
HAL Id: hal-04732088
https://hal.science/hal-04732088v1

Submitted on 11 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Phase-Bounded Broadcast Networks over Topologies of
Communication

Lucie Guillou, Arnaud Sangnier, Nathalie Sznajder

To cite this version:
Lucie Guillou, Arnaud Sangnier, Nathalie Sznajder. Phase-Bounded Broadcast Networks over Topolo-
gies of Communication. 35th International Conference on Concurrency Theory (CONCUR 2024), Sep
2024, Calgary, AL, Canada. pp.26:1–26:16, �10.4230/LIPIcs.CONCUR.2024.26�. �hal-04732088�

https://hal.science/hal-04732088v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Phase-Bounded Broadcast Networks over1

Topologies of Communication2

Lucie Guillou ! �3

IRIF, CNRS, Université Paris Cité, France4

Arnaud Sangnier ! �5

DIBRIS, Università di Genova, Italy6

Nathalie Sznajder !�7

LIP6, CNRS, Sorbonne Université, France8

Abstract9

We study networks of processes that all execute the same finite state protocol and that communicate10

through broadcasts. The processes are organized in a graph (a topology) and only the neighbors of a11

process in this graph can receive its broadcasts. The coverability problem asks, given a protocol and12

a state of the protocol, whether there is a topology for the processes such that one of them (at least)13

reaches the given state. This problem is undecidable [6]. We study here an under-approximation of14

the problem where processes alternate a bounded number of times k between phases of broadcasting15

and phases of receiving messages. We show that, if the problem remains undecidable when k is16

greater than 6, it becomes decidable for k = 2, and ExpSpace-complete for k = 1. Furthermore, we17

show that if we restrict ourselves to line topologies, the problem is in P for k = 1 and k = 2.18

2012 ACM Subject Classification Theory of computation→ Formal languages and automata theory19

Keywords and phrases Parameterized verification, Coverability, Broadcast Networks20

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.1321

Related Version Long version: https://arxiv.org/abs/2406.15202 [15]22

Funding Lucie Guillou: ANR project PaVeDyS (ANR-23-CE48-0005)23

1 Introduction24

Verifying networks with an unbounded number of entities. Ensuring safety properties for25

concurrent and distributed systems is a challenging task, since all possible interleavings must26

be taken into account; hence, even if each entity has a finite state behavior, the verification27

procedure has to deal with the state explosion problem. Another level of difficulty arises when28

dealing with distributed protocols designed for an unbounded number of entities. In that case,29

the safety verification problem consists in ensuring the safety of the system, for any number30

of participants. Here, the difficulty comes from the infinite number of possible instantiations31

of the network. In their seminal paper [13], German and Sistla propose a formal model to32

represent and analyze such networks: in this work, all the processes in the network execute the33

same protocol, given by a finite state automaton, and they communicate thanks to pairwise34

synchronized rendez-vous. The authors study the parameterized coverability problem, which35

asks whether there exists an initial number of processes that allow an execution leading to a36

configuration in which (at least) one process is in an error state (here the parameter is the37

number of processes). They show that it is decidable in polynomial time. Later on, different38

variations of this model have been considered, by modifying the communication means:39

token-passing mechanism [1,5], communication through shared register [8, 11], non-blocking40

rendez-vous mechanism [14], or adding a broadcast mechanism to send a message to all the41

entities [9]. The model of population protocol proposed in [2] and for which verification42

© L. Guillou and A. Sangnier and N. Sznajder;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 13; pp. 13:1–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guillou@irif.fr
https://orcid.org/0000-0002-6101-2895
mailto:arnaud.sangnier@unige.it
https://orcid.org/0000-0002-6731-0340
mailto:nathalie.sznajder@lip6.fr
https://orcid.org/0000-0002-4199-2443
https://doi.org/10.4230/LIPIcs.CONCUR.2024.13
https://arxiv.org/abs/2406.15202
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

methods have been developed recently in [10,12] belongs also to this family of systems. In this43

latter model, the properties studied are different, and more complex than safety conditions.44

Broadcast networks working over graphs. In [6], Delzanno et. al propose a new model of45

parameterized network in which each process communicates with its neighbors by broadcasting46

messages. The neighbors of an entity are given thanks to a graph: the communication topology.47

This model was inspired by ad hoc networks, where nodes communicate with each other48

thanks to radio communication. The difficulty in proving safety properties for this new49

model lies in the fact that one has to show that the network is safe for all possible numbers50

of processes and all possible communication topologies. So the verification procedure not51

only looks for the number of entities, but also for a graph representing the relationship of the52

neighbours to show unsafe execution. As mentioned earlier, it is not the first work to propose a53

parameterized network with broadcast communication; indeed the parameterized coverability54

problem in networks with broadcast is decidable [9] and non-primitive recursive [24] when the55

communication topology is complete (each entity is a neighbor of all the others). However,56

when there is no restriction on the allowed communication topologies the problem becomes57

undecidable [6] but decidability can be regained by providing a bound on the length of all58

simple paths in allowed topologies [6]. This restriction has then been extended in [7] to allow59

also cliques in the model. However, with this restriction, the complexity of parameterized60

coverability is non-primitive recursive [7].61

Bounding the number of phases. When dealing with infinite-state systems with an undecidable62

safety verification problem, one option consists in looking at under-approximations of the63

global behavior, restricting the attention to a subset of executions. If proving whether the64

considered subset of executions is safe is a decidable problem, this technique leads to a sound65

but incomplete method for safety verification. Good under-approximation candidates are66

the ones that can be extended automatically to increase the allowed behavior. For instance,67

it is known that safety verification of finite systems equipped with integer variables that68

can be incremented, decremented, or tested to zero is undecidable [19], but if one considers69

only executions in which, for each counter, the number of times the execution alternates70

between an increasing mode and a decreasing mode is bounded by a given value, then safety71

verification becomes decidable [16]. Similarly, verifying concurrent programs manipulating72

stacks is undecidable [22] but decidability can be regained by bounding the number of allowed73

context switches (a context being a consecutive sequence of transitions performed by the same74

thread) [20]. Context-bounded analysis has also been applied to concurrent programs with75

stacks and dynamic creation of threads [3]. Another type of underapproximation analysis has76

been conducted by [17] (and by [4] in another context), by considering bounded round-robin77

schedules of processes. Inspired by this work, we propose here to look at executions of78

broadcast networks over communication topologies where, for each process, the number79

of alternations between phases where it broadcasts messages and phases where it receives80

messages is bounded. We call such protocols k-phase-bounded protocols where k is the81

allowed number of alternations.82

Our contributions. We study the parameterized coverability problem for broadcast networks83

working over communication topologies. We first show in Section 2 that it is enough to84

consider only tree topologies. This allows us to ease our presentation in the sequel and is85

also an interesting result by itself. In Section 3, we prove that the coverability problem86

is still undecidable when considering k-phase-bounded broadcast protocols with k greater87

than 6. The undecidability proof relies on a technical reduction from the halting problem88

for two counter Minsky machines. We then show in Sections 4 and 5 that if the number of89

alternations is smaller or equal to 2, then decidability can be regained. More precisely, we90

