556

for different square and rectangle unit cell geometries, showing a good match between the linearized557
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and general non-linear models up to pore Reynolds number Rek of the order one. The linearized558

quadratic model was able to accurately predict the weak inertia regime [2, 23, 24, 39] for different559

flow orientations. The generality of the presented method allows to expand to higher orders, but560

at the cost of increasing tensor order leading to exponential numerical difficulties.561

To assess the effect of flow orientation on the extra-diagonal terms of the correction tensor,562

macroscopic simulations were conducted for Reynolds number up to 50 in straight and 90◦ elbow563

conduits filled with porous media. Results from the macroscopic general non-linear model were564

compared against a diagonal macroscopic model commonly used in engineering applications [11,565

37,53]. In the straight conduit, due to the flow orientation being constant, no significant difference566

were observed between diagonal and general non-linear models. However, in the case where the567

flow orientation varies along the elbow conduit, the diagonal model was unable to predict the non-568

homogeneous velocity field along the channel’s length, leading to a under-prediction of the pressure569

loss by more than 40% at ReU = 50 compared to DNS. In contrast, the general diagonal model570

captured well the average velocity field, and predicted a pressure loss within 5% of the values571

obtained by DNS. Qualitatively similar conclusions were obtained on a diverging pipe reproducing572

a progressive expansion flow.573

All together, this work highlights the importance of macroscopic pressure orientation on the574

global permeability tensor in inertial flow in porous media. Further developments to improve the575

prediction of the macroscopic inertial flow include introducing accurate jump conditions [5, 6, 8]576

or profile transition at fluid-porous and solid-porous interfaces [10, 22, 33, 48–50]. Concerning the577

proposed linearization approach, future applications to transfers where the critical phenomenon578

occurs with a dimensionless number below one might be particularly relevant, such as in weakly579

compressible and dilatable flows.580
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APPENDIX739

A Linearization of the closure problem associated with inertial740

flow741

Based on regular perturbation theory, any field ψβ in the deviation problem (10) is expanded as a742

power series around Rep743

ψβ =

+∞∑
k=0

ψβkRe
k
p (A.1)744

This leads to a self-sufficient series of linear deviation problems for each order of the Reynolds745

number Rep. Here the details of their derivation and the procedure to obtain the corresponding746

closure problem are detailed up to order 2, although the methodology can be easily applied to747

higher orders.748

Order k = 0749

First, the closure problem at order 0 is developed as the reference case of the linearization. This750

corresponds to the limit case where Rep = 0751

∇ · ṽβ0 = 0 in Vβ (A.2a)752

0 = −∇p̃β0 +∇2ṽβ0 −
1

Vβ

∫
Aβσ

nβσ · (−Ip̃β0 +∇ṽβ0) dA in Vβ (A.2b)753

ṽβ0 = −⟨vβ0⟩β on Aβσ (A.2c)754

ṽβ0 (r+ li) = ṽβ0 (r) ; p̃β0 (r+ li) = p̃β0 (r) ; i = 1, 2, 3 (A.2d)755

⟨ṽβ0⟩β = 0 ; ⟨p̃β0⟩β = 0 (A.2e)756

which is exactly the spatial deviation problem for a Stokes flow at the pore-scale. Because it is757

linear and self-consistent, it is possible to use the superposition principle to express the spatial758

deviations ṽβ0 and p̃β0 as a function of the only macroscopic source term ⟨vβ0⟩β759

ṽβ0 = B · ⟨vβ0⟩β (A.3a)760

p̃β0 = b · ⟨vβ0⟩β (A.3b)761

Here B and b are closure variable that are solution of the closure problem at order 0762

∇ ·B = 0 in Vβ (A.4a)763

0 = −∇b+∇2B+ εβK
−1
β in Vβ (A.4b)764

B = −I on Aβσ (A.4c)765

B (r+ li) = B (r) ; b (r+ li) = b (r) ; i = 1, 2, 3 (A.4d)766

⟨B⟩β = 0 ; ⟨b⟩β = 0 (A.4e)767

28



where the intrinsic permeability is defined as768

εβK
−1
β = − 1

Vβ

∫
Aβσ

nβσ · (−Ib+∇B) dA (A.5)769

Similarly to the closure problem (14), the above system can easily be written in the form of an770

incompressible Stokes flow with no-slip boundary conditions using the following change of variable771

