
HAL Id: hal-04732044
https://hal.science/hal-04732044v1

Submitted on 11 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Efficient Neural Networks: from SW optimization to
specialized HW accelerators

Marcello Traiola, Angeliki Kritikakou, Silviu-Ioan Filip, Olivier Sentieys

To cite this version:
Marcello Traiola, Angeliki Kritikakou, Silviu-Ioan Filip, Olivier Sentieys. Efficient Neural Networks:
from SW optimization to specialized HW accelerators. ESWEEK 2024 - Embedded System Week,
Sep 2024, Raleigh (NC), United States. pp.1-2. �hal-04732044�

https://hal.science/hal-04732044v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Efficient Neural Networks: from SW optimization
to specialized HW accelerators

Marcello Traiola, Angeliki Kritikakou, Silviu-Ioan Filip, Olivier Sentieys
Univ Rennes, CNRS, Inria, IRISA - UMR 6074, F-35000 Rennes, France

Abstract—Artificial Neural Networks (ANNs) appear to be one
of the technological revolutions of recent human history. The
capability of such systems does not come at a low cost, which
led researchers to develop more and more efficient techniques to
implement them. Optimization approaches have been developed,
such as pruning and quantization, leading to reduced memory
and computation requirements. Furthermore, such approaches
are adapted to the specific hardware platform features to further
increase efficiency. To improve it further, the HW programma-
bility can be traded off in favor of more specialized custom HW
ANN accelerators. In this education abstract, we illustrate how
optimizing operations execution at different levels, from SW to
HW, can improve the efficiency of ANN execution.

Index Terms—HLS, Machine learning, hardware accelerators,
FPGA

I. INTRODUCTION

Artificial Neural Networks (ANNs) are one of the most
intensively and widely used predictive models in the field of
Machine Learning (ML) [1]. ANNs have proven outstanding
results for many complex tasks and applications, such as
object recognition in images/videos, natural language pro-
cessing, satellite image recognition, robotics, aerospace, smart
healthcare, and autonomous driving.

As ANNs have enormous algorithmic complexity, highly
flexible and powerful software frameworks (e.g., Pytorch,
Tensorflow) have been developed to increase productivity.
Unfortunately, programming flexibility and high-level abstrac-
tion come at the cost of energy efficiency, especially when
hardware characteristics are not taken into account. As illus-
trated in [2], dealing with the simple problem of multiplying
two 4096-by-4096 matrices through a Python implementation
wastes much of the performance available on modern com-
puters. Indeed, Python uses additional operations to simplify
programming and enhance productivity. Simply using a C
implementation drastically reduces the number of operations,
yielding an execution time 47 times faster, according to [2].
Further tailoring the code to exploit specific hardware platform
features makes it run even faster. For instance, parallelizing the
code to run on all the available processing cores, exploiting the
processor’s memory hierarchy, vectorizing the code, and using
special instructions (e.g., Intel’s Advanced Vector Extensions,
or AVX) makes the final code perform more than 60,000 times
faster than the original Python code [2].

Software frameworks exist that optimize the code and
tailor it to the hardware features of existing platforms. For
instance, TensorFlow Lite Converter converts a model into a
memory-efficient format for use on memory-constrained CPU

devices. Major software frameworks support code compilation
to Graphics Processing Units (GPUs) kernels for accelerating
ANN algorithms, leveraging, for example, the massively par-
allel nature of matrix multiplication. However, such highly
programmable platforms often introduce overheads that are
not always useful for ANN computations.

The key to further improving energy efficiency, while main-
taining performance, is the design of hardware components
that are specialized for ANN computations. As shown in
the analysis of [3], the energy efficiency of chips increased
as the amount of programming flexibility decreased. The
analysis considered several chips, such as general-purpose
microprocessors, software programmable DSPs, and dedicated
signal processing designs with very limited programmability.
Energy efficiency differences of four orders of magnitude were
observed between the most flexible solutions and the most
dedicated ones. As a result, by trading off programmability,
specialized hardware can be used to save a lot of energy.

In this education abstract, we first discuss hardware-aware
optimization approaches to tailor ANNs to specific device
hardware features and then efficient methods for designing
specialized hardware components for ANNs.

II. HARDWARE-AWARE OPTIMIZATION

Various optimization techniques, such as pruning and quan-
tization, have been utilized to reduce energy consumption.
Pruning and quantization are complementary techniques that
can be applied together to achieve greater energy efficiency
and memory savings. Although these techniques reduce the
memory footprint and computation requirements, they may
lead to a potential loss in the model’s accuracy.

Pruning consists of intelligently sparsifying a dense ANN,
which can be achieved through fine-grained and coarse-
grained pruning. Fine-grained pruning usually removes con-
nections [4], as it is inspired by the observation that removing
weights with small magnitude, e.g., close to zero, marginally
affects the ANN accuracy [5]. Coarse-grained pruning usu-
ally removes regular structures within convolutional layers
(e.g., filters and channels) [6], thus significantly reducing the
model’s size and the number of operations [5].

Quantization reduces the memory footprint required for the
ANN’s parameters and activations by reducing the bits used
for the representation of the arithmetic values. Floating-point
with 32 bits (FP32) is the most commonly used format for
training AI models. To improve energy efficiency, the format
can be selected based on the hardware computation units of



the target architecture, e.g., the Turing GPU architecture from
NVIDIA supports 1-bit, 4-bit, 8-bit and 16-bit arithmetic op-
erations. It can be even optimized for ASIC or FPGA designs,
leading to the most efficient hardware-accelerated solutions.
Several quantization techniques exist to better fit modern
ANN architectures [7]. Various libraries provide quantization
functionalities, e.g., Qkeras, TensorFlow lite, LarQ, AIMET,
Brevitas, TorchQuant, PyTorch quantization module etc.