© L. Guillou and A. Sangnier and N. Sznajder;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 13; pp. 13:2–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

qin
q4 q5

q1 q2 q3

!!a, !!b ?c

?b

!!a

?a !!c

?a

Figure 1 Example of a broadcast protocol denoted P

show that for 1-phase-bounded protocols, we can restrict our attention to tree topologies91

of height 1, which provides an ExpSpace-algorithm for the coverability problem. To solve92

this problem in the case of 2-phase-bounded protocols, we prove that we can bound the93

height of the considered tree and rely on the result of [6] which states that the coverability94

problem for broadcast networks is decidable when considering topologies where the length of95

all simple paths is bounded. We furthermore show that if we consider line topologies then96

the coverability problem restricted to 1- and 2-phase-bounded protocols can be solved in97

polynomial time.98

Due to lack of space, omitted proofs and reasonings can be found in [15].99

2 Preliminaries100

Let A be a countable set, we denote A∗ as the set of finite sequences of elements taken in101

A. Let w ∈ A∗, the length of w is defined as the number of elements in the sequence w and102

is denoted |w|. For a sequence w = a1 · a2 · · · ak ∈ A+, we denote by w[−1] the sequence103

a1 ·a2 · · · ak−1. Let `, n ∈ N with ` ≤ n, we denote by [`, n] the set of integers {`, `+1, . . . , n}.104

2.1 Networks of processes105

We study networks of processes where each process executes the same protocol given as a106

finite-state automaton. Given a finite set of messages Σ, a transition of the protocol can be107

labelled by three types of actions: (1) the broadcast of a message m ∈ Σ with label !!m, (2)108

the reception of a message m ∈ Σ with label ?m or (3) an internal action with a special label109

τ 6∈ Σ. Processes are organised according to a topology which gives for each one of them110

its set of neighbors. When a process broadcasts a message m ∈ Σ, the only processes that111

can receive m are its neighbors, and the ones having an output action ?m have to receive it.112

Furthermore, the topology remains fixed during an execution.113

Let Σ be a finite alphabet. In order to refer to the different types of actions, we write !!Σ114

for the set {!!m | m ∈ Σ} and ?Σ for {?m | m ∈ Σ}.115

I Definition 2.1. A Broadcast Protocol is a tuple P = (Q,Σ, qin,∆) such that Q is a116

finite set of states, Σ is a finite alphabet of messages, qin is an initial state and ∆ ⊆117

Q× (!!Σ×?Σ ∪ {τ})×Q is a finite set of transitions.118

We depict an example of a broadcast protocol in Figure 1. Processes are organised according119

to a topology, defined formally as follows.120

I Definition 2.2. A topology is an undirected graph, i.e. a tuple Γ = (V,E) such that V is121

a finite set of vertices, and E ⊆ V × V is a finite set of edges such that (u, v) ∈ E implies122

(v, u) ∈ E for all (u, v) ∈ V 2, and for all u ∈ V , (u, u) 6∈ E (there is no self-loop).123

© L. Guillou and A. Sangnier and N. Sznajder;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 13; pp. 13:3–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

v1 : qin

v2 : qinv3 : qin
v1

v1 : q4

v2 : q1v3 : q1

v2
v1 : q4

v2 : qinv3 : q2

v3
v1 : q5

v2 : qinv3 : q3

Figure 2 Example of an execution of protocol P (Figure 1).

We will use V(Γ) and E(Γ) to denote the set of vertices and edges of Γ respectively, namely124

V and E. For v ∈ V , we will denote NΓ(v) the set {u | (v, u) ∈ E}. When the context is125

clear, we will write N(v). For u, v ∈ V(Γ), we denote 〈v, u〉 for the two pairs (v, u), (u, v). We126

name Graphs the set of topologies. In this work, we will also be interested in some families of127

topologies: line and tree topologies. A topology Γ = (V,E) is a tree topology if V is a set of128

words of N∗ which is prefix closed with ε ∈ V , and if E = {〈w[−1], w〉 | w ∈ V ∩ N+}. This129

way, the root of the tree is the unique vertex ε ∈ V and a node w ∈ V ∩ N+ has a unique130

parent w[−1]. The height of the tree is max{n ∈ N | |w| = n}. We denote by Trees the set of131

tree topologies. A topology Γ = (V,E) is a line topology if V is such that V = {v1, . . . , vn} for132

some n ∈ N and E = {〈vi, vi+1〉 | 1 ≤ i < n}. We denote by Lines the set of line topologies.133

Semantics. A configuration C of a broadcast protocol P = (Q,Σ, qin,∆) is a tuple (Γ, L)134

where Γ is a topology, and L : V(Γ)→ Q is a labelling function associating to each vertex v of135

the topology its current state of the protocol. In the sequel, we will sometimes call processes136

or nodes the vertices of Γ. A configuration C is initial if L(v) = qin for all v ∈ V(Γ). We let137

CP be the set of all configurations of P , and IP the set of all initial configurations. When P is138

clear from the context, we may drop the subscript and simply use C and I. Given a protocol139

P = (Q,Σ, qin,∆), and a state q ∈ Q, we let R(q) = {m ∈ Σ | ∃q′ ∈ Q, (q, ?m, q′) ∈ ∆} be140

the set of messages that can be received when in the state q.141

Consider δ = (q, α, q′) ∈ ∆ a transition of P , and C = (Γ, L) and C ′ = (Γ′, L′) two142

configurations of P , and let v ∈ V(Γ) be a vertex. The transition relation v,δ−−→ ∈ C × C143

is defined as follows: we have C v,δ−−→ C ′ if and only if Γ = Γ′, and one of the following144

conditions holds:145

α = τ and L(v) = q, L′(v) = q′ and L′(u) = L(u) for all u ∈ V(Γ)\{v}: vertex v performs146

an internal action;147

α =!!m and L(v) = q, L′(v) = q′ (vertex v performs a broadcast), and for each process148

u ∈ N(v) neighbor of v, either (L(u), ?m,L′(u)) ∈ ∆ (vertex u receives message m149

from v), or m 6∈ R(L(u)) and L(u) = L′(u) (vertex u is not in a state in which it can150

receive m and stays in the same state). Furthermore, L′(w) = L(w) for all other vertices151

w ∈ V(Γ) \ ({v} ∪ N(v)) (vertex w does not change state).152

We write C −→ C ′ whenever there exists v ∈ V(Γ) and δ ∈ ∆ such that C v,δ−−→ C ′. We153

denote by →∗ [resp. →+] for the reflexive and transitive closure [resp. transitive] of →. An154

execution of P is a sequence of configurations C0, . . . , Cn ∈ CP such that for all 0 ≤ i < n,155

Ci → Ci+1.156

I Example 2.3. We depict in Figure 2 an execution of protocol P (from Figure 1): it starts157

with an initial configuration with three processes v1, v2, v3, organised as a clique (each vertex158

is a neighbour of the two others), each on the initial state qin. More formally, Γ = (V,E)159

with V = {v1, v2, v3} and E = {〈v1, v2〉, 〈v2, v3〉, 〈v1, v3〉}. From the initial configuration, the160

following chain of events happens: C0
v1,(qin,!!b,q4)−−−−−−−−−→ C1

v2,(q1,!!a,qin)−−−−−−−−−→ C2
v3,(q2,!!c,q3)−−−−−−−−→ C3.161

© L. Guillou and A. Sangnier and N. Sznajder;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 13; pp. 13:4–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2.2 Verification problem162

In this work, we focus on the coverability problem which consists in ensuring a safety property:163

we want to check that, no matter the number of processes in the network, nor the topology164

in which the processes are organised, a specific error state can never be reached.165

The coverability problem over a family of topologies S ∈ {Graphs,Trees, Lines} is stated166

as follows:167

Cover[S]

Input: A broadcast protocol P and a state qf ∈ Q;
Question: Is there Γ ∈ S, C = (Γ, L) ∈ IP and C′ = (Γ, L′) ∈ CP and v ∈ V(Γ) such that

C →∗ C′ and L′(v) = qf?