[58]: B′ = ε−1
β (B+ I) ·Kβ and b′ = ε−1

β b ·Kβ772

The solution of the closure problem at order 0 on a unit cell gives the value of the intrinsic773

permeability tensor Kβ. Moreover, the values of the closure variables B and b will be needed to774

solve the linearized closure problems at higher order. These properties is linked to the linearization775

method and motivates the need to solve the closure problems in a recursive way in order to linearized776

the results for high orders of the Reynolds number.777

Order k = 1778

Identifying the terms in Re1 in the power-series decomposition of the deviation problem, one gets779

the linearized spatial deviation problem at order 1780

∇ · ṽβ1 = 0 in Vβ (A.6a)781

vβ0 · ∇ṽβ0 = −∇p̃β1 +∇2ṽβ1 −
1

Vβ

∫
Aβσ

nβσ · (−Ip̃β1 +∇ṽβ1) dA in Vβ (A.6b)782

ṽβ1 = −⟨vβ1⟩β on Aβσ (A.6c)783

ṽβ1 (r+ ei) = ṽβ1 (r) ; p̃β1 (r+ ei) = p̃β1 (r) ; i = 1, 2, 3 (A.6d)784

⟨ṽβ1⟩β = 0 ; ⟨p̃β1⟩β = 0 (A.6e)785

Note that the term vβ0 · ∇ṽβ0 is at order 0. Thanks to the spacial decomposition of the velocity786

and (A.3a), it can be expressed using the zero order closure variables as787

vβ0 · ∇ṽβ0 =
[
(B+ I) · ⟨vβ0⟩β

]
·
(
∇B · ⟨vβ0⟩β

)
788

=
[
(∇B)T(123) · (B+ I)

]
: ⟨vβ0⟩β⟨vβ0⟩β789

where the transpose operator is defined as AT(123) = (Aijkeiejek)
T(123) = Akijeiejek for a third790

order tensor A. Using this expression, the spatial deviation problem can be written in a more791

explicit form that exhibits different macroscopic source terms792

∇ · ṽβ1 = 0 in Vβ (A.7a)793 [
(∇B)T(123) · (B+ I)

]
: ⟨vβ0⟩β⟨vβ0⟩β

= −∇p̃β1 +∇2ṽβ1 −
1

Vβ

∫
Aβσ

nβσ · (−Ip̃β1 +∇ṽβ1) dA in Vβ
(A.7b)794

ṽβ1 = −⟨vβ1⟩β on Aβσ (A.7c)795

ṽβ1 (r+ li) = ṽβ1 (r) ; p̃β1 (r+ li) = p̃β1 (r) ; i = 1, 2, 3 (A.7d)796
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⟨ṽβ1⟩β = 0 ; ⟨p̃β1⟩β = 0 (A.7e)797

This last problem is linear and self-consistent because the closure variables B and b have been798

solved previously at order 0. Moreover, two macroscopic source terms are identified. The first one799

⟨vβ1⟩β appears in the boundary condition and is very similar to the macroscopic source term at800

order 0. The second one ⟨vβ0⟩β⟨vβ0⟩β is new and arises in the momentum balance equation at801

order 1 due to the coupling between order 0 and 1. Using the superposition principle, the spatial802

deviations ṽβ1 and p̃β1 can be mapped using the macroscopic source terms803

ṽβ1 = B · ⟨vβ1⟩β + C : ⟨vβ0⟩β⟨vβ0⟩β (A.8a)804

p̃β1 = b · ⟨vβ1⟩β +C : ⟨vβ0⟩β⟨vβ0⟩β (A.8b)805

whereB and b are the closure variables that solve the same closure problem as previously introduced806

at order 0, and C and C are two new closure variables introduced for the second source term. They807

verify the following closure problem at order 1808

∇ · C = 0 in Vβ (A.9a)809 [
(∇B)T(123) · (B+ I)