Compilers, such as Tensorflow XLA and TVM, have been
proposed to alleviate the burden of manually optimizing the
ANN models for each hardware platform. These compilers
highly optimize the transformation between model definition
and specific code implementation, targeting the model spec-
ification and hardware architecture, leading to more efficient
code for a given model and target device.

III. HW ACCELERATION OF BASIC ANN OPERATIONS

Basic tasks of ANNs, such as convolutions, are easy to
accelerate. Indeed, they can be implemented by using the well-
known GEMM (General Matrix Multiply) operation. Specifi-
cally, through the Image to Column, or Im2col, operation, data
are arranged so that the convolution output can be achieved by
GEMM. In SW, highly optimized libraries for CPU or GPU
speed up GEMM execution in different ways, such as reorder-
ing the loops, improving data locality (better cache usage),
and tiling (looping on small enough submatrices to fit in the
cache). Moreover, deeply specialized hardware accelerators
can push the limits further to execute GEMM/CONV more
efficiently. However, this may also require increased effort
from the programmer/designer. Indeed, deep knowledge of
the hardware is required to propose energy-efficient models.
Number representations and precisions are key techniques,
as well as memory access since execution is often memory-
bound.

Once data are fetched from the main memory, it is very
important to reuse it as much as possible, given the high
cost of moving data and the performance bottleneck that
memory access introduces. Let us consider a Convolution
Kernel having C input channels, K output channels, batch size
N , filter dimensions R ∗ S and output activations dimension
T ∗ U . Different data-reuse opportunities are available, such as
(i) input reuse: different filters are applied to the same input;
each input is reused K times; (ii) filter (weight) reuse: when
processing a batch of size N, all inputs are applied to the same
filter, and each filter weight is reused N times; (iii) conv. reuse:
filters slide across different positions of the same input; each
weight is reused ≈ T ∗ U times, and each input is reused
≈ R ∗ S times.

Accelerators use multiple Processing Elements (PEs), in-
cluding some logic and local memory registers, to enable
data reuse. Different approaches can be adopted, such as
(i) temporal reuse: using cache memories/registers so the same
data is used more than once over time by the same PE;
(ii) spatial reuse: using systolic/multicast architectures where
the same data is used by more than one PE at different spatial
locations of the hw; (iii) hybrid temporal and spatial Reuse:

both cache memories/registers and multiple PEs are used.
On top of that, accelerator architectures can be sequential or
pipelined to further boost the performance.

Commercially available ANN accelerators combine ma-
trices of PEs in different architectures and mainly aim at
parallelizing the second and third inner loops of matrix multi-
plication. For instance, the Nvidia NVDLA architecture uses
Adder trees with weight (sub)line multicasting, while Google
TPU utilizes systolic Multiply-And-Accumulate (MAC) with
systolic multicast. Such accelerators are engineered to be very
efficient in executing basic ANN operations while allowing
the programmer some programming flexibility.

IV. SPECIALIZED ANN HW ACCELERATORS

As also mentioned in Section I, more specialized accelera-
tors, with very low programmability, can lead to very efficient
ANN implementations. This is the case of Streaming Dataflow
architectures, which enable highly customized datapath and
custom arithmetic precision for both weights and activations.
While matrices of processing elements (as described in Sec-
tion III) are customized for typical ANN operations (e.g.,
GEMM) and aim to offer also programmability/flexibility,
streaming dataflow architectures are customized/adapted for
specific ANN topologies to provide higher efficiency, lower
latency, and higher throughput. This is possible thanks to the
extensive pipelining and the absence of intermediate buffering
between consecutive NN layers. Given the low programma-
bility/flexibility of such solutions, streaming dataflow archi-
tectures are usually deployed on FPGA devices, where more
flexibility can be achieved through reconfiguration. If hard-
ware resources are enough, a circuit producing one inference
per clock cycle can be deployed. However, given the large
dimension of ANNs, a trade-off between available resources
and throughput is usually necessary. High-level frameworks
and compilers, such as FINN [8] and HLS4ML [9], provide an
end-to-end flow to create such streaming dataflow accelerators,
from high-level definition (e.g., in Pytorch, Tensorflow, or
Keras) to Hardware Description Language (HDL) code ready
to synthesize and deploy on a hardware target.

REFERENCES

[1] Y. LeCun et al., “Deep learning,” Nature, vol. 22, no. 3, pp. 436–44, May
2015.

[2] C. E. Leiserson et al., “There’s plenty of room at the Top: What will
drive computer performance after Moore’s law?” Science, vol. 368, no.
6495, p. eaam9744, Jun. 2020.

[3] N. Zhang et al., “The Cost of Flexibility in Systems on a Chip Design
for Signal Processing Applications.”

[4] N. Lee et al., “SNIP: single-shot network pruning based on connection
sensitivity,” CoRR, vol. abs/1810.02340, 2018.

[5] K. Balaskas et al., “Hardware-aware dnn compression via diverse pruning
and mixed-precision quantization,” IEEE TETC, p. 1–14, 2024.

[6] Y. Wang et al., “Non-structured DNN weight pruning considered harm-
ful,” CoRR, vol. abs/1907.02124, 2019.

[7] M. Nagel et al., “A white paper on neural network quantization,” 2021.
[8] Y. Umuroglu et al., “FINN: A Framework for Fast, Scalable Binarized

Neural Network Inference,” in FPGA, Feb 2017, pp. 65–74.
[9] J. Duarte et al., “Fast Inference of Deep Neural Networks for Real-Time

Particle Physics Applications,” FPGA, pp. 305–335, Feb 2019.


	Introduction
	HardWare-aware optimization
	HW acceleration of basic ANN operations
	Specialized ANN HW accelerators
	References