168

For a family S, if indeed there exist C = (Γ, L) and C ′ = (Γ, L′) such that C →∗ C ′ and169

L′(v) = qf for some v ∈ V(Γ), we say that qf is coverable (in P) with Γ. We also say that170

the execution C →∗ C ′ covers qf . For short, we write Cover instead of Cover[Graphs].171

Observe that Cover is a generalisation of Cover[Trees] which is itself a generalisation of172

Cover[Lines]. In [6], the authors proved that the three problems are undecidable, and they173

later showed in [7] that the undecidability of Cover still holds when restricting the problem174

to families of topologies with bounded diameter.175

However, in [6], the authors show that Cover becomes decidable when searching for an176

execution covering qf with a K-bounded path topology for some K ∈ N, i.e. for a topology177

in which all simple paths between any pair of vertices v1, v2 ∈ V have a length bounded by178

K. In [7], it is also shown that Cover is Ackermann-hard when searching for an execution179

covering qf with a topology where all maximal cliques are connected by paths of bounded180

length. We establish the first result.181

I Theorem 2.4. Cover[Graphs] and Cover[Trees] are equivalent.182

Indeed, if it is obvious that when a state is coverable with a tree topology, it is coverable183

with a topology from Graphs, we can show that whenever a state is coverable, it is coverable184

with a tree topology. If a set qf of a protocol P is coverable with a topology Γ ∈ Graphs,185

let ρ = C0 → · · · → Cn = (Γ, Ln) be an execution covering qf , and a vertex vf ∈ V(Γ) such186

that Ln(vf) = qf . We can build an execution covering qf with a tree topology Γ′ where the187

root reaches qf . Actually, Γ′ is the unfolding of Γ in a tree of height n.188

3 Phase-Bounded Protocols189

As Cover[Graphs], Cover[Trees] and Cover[Lines] are undecidable in the general case, we190

investigate a restriction on broadcast protocols: phase-bounded protocols.191

For k ∈ N, a k-phase-bounded protocol is a protocol that ensures that each process192

alternates at most k times between phases of broadcasts and phases of receptions. Before193

giving our formal definition of a phase-bounded protocol, we motivate this restriction.194

Phase-bounded protocols can be seen as a semantic restriction of general protocols in195

which each process can only switch a bounded number of times between phases where it196

receives messages and phases where it broadcasts messages. When, usually, restricting the197

behavior of processes immediately yields an underapproximation of the reachable states, we198

highlight in [15] the fact that preventing messages from being received can in fact lead to199

new reachable states. Actually, the reception of a message is something that is not under200

the control of a process. If another process broadcasts a message, a faithful behavior of the201

system is that all the processes that can receive it indeed do so, no matter in which phase202

© L. Guillou and A. Sangnier and N. Sznajder;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 13; pp. 13:5–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

q0
in

qb,14 qr,25

qr,11
qr,12

qb,23

qb,2in qb,24

qr,21 qr,22

Phase 0
Phase 1 Phase 2

!!a, !!b
?c

?b ?a

!!c ?a

!!a
?b

!!a, !!b

?a

?a

Figure 3 P2: the 2-unfolding of protocol P (Figure 1).

they are in their own execution. Hence, in a restriction that attempts to limit the number203

of switches between broadcasting and receiving phases, one should not prevent a reception204

to happen. This motivates our definition of phase-bounded protocols, in which a process205

in its last broadcasting phase, can still receive messages. A k-unfolding of a protocol P is206

then a protocol in which we duplicate the vertices by annotating them with the type and the207

number of phase (b or r for broadcast or reception and an integer between 0 and k for the208

number).209

I Example 3.1. Figure 3 pictures the 2-unfolding of protocol P (Figure 1). Observe that210

from state qb,24 , which is a broadcast state, it is still possible to receive message a and go to211

state qr,25 . However, it is not possible to send a message from qr,25 (nor from any reception212

state of phase 2).213

We show in [15] that this definition of unfolding can be used as an underapproximation214

for Cover. In the remaining of the paper, we study the verification problems introduced215

in Section 2.2 when considering phase-bounded behaviors. We turn this restriction into a216

syntactic one over the protocol, defined as follows.217

I Definition 3.2. Let k ∈ N. A broadcast protocol P = (Q,Σ, qin,∆) is k-phase-bounded if218

Q can be partitioned into 2k + 1 sets Q = {Q0, Q
b
1, Q

r
1, . . . Q

b
k, Q

r
k}, such that qin ∈ Q0 and219

for all (q, α, q′) ∈ ∆ one of the following conditions holds:220

1. there exist 0 ≤ i ≤ k and β ∈ {r, b} such that q, q′ ∈ Qβi and α = τ (for ease of notation,221

we take Q0 = Qb0 = Qr0);222

2. there exists 1 ≤ i ≤ k such that q, q′ ∈ Qbi and α ∈!!Σ;223

3. there exists 1 ≤ i ≤ k such that q, q′ ∈ Qri and α ∈?Σ;224

4. there exists 0 ≤ i < k such that q ∈ Qbi , q′ ∈ Qri+1 and α ∈?Σ;225

5. there exists 0 ≤ i < k such that q ∈ Qri , q′ ∈ Qbi+1 and α ∈!!Σ;226

6. q ∈ Qbk, q′ ∈ Qrk and α ∈?Σ227

A protocol P is phase-bounded if there exists k ∈ N such that P is k-phase-bounded.228

I Example 3.3. Observe that the protocol P displayed in Figure 1 is not phase-bounded:229

by definition, it holds that Q0 = {qin}, and q1 ∈ Qr1 (because of the transition (qin, ?b, q1)).230

As a consequence qin ∈ Qb2, because of the transition (q1, !!a, qin). This contradicts the fact231

that Qb2 ∩ Q0 = ∅. Intuitively, P does not ensure that every vertex alternates at most a232

bounded number of times between receptions and broadcasts, in particular, for any integer233

k ∈ N, it might be that there exists an execution where a process alternates k + 1 times234

© L. Guillou and A. Sangnier and N. Sznajder;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 13; pp. 13:6–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

between reception of a message b from state qin, and broadcast of a message a from state235

q1. Removing the transition (q1, !!a, qin) from P would give a 2-phase-bounded protocol P ′:236

Q0 = {qin}, Qr1 = {q1, q2}, Qb1 = {q4}, Qb2 = {q3} and Qr2 = {q5}.237

The following table summarizes our results (PB stands for phase-bounded).238

1-PB Protocols 2-PB Protocols PB Protocols
Cover[Lines] ∈ P (Section 6.2) Undecidable (k ≥ 4) (Sec 4)
Cover[Graphs] ExpSpace-complete Decidable Undecidable (k ≥ 6)
Cover[Trees] (Section 5) (Section 6.1) (Section 4)