]
= −∇C+∇2C − 1

Vβ

∫
Aβσ

nβσ · (−IC+∇C) dA in Vβ (A.9b)810

C = 0 on Aβσ (A.9c)811

C (r+ li) = C (r) ; C (r+ li) = C (r) ; i = 1, 2, 3 (A.9d)812

⟨C⟩β = 0 ; ⟨C⟩β = 0 (A.9e)813

The solution of this problem only depends on the geometry of the unit cell, and not on the Reynolds814

number nor the macroscopic pressure gradient orientation. Once again, to deal with the integro-815

differential nature of this problem, it is convenient to define816

εβK
−1
β · Hβ = − 1

Vβ

∫
Aβσ

nβσ · (−IC+∇C) dA (A.10)817

where Hβ can be interpreted as a correction to the intrinsic permeability to account for inertial818

effects contributing to the global permeability tensor Hβ at order 1. The surface integral being819

constant within a given unit cell, εβK
−1
β · Hβ can be seen as a constant source term. This suggests820

to proceed once more to a change of variable821

C = C′ + S : εβK
−1
β · Hβ ; C = C′ + S : εβK

−1
β · Hβ (A.11)822

so that the integro-differential closure problem can be decomposed into two purely differential823

problems824

∇ · C′ = 0 in Vβ (A.12a)825 [
(∇B)T(123) · (B+ I)

]
= −∇C′ +∇2C′ in Vβ (A.12b)826

C′ = 0 on Aβσ (A.12c)827
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C′ (r+ li) = C′ (r) ; C′ (r+ li) = C′ (r) ; i = 1, 2, 3 (A.12d)828

⟨C′⟩β = 0 (A.12e)829

and830

∇ · S = 0 in Vβ (A.13a)831

0 = −∇S +∇2S + I in Vβ (A.13b)832

S = 0 on Aβσ (A.13c)833

S (r+ li) = S (r) ; S (r+ li) = S (r) ; i = 1, 2, 3 (A.13d)834

⟨S⟩β = 0 (A.13e)835

Problem (A.13) is very similar to the practical form of the Stokes closure problem but needs to be836

solved for a fourth order tensor S and a source term I = δilδjkeiejekel.837

The superficial averages of the closure variables C being null, one gets838

0 = ⟨C⟩β = ⟨C′⟩β + ⟨S ⟩β : εβK
−1
β · Hβ (A.14)839

so that840

εβK
−1
β · Hβ = −

(
⟨S ⟩β

)−1
: ⟨C′⟩β (A.15)841

After making use of some tensor algebra and the properties of problem (A.13), the following ex-842

pression for the correction tensor at order 0 is obtained843

Hβ = −⟨C′⟩β (A.16)844

Order k = 2845

Applying the same pocedure as above, coefficients in Re2 are identified in the expanded closure846

problem, giving the deviation problem at order 2847

∇ · ṽβ2 = 0 in Vβ (A.17a)848

vβ0 · ∇ṽβ1 + vβ1 · ∇ṽβ0 = −∇p̃β2 +∇2ṽβ2 −
1

Vβ

∫
Aβσ

nβσ · (−Ip̃β2 +∇ṽβ2) dA (A.17b)849

ṽβ2 = −⟨vβ2⟩β on Aβσ (A.17c)850

ṽβ2 (r+ ei) = ṽβ2 (r) ; p̃β2 (r+ ei) = p̃β2 (r) ; i = 1, 2, 3 (A.17d)851

⟨ṽβ2⟩β = 0 ; ⟨p̃β2⟩β = 0 (A.17e)852

Once again the non-linear terms only involve variables at lower orders. After some rearrangements,853

the problem can be expressed in a more explicit form that exhibits all the different macroscopic854

source terms855

∇ · ṽβ2 = 0 in Vβ (A.18a)856
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[
(∇B)T(123) · (B+ I)

]
:
[
⟨vβ0⟩β⟨vβ1⟩β + ⟨vβ1⟩β⟨vβ0⟩β

]
+
[
(∇C)T(1234) · (B+ I) + (∇B)T(123) · C

] ... ⟨vβ0⟩β⟨vβ0⟩β⟨vβ0⟩β

= −∇p̃β2 +∇2ṽβ2 −
1

Vβ

∫
Aβσ

nβσ · (−Ip̃β2 +∇ṽβ2) dA in Vβ

(A.18b)857

ṽβ2 = −⟨vβ2⟩β on Aβσ (A.18c)858

ṽβ2 (r+ li) = ṽβ2 (r) ; p̃β2 (r+ li) = p̃β2 (r) ; i = 1, 2, 3 (A.18d)859

⟨ṽβ2⟩β = 0 ; ⟨p̃β2⟩β = 0 (A.18e)860

where the notation A T(1234) = (Aijkleiejekel)
T(1234) = Alijkeiejekel has been used for the transpose861

of a fourth order tensor A . In this problem, three independent source terms are identified. The862

first one ⟨vβ2⟩β appears in the boundary condition at Aβσ just as in the case of order 0 and 1.863