239

4 Undecidability Results240

We prove that Cover restricted to k-phase-bounded protocols (with k ≥ 6) is undecidable241

by a reduction from the halting problem of a Minksy machine [19]: a Minsky machine is a242

finite-state machine (whose states are called locations) with two counters, x1 and x2 (two243

variables that take their values in N). Each transition of the machine is associated with an244

instruction: increment one of the counters, decrement one of the counters or test if one of245

the counters is equal to 0. The halting problem asks whether there is an execution that ends246

in the halting location. In a first step, the protocol will enforce the selection of a line of247

nodes from the topology. All other nodes will be inactive. In a second step, the first node of248

the line (that we call the head) visits the different states of the machine during an execution,249

while all other nodes (except the last one) simulate counters’ values: they are either in a state250

representing value 0, or a state representing x1 (respectively x2). The number of processes on251

states representing x1 gives the actual value of x1 in the execution. The last node (called the252

tail) checks that everything happens as expected. When the head has reached the halting253

location of the machine, it broadcasts a message which is received and forwarded by each254

node of the line until the tail receives it and reaches the final state to cover.255

When the head of the line simulates a transition of the machine, it broadcasts a message256

(the instruction for one of the counters), which is transmitted by each node of the line257

until the tail receives it. A classical way of forwarding the message through receptions and258

broadcasts would not give a phase-bounded protocol. Hence, during the transmission, the tail259

only receives messages and all other nodes only broadcast and do not receive any message.260

The main idea is that we do not use the reception of messages to move into the next state of261

the execution but to detect errors (and in that case, go to a bad sink state from which the262

process can not do anything). The processes will have to guess the correct message to send,263

and the correct instant to send it, otherwise some of them will go to the sink state upon the264

reception of this "wrong" message. Hence, when everyone makes the correct guesses, the only265

reception that occurs in the transmission is done by the tail process, whereas when someone266

makes an incorrect guess, a process goes to a bad state with a reception. In the reduction, if267

the halting state of the Minsky Machine is not reachable, there will be no way to make a268

correct guess that allows to cover the final state. In the next subsection, we explain how this269

is achieved. To do so, we explain the mechanism by abstracting away the actual instruction,270

and just show how to transmit a message.271

4.1 Propagating a message using only broadcasts in a line272

In a line, a node has at most two neighbors, but cannot necessarily distinguish between the273

two (its left and its right one). To do so, nodes broadcast messages with subscript 0, 1 or274

© L. Guillou and A. Sangnier and N. Sznajder;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 13; pp. 13:7–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

s0 s1 s2

§ § §

!!td0 !!td0

?m, m ∈ Σ
?m, m 6∈
{td1, d1}

?m, m 6∈
{td1, d1}

Figure 4 Protocol Ph executed by v0.

idl ch§ §
?d1

?d1

?m,m 6= d1 ?m,m 6= d1

Figure 5 Protocol Pt executed by vn.

idl0

ex0

hlt0

§

§

§

tr0td

tr0d

!!td0

!!d0!!td0

!!td0

!!d0

!!d0

?m,
m 6∈ {td2,
d2, td1, d1}

?m,
m 6∈ {td2, d2,

td1, d1}

?m,
m 6∈ {td2, d2,

td1, d1}

?m,m 6∈
{td2, td1}

?m,m 6∈
{d2, d1}

Figure 6 P0.

idl1

ex1

hlt1

§

§

§

tr1td

tr1d

!!td1

!!d1!!td1

!!td1

!!d1

!!d1

?m,
m 6∈ {td0,
d0, td2,d2}

?m,
m 6∈ {td0, d0,

td2, d2}

?m,
m 6∈ {td0, d0,

td2, d2}

?m,m 6∈
{td0, td2}

?m,m 6∈
{d0, d2}

Figure 7 P1.

idl2

ex2

hlt2

§

§

§

tr2td

tr2d

!!td2

!!d2!!td2

!!td2

!!d2

!!d2

?m,
m 6∈ {td1,
d1, td0, d0}

?m,
m 6∈ {td1,d1,

td0, d0}

?m,
m 6∈ {td1,d1,

td0, d0}

?m,m 6∈
{td1, td0}

?m,m 6∈
{d1, d0}

Figure 8 P2.

2, and we ensure that: if a node broadcasts with subscript 1, its right [resp. left] neighbor275

broadcasts with subscript 0 [resp. subscript 2]. Similarly, if a node broadcasts with subscript276

0 [resp. 2], its right neighbor broadcasts with subscript 2 [resp. 1] and its left one with277

subscript 1 [resp. 0].278

Consider the five protocols displayed in Figures 4–8. The states marked as initial are the279

ones from which a process enters the protocol. Protocol Ph is executed by the head of the280

line, Pt by the tail of the line and other nodes execute either P0, P1 or P2. Observe that281

messages go by pairs: tdi, tdi and di, di for all i ∈ {0, 1, 2}.282

The head broadcasts a request to be done with the pair of messages td0, td0. Each283

process in one of the Pi starts in idli and has a choice: either it transmits a message without284

executing it, or it “executes” it and tells it to the others. When it transmits a message not285

yet executed, it broadcasts the messages tdi and tdi and visits states tritd and idli. When286

it executes the request, it broadcasts the messages tdi and di and visits states exi and hlti.287

Finally, when it transmits a request already done, it broadcasts the messages di and di and288

visits states trid and idli. Once a process has executed the request (i.e. broadcast a pair tdj ,289

dj for some j ∈ {0, 1, 2}), only pairs dj , dj , with j ∈ {0, 1, 2}, are transmitted in the rest of290

the line.291

Correct transmission of a request. Take for instance the configuration C0 depicted in292

v0 : s0 v1 : idl1 v2 : idl2 v3 : idl0 v4 : idl1 vn−1 : idl1 vn : idl. . .

Figure 9 A configuration from which the transmission can happen: a node in state idli can only
broadcast messages with subscript i.

© L. Guillou and A. Sangnier and N. Sznajder;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 13; pp. 13:8–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

v0 :s0 v1 : idl1 v2 :idl2
!!td0

v0 :s1 v1 : idl1 v2 :idl2

!!td1
v0 :s1 v1 : tr1td v2 :idl2

!!td0
v0 :s2 v1 : tr1td v2 :idl2

!!td2
v0 :s2 v1 : tr1td v2 :tr2td

!!td1
v0 :s2 v1 : idl1 v2 :tr2td

(a) C0 → C1 → · · · → C5.

v2 :tr2td v3 :idl0 v4 :idl1 v5 :idl
!!td0

v2 :tr2td v3 :ex0 v4 :idl1 v5 :idl
!!td2

v2 :idl2 v3 :ex0 v4 :idl1 v5 :idl
!!d1

v2 :idl2 v3 :ex0 v4 :tr1d v5 :ch
!!d0

v2 :idl2 v3 :hlt0 v4 :tr1d v5 :ch
!!d1

v2 :idl2 v3 :hlt0 v4 :idl1 v5 :idl

(b) C6 → C7 → · · · → C11.

Figure 10 Example of correct transmission.