The second one
[
⟨vβ0⟩β⟨vβ1⟩β + ⟨vβ1⟩β⟨vβ0⟩β

]
is similar to the second source term of order 1. The864

third one ⟨vβ0⟩β⟨vβ0⟩β⟨vβ0⟩β is a new source term that appears in the momentum balance equation.865

This terms couple order 0 and 1 with the solution of the linearized deviations at order 2. Based on866

these observations, the following decomposition is introduced867

ṽβ2 = B · ⟨vβ2⟩β + C :
(
⟨vβ0⟩β⟨vβ1⟩β + ⟨vβ1⟩β⟨vβ0⟩β

)
+ E

... ⟨vβ0⟩β⟨vβ0⟩β⟨vβ0⟩β (A.19a)868

p̃β2 = b · ⟨vβ2⟩β +C :
(
⟨vβ0⟩β⟨vβ1⟩β + ⟨vβ1⟩β⟨vβ0⟩β

)
+ E

... ⟨vβ0⟩β⟨vβ0⟩β⟨vβ0⟩β (A.19b)869

where B, b and C and C are the closure variables at order 0 and order 1 respectively. The new870

closure variables E and E verify the following closure problem871

∇ · E = 0 in Vβ (A.20a)872 [
(∇C)T(1234) · (B+ I) + (∇B)T(123) · C

]
=

−∇E +∇2E − 1

Vβ

∫
Aβσ

nβσ · (−IE +∇E ) dA in Vβ
(A.20b)873

E = 0 on Aβσ (A.20c)874

E (r+ li) = E (r) ; E (r+ li) = E (r) ; i = 1, 2, 3 (A.20d)875

⟨E ⟩β = 0 ; ⟨E⟩β = 0 (A.20e)876

The integral term is defined as877

εβK
−1
β · Jβ = − 1

Vβ

∫
Aβσ

nβσ · (−IE +∇E ) dA (A.21)878

Once again, Jβ can be interpreted as a correction tensor of the intrinsic permeability Hβ at order879

2.880

To solve this integro-differential problem, the following decomposition is introduced based on881

the superposition principle882

E = E ′ + T : εβK
−1
β · Jβ (A.22a)883
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E = E ′ + T : εβK
−1
β · Jβ (A.22b)884

It follows that the closure problem can be decomposed into two purely differential closure problems885

∇ · E ′ = 0 in Vβ (A.23a)886 [
(∇C)T(1234) · (B+ I) + (∇B)T(123) · C

]
= −∇E ′ +∇2E ′ in Vβ (A.23b)887

E ′ = 0 on Aβσ (A.23c)888

E ′ (r+ li) = E ′ (r) ; E ′ (r+ li) = E ′ (r) ; i = 1, 2, 3 (A.23d)889

⟨E ′⟩β = 0 (A.23e)890

and891

∇ · T = 0 in Vβ (A.24a)892

0 = −∇T +∇2T + I in Vβ (A.24b)893

T = 0 on Aβσ (A.24c)894

T (r+ li) = T (r) ; T (r+ li) = T (r) ; i = 1, 2, 3 (A.24d)895

⟨T ⟩β = 0 (A.24e)896

Note that T is solution of the exact same closure problem as Eqs. (A.13), so that T = S .897

To compute the correction tensor at order 2, a similar strategy as at order 1 is used. By898

definition of the intrinsic average (A.20e), one can write the equality899

⟨E ⟩β = 0 = ⟨E ′⟩β + ⟨T ⟩β : εβK
−1
β · Jβ900

= ⟨E ′⟩β + ε−1
β Kβ · εβK−1

β · Jβ (A.25)901

= ⟨E ′⟩β + Jβ902

so that the value of Jβ is obtained from Jβ = −⟨E ′⟩β.903

Total deviations904

The total deviations ṽβ and p̃β can be reconstructed from Eq. (A.1) using the mappings (A.3),905

(A.8), and (A.19), giving up to order 2906

ṽβ = ṽβ0 + ṽβ1Rep + ṽβ2Re
2
p + ...

= B ·
[
⟨vβ0⟩β +Rep⟨vβ1⟩β +Re2p⟨vβ2⟩β + ...