Figure 9 for n = 5 (i.e. there are six vertices). We say that a configuration is stable if the head293

is in s0 or s2, the tail is in idl and other nodes are in idli or hlti for i ∈ {0, 1, 2}. Note that C0294

is stable. We depict a transmission in Figures 10a and 10b, starting from C0. We denote the295

successive depicted configurations C0, C1, . . . C11. Note that C11 is stable. Between C0 and296

C11, the following happens: Between C0 and C3, v0 broadcasts the request with messages297

td0 and td0. Between C1 and C8, v1 and v2 successively repeat the request to be done with298

messages td1 and td1 for v1 and td2 td2 for v2. Between C6 and C10, v3 executes the request299

by broadcasting messages td0 and d0. Between C7 and C11, v4 transmits the done request300

with messages d1 and d1. Hence, the request is executed by exactly one vertex (namely301

v3), as highlighted in Figure 10b. Observe that the processes sort of spontaneously emit302

broadcast to avoid to receive a message. A correct guess of when to broadcast yields the303

interleaving of broadcasts that we have presented in this example.304

How to prevent wrong behaviors? Observe that, when a node is in state idl1, if one of its305

neighbor broadcasts a message which is not td0,d0 or td2,d2, then the node in idl1 reaches306

§. We say that a process fails whenever it reaches §. We have the following lemma:307

I Lemma 4.1. Let C ∈ C be a stable configuration such that C0 →+ C. Then in C, it holds308

that v0 is in s2, and there is exactly one vertex v ∈ {v1, v2, v3, v4} on a state hltj for some309

j ∈ {0, 1, 2}.310

Indeed, let C be a stable configuration such that C0 →+ C. It holds that:311

1. From C0, the first broadcast is from v0 and it broadcasts td0.312

Indeed, if another vertex than v0 broadcasts a message m with subscript i from C0, its left313

neighbor would fail with transition (idlj , ?m,§) as j = (i− 1) mod 3 and m ∈ {tdi,di}.314

Let us consider an example depicted in Figure 11b: Assume v1 is in state idl1 and v2315

broadcasts td2 or d2 (it issues a request whereas v1 is not broadcasting any request), then316

v1 receives the message with transition that goes from idl1 to §, as depicted in Figure 7.317

Hence, we can not reach a stable configuration from there.318

2. Each vertex (except the tail) broadcasts one pair of messages between C0 and C.319

Assume for instance that v1 does not broadcast anything. From Item 1, v0 broadcasts320

td0, and so at some point it will also broadcasts td0 otherwise it would not be in s0 or s2321

in C. Hence v1 fails as depicted in Figure 11a. Actually, each vertex (except the tail)322

broadcasts exactly one pair: if it broadcasts more, its left neighbor would fail as well.323

3. When a node broadcasts a pair (tdj, tdj), its right neighbor broadcasts either a pair (tdi,324

tdi) or (tdi, di), for j, i ∈ {0, 1, 2}.325

© L. Guillou and A. Sangnier and N. Sznajder;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 13; pp. 13:9–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

v0 :s0 v1 : idl1
!!td0

v0 :s1 v1 : idl1
!!td0

v0 :s2 v1 : §
(a) v1 does not transmit the request.

v1 : idl1 v2 :idl2
!!td1

v1 : tr1td v2 :idl2
!!d2

v1 : § v2 :tr2d
(b) v2 broadcasts the wrong pair of messages.

Figure 11 Example of wrong behaviors during the transmission.

Assume its right neighbor broadcasts di, it must be that i = (j + 1) mod 3. Such an326

example is depicted in Figure 11b: v1 fails with (tr1td, ?d2,§). Similarly, we have:327

4. When a node broadcasts a pair (tdj , dj) or a pair (dj , dj), its right neighbor broadcasts a328

pair (di, di), for j, i ∈ {0, 1, 2}.329

4.2 Putting everything together330

We adapt the construction of Section 4.1 to propagate operations on counters of the machine331

issued by the head of the line. Counters processes will evolve in three different protocols as332

in Section 4.1. They can be either in a zero state, from which all the types of instructions333

can be transmitted, or in a state 1x for x one of the two counters, from which all the types of334

operations can be transmitted, except 0-tests of x. Increments and decrements of a counter x335

are done in a similar fashion as in Section 4.1 (exactly one node changes its state). 0-tests336

are somewhat easier: no node changes state nor executes anything, and the tail accepts the337

same pair as the one broadcast by the head. However, if a node is in a 1x when x is the338

counter compared to 0, it fails when its left neighbor broadcasts the request.339

We ensure that we can select a line with a similar structure as the one depicted in340

Figure 9 thanks to a first part of the protocol where each node: (i) receives an announcement341

message from its predecessor with a subscript j (except the head which broadcasts first), (ii)342

broadcasts an announcement message with the subscript (j + 1) mod 3 (head broadcasts343

with subscript 0) and (iii) waits for the announcement of its successor with subscript (j + 2)344

mod 3 (except for the tail). If it receives any new announcement at any point of its execution,345

it fails. When considering only line topologies, as each node has at most two neighbors, this346

part can be achieved with fewer alternations. We get the two following theorems.347

I Theorem 4.2. Cover and Cover[Trees] are undecidable for k-phase-bounded protocols348

with k ≥ 6.349

I Theorem 4.3. Cover[Lines] is undecidable for k-phase-bounded protocols with k ≥ 4.350

5 Cover in 1-Phase-Bounded Protocols351

We show that Cover[Graphs] restricted to 1-phase-bounded protocols is ExpSpace-complete.352

We begin by proving that for such protocols Cover[Graphs] and Cover[Stars] are353

equivalent (where Stars correspond to the tree topologies of height one). To get this property,354

we first rely on Theorem 2.4 (stating that Cover and Cover[Trees] are equivalent) and355

without loss of generality we can assume that if a control state can be covered with a tree356

topology, it can be covered by the root of the tree. We then observe that when dealing357

with 1-phase-bounded protocols, the behaviour of the processes of a tree which are located358

at a height strictly greater than 1 have no incidence on the root node. Indeed if a process359

at depth 2 performs a broadcast received by a node at depth 1, then this latter node will360

© L. Guillou and A. Sangnier and N. Sznajder;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 13; pp. 13:10–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

not be able to influence the state of the root because in 1-phase-bounded protocols, once361

a process has performed a reception, it cannot broadcast anymore. In the sequel we fix a362

1-phase-bounded protocol P = (Q,Σ, qin,∆) and a state qf ∈ Q. We then have:363

I Lemma 5.1. There exist Γ ∈ Graphs, C = (Γ, L) ∈ IP and D = (Γ, L′) ∈ CP and364

v ∈ V(Γ) such that C →∗ D and L′(v) = qf iff there exists Γ′ ∈ Stars, C ′ = (Γ′, L′′) ∈ I and365

D′ = (Γ′, L′′′) ∈ CP such that C ′ →∗P D′ and L′′′(ε) = qf .366

To solve Cover[Stars] in ExpSpace, we proceed as follows (1) we first propose an367

abstract representation for the configurations reachable by executions where the root node368

does not perform any reception, and that only keeps track of states in Q0 and Qb1 (2) we369

show that we can decide in polynomial space whether a configuration corresponding to a370

given abstract representation can be reached from an initial configuration (3) relying on371

reduction to the control state reachability problem in VASS (Vector Addition System with372

States), we show how to decide whether there exists a configuration corresponding to a given373

abstract representation from which qf can be covered in an execution where the root node374

does not perform any broadcast. This reasoning relies on the fact that a process executing375

a 1-phase-bounded protocol first performs only broadcast (or internal actions) and then376

performs only receptions (or internal actions).377

We use Qb to represent the set Q0 ∪ Qb1 and we say that a configuration C = (Γ, L)378

in CP is a star-configuration whenever Γ ∈ Stars. For a star-configuration C = (Γ, L)379

in CP such that L(ε) ∈ Qb, the broadcast-print of C, denoted by bprint(C), is the pair380