]
+ C : Rep

[
⟨vβ0⟩β⟨vβ0⟩β +Rep

(
⟨vβ1⟩β⟨vβ0⟩β + ⟨vβ0⟩β⟨vβ1⟩β

)
+ ...

]
+ E

... Re2p

[
⟨vβ0⟩β⟨vβ0⟩β⟨vβ0⟩β + ...

]
+ ...

(A.26)907

and similarly for the pressure deviation. Higher order developments can show that the total devi-908

ations are recursively recovered. Therefore, it is possible to simply group all these terms to obtain909

a second order expansion of the total deviations with the total macroscopic source terms as follows910

ṽβ = B · ⟨vβ⟩β + C : Rep⟨vβ⟩β⟨vβ⟩β + E
... Re2p⟨vβ⟩β⟨vβ⟩β⟨vβ⟩β + ... (A.27a)911
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p̃β = b · ⟨vβ⟩β +C : Rep⟨vβ⟩β⟨vβ⟩β + E
... Re2p⟨vβ⟩β⟨vβ⟩β⟨vβ⟩β + ... (A.27b)912

Similarly to the non-linear case, it is possible to close the averaged equation (6b) by introducing913

the above linearized mapping of the spatial deviations and identifying the corrective effective tensors914

at each order. Identical closed averaged equations are obtained but the effective parameters are915

linearized around the Reynolds number. Up to order 2, the linearized global permeability tensor is916

H−1
β = K−1

β ·
(
I+RepHβ · ⟨vβ⟩β +Re2pJβ : ⟨vβ⟩β⟨vβ⟩β + ...

)
(A.28)917

where the Forchheimer correction tensor can be directly identified as918

Fβ = RepHβ · ⟨vβ⟩β +Re2pJβ : ⟨vβ⟩β⟨vβ⟩β + ... (A.29)919

B Comparison of computation times of the closure problems920

Here the computational costs of solving the linearized and non-linear closure problems are com-921

pared in the weak inertia regime where the linearized closure problem is valid (Rek ≲ 1). In two922

dimensions, the general non-linear closure requires to solve one non-linear vectorial problem (Eqs.923

(17)), plus 22−1 = 2 linear vector problems (Eqs. (16)) over a unit cell for each value of the pore924

Reynolds number Rep and the macroscopic pressure gradient orientation θ. On the other hand,925

the linearized closure truncated at order 2 in Reynolds number introduces 3 linear tensor closure926

problems of increasing orders: at order 0 a second-order tensor problem (Eqs. (A.4)), at order927

1 a third-order tensor problem (Eqs. (A.9)), and at order 2 a fourth-order tensor problem (Eqs.928

(A.20)). In total, in two dimensions, the numerical resolution of the linearized closure up to order929

2 consists of solving 22−1 + 23−1 + 24−1 = 14 vector problems with Stokes-like structure over the930

same unit cell but without any dependency on the local macroscopic flow.931

Computation times for numerical simulations of the non-linear and linearized closure problems932

up to order 2 were compared on the symmetric unit cell presented in Fig. 2a. The same mesh com-933

posed of 230,000 elements was used for all the simulations in order to ensure mesh independence on934

the numerical results, limit the propagation of numerical errors through the incremental linearized935

methodology and measure computation times for comparable numerical resources. Computations936

were performed in Comsol Multiphysics as described in the main text.937

Numerical simulations of the general non-linear closure problem take approximately 200 seconds938

for each value of pore Reynolds numbers Rep and macroscopic pressure gradient orientation θ.939

In contrast, solving the 14 vector problems of the linearized closure truncated at order 2 take940

approximately 1800 seconds. However these are valid for any (Rep, θ) within the domain of validity941

of the linear problem. Therefore solving the linearized closure problem truncated at order 2 costs942

as much as solving the non-linear problem for 1880s/200s = 9 values of the couples of parameter943

(Rep, θ).944

The use of the linearized closure problem is interesting when more than 10 points are needed for945

the tabulation of the Forchheimer correction tensor. For instance, the results presented in Fig. 3 for946

a unit cell with solid square obstacle and porosity εβ = 0.75 required approximately 50 computations947

of the non-linear closure problem with different values of (Rep, θ) satisfying Rek < 0.1, thus making948

the linearized closure much more cost efficient in this special case.949
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