(L(ε), {L(v) ∈ Qb | v ∈ V(Γ) \ {ε}}) in Qb × 2Qb . We call such a configuration C a381

b-configuration. Note that any initial star-configuration Cin = (Γin, Lin) ∈ I is a b-382

configuration verifying bprint(Cin) ∈ {(qin, ∅), (qin, {qin})} (the first case corresponding to383

V(Γ) = {ε}). We now define a transition relation ⇒ between broadcast-prints. Given (q,Λ)384

and (q′,Λ′) in Qb × 2Qb , we write (q,Λ)⇒ (q′,Λ′) if there exists two b-configurations C and385

C ′ such that bprint(C) = (q,Λ) and bprint(C ′) = (q′,Λ′) and C → C ′. We denote by ⇒∗386

the reflexive and transitive closure of ⇒.387

One interesting point of this abstract representation is that we can compute in polynomial388

time the ⇒-successor of a given broadcast-print. The intuition is simple: either the root389

performs a broadcast of m ∈ Σ, and in that case we have to remove from the set Λ all the390

states from which a reception of m can be done (as the associated processes in C ′ will not391

be in a state in Qb anymore) or one process in a state of Λ performs a broadcast and in that392

case it should not be received by the root node (otherwise the reached configuration will not393

be a b-configuration anymore).394

I Lemma 5.2. Given (q,Λ) ∈ Qb × 2Qb , we can compute in polynomial time the set395

{(q′,Λ′) | (q,Λ)⇒ (q′,Λ′)}.396

In order to show that our abstract representation can be used to solve Cover[Stars], we need397

to rely on some further formal definitions. Given two star-configurations C = (Γ, L) and398

C ′ = (Γ′, L′), we write C � C ′ iff the two following conditions hold (i) L(ε) = L′(ε), and, (ii)399

|{v ∈ V(Γ)\{ε} | L(v) = q}| ≤ |{v ∈ V(Γ′)\{ε} | L′(v) = q}| for all q ∈ Qb. We then have the400

following lemma where the two first points show that when dealing with star-configurations,401

the network generated by 1-phase-bounded protocol enjoys some monotonicity properties.402

Indeed, if the root node performs a broadcast received by other nodes, then if we put more403

nodes in the same state, they will also receive the message. On the other hand if it is another404

node that performs a broadcast, only the root node is able to receive it. The last point of the405

lemma shows that we can have as many processes as we want in reachable states in Qb (as406

© L. Guillou and A. Sangnier and N. Sznajder;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 13; pp. 13:11–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

soon as the root node does not perform any reception) by duplicating nodes and mimicking407

behaviors.408

I Lemma 5.3. The following properties hold:409

(i) If C1, C ′1 and C2 are star-configurations such that C1 → C ′1 and C1 � C2 then there410

exists a star-configuration C ′2 such that C ′1 � C ′2 and C2 →∗ C ′2.411

(ii) If C1, C ′1 and C2 are b-configurations such that C1 → C ′1 and bprint(C1) = bprint(C2)412

and C1 � C2 then there exists a b-configuration C ′2 such that C ′1 � C ′2 and bprint(C ′1) =413

bprint(C ′2) and C2 →∗ C ′2 .414

(iii) If C is a b-configuration such that Cin →∗ C for some initial configuration Cin then for415

all N ∈ N, there exists an initial configuration C ′in and a b-configuration C ′ = (Γ′, L′)416

such that C ′in →∗ C ′ and bprint(C) = bprint(C ′) = (q,Λ) and |{v ∈ V(Γ′) \ {ε} |417

L′(v) = q′}| ≥ N for all q′ ∈ Λ.418

We can now prove that we can reason in a sound and complete way with broadcast prints419

to characterise the b-configurations reachable from initial star-configurations. To prove this420

next lemma, we rely on the two last points of the previous lemma and reason by induction421

on the length of the ⇒-path leading from (qin,Λin) to (q,Λ).422

I Lemma 5.4. Given (q,Λ) ∈ Qb × 2Qb , we have (qin,Λin)⇒∗ (q,Λ) with Λin ∈ {∅, {qin}}423

iff there exist two b-configurations Cin ∈ I and C ∈ C such that Cin →∗ C and bprint(C) =424

(q,Λ).425

Finally, we show that we can verify in exponential space whether there exists a configura-426

tion with a given broadcast-print (q,Λ) from which we can reach a configuration covering qf427

thanks to an execution where the root node does not perform any broadcast. This result is428

obtained by a reduction to the control state reachability problem in (unary) VASS which is429

known to be ExpSpace-complete [18, 21]. VASS are finite state machines equipped with430

variables (called counters) taking their values in N, and where each transition of the machine431

can either change the value of a counter, by incrementing or decrementing it, or do nothing.432

In our reduction, we encode the state of the root in the control state of the VASS and we433

associate a counter to each state of Qb to represent the number of processes in this state.434

In a first phase, the VASS generates a configuration with (q,Λ) as broadcast-print and in435

a second phase it simulates the network. For instance, if a process performs a broadcast436

received by the root node, then we decrement the counter associated to the source state437

of the broadcast, we increment the one associated to the target state and we change the438

control state of the VASS representing the state of the root node accordingly. We need a last439

definition to characterise executions where the root node does not perform any broadcast:440

given two star-configurations C = (Γ, L) and C ′ = (Γ, L′), we write C −→r C
′ whenever there441

exist v ∈ V(Γ) and δ ∈ ∆ such that C v,δ−−→ C ′ and either v 6= ε or δ = (q, τ, q′) for some442

q, q′ ∈ Q. We denote by →∗r the reflexive and transitive closure of →r.443

I Lemma 5.5. Given (q,Λ) ∈ Qb × 2Qb , we can decide in ExpSpace whether there exist a444

b-configuration C = (Γf , L) and a star-configuration Cf = (Γf , Lf) such that bprint(C) =445

(q,Λ) and Lf (ε) = qf and C →∗r Cf .446

Combining the results of the previous lemmas leads to an ExpSpace-algorithm to solve447

Cover[Stars]. We first guess a broadcast-print (q,Λ) and check in polynomial space whether448

it is ⇒-reachable from an initial broadcast-print in {(qin, ∅), (qin, {qin})} thanks to Lemma449

5.2 (relying on a non-deterministic polynomial space algorithm for reachability). Then450

we use Lemma 5.5 to check the existence of a b-configuration C with bprint(C) = (q,Λ)451

© L. Guillou and A. Sangnier and N. Sznajder;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 13; pp. 13:12–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

from which we can cover qf . By Savitch’s theorem [23], we conclude that the problem is452

in ExpSpace. The completeness of this method is direct. For the soundess, we reason453

as follows: using Lemma 5.4, there exists a configuration C reachable from an initial star-454

configuration such that bprint(C) = (q,Λ), and by Lemma 5.5, there is a configuration C ′455

such that bprint(C ′) = (q,Λ) from which we cover qf . Thanks to Lemma 5.3.(iii), there is456

a configuration C ′′ reachable from an initial configuration such that C � C ′′ and C ′ � C ′′457

and bprint(C ′′) = (q,Λ). Thanks to Lemma 5.3.(i) applied to each transition, we can build458

an execution from C ′′ that covers qf . The lower bound is obtained by a reduction from the459

control state reachability in VASS.460

I Theorem 5.6. Cover[Graphs] and Cover[Trees] are ExpSpace-complete for 1-phase-461

bounded protocols.462

6 Decidability Results for 2-Phase-Bounded Protocols463

6.1 Cover and Cover[Trees] are Decidable on 2-PB Protocols464

A simple path between u and u′ in a topology Γ = (V,E) is a sequence of distinct vertices465

v0, . . . , vk such that u = v0, u′ = vk, and for all 0 ≤ i < k, (vi, vi+1) ∈ E. Its length is466

denoted d(v0, . . . , vk) and is equal to k. Given an integer K, we say that a topology Γ is467

K-bounded path (and we write Γ ∈ K − BP) if there is no simple path v0, . . . , vk such that468

d(v0, . . . , vk) > K The result of this subsection relies on the following theorem.469

I Theorem 6.1 ([6],Theorem 5). For K ≥ 1, Cover[K-BP] is decidable.470

Hence, we show that if a state qf of a protocol P is coverable with a tree topology, then471

qf is actually coverable with a tree topology that is also 2(|Q|+ 1)− BP. To establish this472

result, consider a coverable state qf of a protocol P with a tree topology Γ, such that Γ is473

minimal in the number of nodes needed to cover qf . We can suppose wlog that qf is covered474

by the root of the tree. We argue that all nodes (except maybe the root) in the execution475

covering qf broadcast something, as otherwise they are useless and could then be removed.476

We also argue that, since P is 2-phase-bounded, a node that would first broadcast after the477

first broadcast of its father would also be useless for the covering of qf : this broadcast will478

only be received by its father in its last phase of reception, hence it will have no influence on479

the behavior of the root. These two properties are the key elements needed to establish the480

following lemma.481

I Lemma 6.2. Let P = (Q,Σ, qin,∆) be a 2-phase-bounded protocol and qf ∈ Q. If qf can482

be covered with a tree topology, then it can be covered with a topology Γ ∈ Trees such that, for483

all u ∈ V(Γ), |u| ≤ |Q|+ 1.484

Indeed, a counting argument implies that if this is not the case, there exist two nodes u1485

and u2 on the same branch, different from the root, with u1 a prefix of u2, that both execute486

their first broadcast from the same state q. In this case, we could replace the subtree rooted487

in u1 by the subtree rooted in u2, and still obtain an execution covering qf . Once u1 has488

reached q (possibly by receiving broadcasts from the children of u2), it will behave as in489

the initial execution. Behaviors of the children of u1 might differ in this second part, but it490

can only influence u1 in its reception phase, which will be the last phase, and hence will not491

influence the behavior of the root. Thanks to Theorems 2.4 and 6.1, we can then conclude.492

I Theorem 6.3. Cover and Cover[Trees] are decidable for 2-phase-bounded protocols.493

© L. Guillou and A. Sangnier and N. Sznajder;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 13; pp. 13:13–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

v1 :qin vN−2 :qin vN−1 :qin vN :qin vN+1 :qin vN+2 :qin v` :qin.

∗

C0

v1 :_ vN−2 :q1 vN−1 :qin vN :qin vN+1 :qin vN+2 :qin v` :qin.

∗

Cj1

v1 :_ vN−2 :q1 vN−1 :qin vN :qin vN+1 :qin vN+2 :q2 v` :_.

∗

Cj2

v1 :_ vN−2 :_ vN−1 :_ vN :qf vN+1 :_ vN+2 :_ v` :_.Cn

no broadcast from vN−2

no broadcast from vN+2

Figure 12 Illustration of execution ρ obtained from Lemma 6.4.

6.2 Polynomial Time Algorithm for Cover[Lines] on 2-PB Protocols494

In the rest of this section, we fix a 2-phase-bounded protocol P = (Q,Σ, qin,∆) and a state495

qf ∈ Q to cover. For an execution ρ = C0 −→ C1 −→ · · · −→ Cn with Cn = (Γ, Ln), for all496

v ∈ V(Γ), we denote by bfirst(v, ρ) the smallest index 0 ≤ i < n such that Ci
v,t−−→ Ci+1 with497

t = (q, !!m, q′) ∈ ∆. If v never broadcasts anything, bfirst(v, ρ) = −1. We also denote by498

tlast(v, ρ) the largest index 0 ≤ i < n, such that Ci
v,t−−→ Ci+1 for some transition t ∈ ∆. If v499

never issues any transition, we let tlast(v, ρ) = −1.500

The polynomial time algorithm relies on the fact that to cover a state, one can consider501

only executions that have a specific shape, described in the following lemma.502

I Lemma 6.4. If qf is coverable with a line topology Γ such that V(Γ) = {v1, . . . , v`}503

then there exists an execution ρ = C0 −→ C1 −→ · · · −→ Cn such that Cn = (Γ, Ln), and504

3 ≤ N ≤ `− 2 with Ln(vN) = qf , and505

1. there exist 0 ≤ j1 < j2 < n such that for all 0 ≤ j < n, if we let Cj
vj ,tj−−−→ Cj+1:506

(a) if 0 ≤ j < j1, then vj ∈ {v1, . . . , vN−2} and if vj = vN−2, then tj = (q, τ, q′) for some507

q, q′ ∈ Q; and508

(b) if j1 ≤ j < j2, then vj ∈ {vN+2, . . . , v`} and if vj = vN+2, then tj = (q, τ, q′) for509

some q, q′ ∈ Q; and510

(c) if j2 ≤ j < n, then vj ∈ {vN−2, . . . , vN+2}.511

2. (a) for all 1 ≤ i ≤ N − 2, tlast(vi, ρ) ≤ bfirst(vi+1, ρ), and512

(b) for all N + 2 ≤ i ≤ `, tlast(vi, ρ) ≤ bfirst(vi−1, ρ).513

Figure 12 illustrates the specific form of the execution described in Item 1 of Lemma 6.4:514

the first nodes to take actions are the ones in the purple part (on the left), then, only nodes515

in the green part (on the right) issue transitions), and finally the nodes in the orange central516

part take actions in order to reach qf . The fact that P is 2-phase bounded allows us to517

establish Item 2 of Lemma 6.4: when vi+1 starts broadcasting, no further broadcasts from vi518

will influence vi+1’s broadcasts (it can only receive them in its last reception phase).519

Figure 12 highlights why we get a polynomial time algorithm: when we reach the orange520

part of the execution, the nodes vN−1, vN and vN+1 are still in the initial state of the protocol.521

Moreover, in the orange part (which is the one that witnesses the covering of qf), only five522

nodes take actions. Once one has computed in which set of states the nodes vN−2 and vN+2523

can be at the beginning of the orange part, it only remains to compute the set of reachable524

configurations from a finite set of configurations. Let H be the set of possible states in which525

vN−2 and vN+2 can be at the beginning of the last part of the execution, and for q1, q2 ∈ H,526

let Cq1,q2 = (Γ5, Lq1,q2) where Γ5 is the line topology with five vertices {v1, v2, v3, v4, v5} and527

© L. Guillou and A. Sangnier and N. Sznajder;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 13; pp. 13:14–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Lq1,q2(v1) = q1, Lq1,q2(v5) = q2 and for all other vertex v, Lq1,q2(v) = qin.528

Our algorithm is then: (1) Compute H; (2) For all q1, q2 ∈ H, explore reachable529

configurations from Cq1,q2 ; (3) Answer yes if we reach a configuration covering qf , answer no530

otherwise. It remains to explain how to compute H. This computation relies on Item 2 of531

Lemma 6.4: locally, each node vi at the left of vN−1 (resp. at the right of vN+1) stops issuing532

transitions once its right neighbor vi+1 (resp. its left neighbor vi−1) starts broadcasting.533

Hence we compute iteratively set of coverable pairs of states S ⊆ Q×Q by relying on a534

family (Si)i∈N of subsets of Q×Q formally defined as follows:535

S0 = {(qin, qin)}536

Si+1 = Si ∪ {(q1, q2) | there exist (p1, p2) ∈ Si, j ∈ {1, 2} s.t. (pj , τ, qj) ∈ ∆ and p3−j = q3−j}537

∪ {(q1, q2) | there exists (p1, p2) ∈ Si, s.t. (p2, !!m, q2) ∈ ∆, (p1, ?m, q1) ∈ ∆,m ∈ Σ}538

∪ {(q1, q2) | there exists p2 ∈ Q s.t. (q1, p2) ∈ Si, and (p2, !!m, q2) ∈ ∆ and m 6∈ R(q1)}539

∪ {(qin, q) | there exists (q, q′) ∈ Si for some q′ ∈ Q}.540541

We then define S =
⋃
n ∈N Sn, and H = {q ∈ Q | there exists q′ and (q, q′) ∈ S}. Observe542

that (Si)i∈N is an increasing sequence bounded by |Q|2. The computation reaches then a543

fixpoint and S can be computed in polynomial time. We define H = {q | ∃q′ ∈ Q, (q, q′) ∈ S}.544

Note that H ⊆ Q0 ∪ Qr1, as expected by Item 2 of Lemma 6.4. We also state that our545

construction is complete and correct, leading to the following theorem.546

I Theorem 6.5. Cover[Lines] is in P for k-phase-bounded protocols with k ∈ {1, 2}.547

Proof. We explain why the algorithm takes a polynomial time: step 1 (computing H) is done548

in polynomial time as explained above. For step 2, there are at most |H| × |H| ≤ |Q|2 pairs,549

and for each pair, we explore a graph of at most |Q|5 nodes in which each vertex represents550

a configuration C = (Γ5, L). Accessibility in a graph can be done non-deterministically in551

logarithmic space, and so in polynomial time. Observe that all the lemmas of this section552

hold true when considering 1-phase-bounded protocols, hence the theorem. J553

References554

1 B. Aminof, S. Jacobs, A. Khalimov, and S. Rubin. Parametrized model checking of token-555

passing systems. In VMCAI’14, volume 8318 of LNCS, pages 262–281. Springer-Verlag,556

2014.557

2 D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Computation in networks558

of passively mobile finite-state sensors. In PODC’04, pages 290–299. ACM, 2004.559

3 M. F. Atig, A. Bouajjani, and S. Qadeer. Context-bounded analysis for concurrent programs560

with dynamic creation of threads. Log. Methods Comput. Sci., 7(4), 2011.561

4 B. Bollig, M. Lehaut, and N. Sznajder. Round-bounded control of parameterized systems. In562

ATVA’18, volume 11138 of Lecture Notes in Computer Science, pages 370–386. Springer, 2018.563

5 E. M. Clarke, M. Talupur, T. Touili, and H. Veith. Verification by network decomposition. In564

CONCUR’04, volume 3170 of LNCS, pages 276–291. Springer-Verlag, 2004.565

6 G. Delzanno, A.Sangnier, and G. Zavattaro. Parameterized verification of ad hoc networks. In566

CONCUR’10, volume 6269 of LNCS, pages 313–327. Springer, 2010.567

7 G. Delzanno, A. Sangnier, and G. Zavattaro. On the power of cliques in the parameterized568

verification of ad hoc networks. In FOSSACS’11, volume 6604 of LNCS, pages 441–455.569

Springer, 2011.570

8 A. Durand-Gasselin, J. Esparza, P. Ganty, and R. Majumdar. Model checking parameterized571

asynchronous shared-memory systems. Formal Methods Syst. Des., 50(2-3):140–167, 2017.572

© L. Guillou and A. Sangnier and N. Sznajder;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 13; pp. 13:15–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9 J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In LICS’99,573

pages 352–359. IEEE Computer Society, 1999.574

10 J. Esparza, P. Ganty, J. Leroux, and R. Majumdar. Verification of population protocols. Acta575

Informatica, 54(2):191–215, 2017.576

11 J. Esparza, P. Ganty, and R. Majumdar. Parameterized verification of asynchronous shared-577

memory systems. J. ACM, 63(1):10:1–10:48, 2016.578

12 J. Esparza, S. Jaax, M. A. Raskin, and C. Weil-Kennedy. The complexity of verifying579

population protocols. Distributed Comput., 34(2):133–177, 2021.580

13 S. M. German and A. P. Sistla. Reasoning about systems with many processes. Journal of the581

ACM, 39(3):675–735, 1992.582

14 L. Guillou, A. Sangnier, and N. Sznajder. Safety analysis of parameterised networks with583

non-blocking rendez-vous. In CONCUR’23, volume 279 of LIPIcs, pages 7:1–7:17. Schloss584

Dagstuhl - Leibniz-Zentrum für Informatik, 2023.585

15 L. Guillou, A. Sangnier, and N. Sznajder. Phase-bounded broadcast networks over topologies586

of communication, 2024. URL: https://arxiv.org/abs/2406.15202, arXiv:2406.15202.587

16 O. H. Ibarra. Reversal-bounded multicounter machines and their decision problems. J. ACM,588

25(1):116–133, 1978.589

17 S. La Torre, P. Madhusudan, and G. Parlato. Model-checking parameterized concurrent590

programs using linear interfaces. In CAV’10, volume 6174 of LNCS, pages 629–644. Springer,591

2010.592

18 R.J. Lipton. The reachability problem requires exponential space. Research report (Yale Uni-593

versity. Department of Computer Science). Department of Computer Science, Yale University,594

1976.595

19 M. L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., 1967.596

20 S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In TACAS’05,597

volume 3440 of LNCS, pages 93–107. Springer, 2005.598

21 C. Rackoff. The covering and boundedness problems for vector addition systems. Theoretical599

Computer Science, 6:223–231, 1978.600

22 G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecidable. ACM601

Trans. Program. Lang. Syst., 22(2):416–430, 2000.602

23 W. J. Savitch. Relationships between nondeterministic and deterministic tape complexities. J.603

Comput. Syst. Sci., 4(2):177–192, 1970. doi:10.1016/S0022-0000(70)80006-X.604

24 S. Schmitz and P. Schnoebelen. The power of well-structured systems. In CONCUR’13,605

volume 8052 of LNCS, pages 5–24. Springer, 2013.606

© L. Guillou and A. Sangnier and N. Sznajder;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 13; pp. 13:16–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://arxiv.org/abs/2406.15202
http://arxiv.org/abs/2406.15202
https://doi.org/10.1016/S0022-0000(70)80006-X
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

	1 Introduction
	2 Preliminaries
	2.1 Networks of processes
	2.2 Verification problem

	3 Phase-Bounded Protocols
	4 Undecidability Results
	4.1 Propagating a message using only broadcasts in a line
	4.2 Putting everything together

	5 Cover in 1-Phase-Bounded Protocols
	6 Decidability Results for 2-Phase-Bounded Protocols
	6.1 Cover and Cover[Trees] are Decidable on 2-PB Protocols
	6.2 Polynomial Time Algorithm for Cover[Lines] on 2-PB Protocols

