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ABSTRACT 
In geared systems, the main source of excitation is generated by the mesh process itself. Depending 
on the dynamic conditions involved, the system may present a variety of problems, ranging from 
acoustic nuisance to system failure. Predicting and controlling the mesh process at an early design 
stage is a key point to avoiding such issues. The problem is complex, mainly due to its multi-scale 
nature. Indeed, the vibroacoustic behavior of geared systems (on the scale of a meter) depends on 
the local micro-geometry of the teeth (on the scale of a micron), associated with the transmission 
error. Moreover, the problem is parametric in nature, due to the periodic fluctuation of the mesh 
stiffness. These parametric internal excitations generate dynamic mesh forces which are 
transmitted to the housing through wheel bodies, shafts and bearings. In the case of planetary 
gear sets, the numerical prediction presents a complementary challenge as, in many applications, 
the carrier rotation modulates the housing vibration response at its rotational frequency. This 
paper presents an original simulation process to deal with modulation effects in planetary gear 
systems. 
 

1. INTRODUCTION 
Among all the services offered by gear transmission systems, the level of noise pollution and 
service life are important items in the specifications. The impact of noise and vibration extends 
beyond technical considerations and has socio-economic implications. Noise pollution affects 
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the well-being of citizens, while excessive vibrations can compromise the safety and 
performance of equipment and hardware. The costs associated with implementing measures 
to improve noise, vibration, and harshness (NVH) can also impact industry. In the past decade, 
the demand for silent gears has prompted engineers to adapt their models and incorporate 
novel solutions in transmission systems. 

Driven gears under load create the whining noise. This acoustic behavior at different 
operating modes originates from time-varying excitation mechanisms such as eccentricity, 
manufacturing errors (profile and lead geometry), and assembly errors (parallelism and 
deflection). These excitations correspond to the Transmission Error (TE) and the 
instantaneous mesh stiffness fluctuations at a given applied torque. Dynamic mesh forces 
create structure-borne noise propagating from gear teeth to the housing via gearbox 
components (gears, shafts, and bearings) and radiates as audible airborne noise [1, 2]. One of 
the special features of geared systems is the multi-scale nature of the problem. Indeed, the 
overall dynamic and vibroacoustic behavior of the transmission (on the scale of a meter) 
depends on the local micro-geometry of the teeth (on the scale of a micron). 

While the know-how developed has been applied to many fixed-axis gear applications, 
such as automotive gearboxes, the characterization of the overall behavior of multi-gear 
systems with moving axes, such as planetary gears, requires further research. Planetary gear 
sets are distinguished by their capacity to provide high gear ratios in a compact package. 
However, whining noise prediction and control remains a difficult problem because of the 
coupling between the multiple gear meshes and the relative mobility of the planet axes with 
respect to the ring gear, whatever the operating configuration. This mobility is at the origin of 
phenomena such as the modulation of the signal measured at a fixed point of the ring gear [5, 6]. 
The architecture of a single stage planetary gear is illustrated Figure 1. 

 

 
Figure 1: Planetary gear architecture. (1): Sun gear - (2) Planet gears - (3) Ring gear - (4) planet 
carrier 

 
The iterative spectral method allows the solving of linear parametric equations of motion, 

in the carrier reference frame, in the spectral domain, with short computational time [7, 8]. The 
dynamic response at meshes is hence fully characterized and the short computational time 
allows parametric investigation. However, the computation of the dynamic response of any 
fixed point on the ring gear requires an additional step. Even if many works deal with ring gear 
modulated dynamic response [9-11], further work is required to include the ring gear’s modal 
behavior contribution. Indeed, the existing methods propose a simplified formulation based on 
the use of Hanning window functions to simulate the growth/decay of the vibratory amplitude 
as one planet approaches or moves away from the measured fixed point. Though these 
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approaches give good correlation with experiments at low frequencies, the coincidence 
between mesh frequencies and housing modes at higher frequencies is less discussed. 

Thus, this paper proposes a modal approach by considering the modulation effects 
induced by the relative rotation between the observation point (fixed point located on the ring 
gear) and the meshes (attached to the carrier reference frame).   

 
2. STUDIED PLANETARY GEAR SET 

The studied planetary gear set features the sun as its input and the carrier as the output. As a 
result, the ring gear remains fixed. Main characteristics are given in Table 1.  
 

Table 1: Main characteristics of the studied planetary gear set. 

 Sun Planets Ring 

Number of planets 𝑁 3 

Number of teeth 𝑍 27 40 108 

Module 𝑚଴ (mm) 1.5 

Pressure angle 𝛼 (°)  20 

Helix angle 𝛽 (°) 0 

Ratio 𝑖௦௖ 5 

 
Based on the gear module, the maximum permissible input torque is 156 Nm, i.e. a 

breaking torque of 780 Nm. The nominal input operating speed of the planetary gear is 
1500 rpm, with a maximum value of 3500 rpm. For experimental validation with a numerical 
model, the planetary gear is mounted on a test bench, as shown in Figure 2. Motors and 
planetary gear are connected by mechanical couplings. 

 

 
Figure 2: Planetary gear test bench. 

 
3. NUMERICAL MODEL 

The numerical process to access housing dynamic response can be divided into three main 
steps, summarized in Figure 2: 

 Computation of static transmission error and mesh stiffness fluctuation at each mesh 
through the solving of contact equations,  
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 Computation of the dynamic response of the drive train through an iterative spectral 
method, 

 Computation of the dynamic response of the housing through the relative rotation 
between the observation point (fixed point located on the housing) and the meshes 
(attached to the carrier rotating reference frame).  

 
3.1 Static transmission error and mesh stiffness fluctuation 
Assuming infinitely rigid and geometrically perfect gears, their circular involute profile offers 
a constant instantaneous transmission ratio. However, these undeformable and geometrical 
assumptions are never met. Geometrical errors of tooth correction as well as deformation 
under torque induce a fluctuation of the instantaneous transmission ratio around its theoretical 
value. This fluctuation results in the so-called Static Transmission Error (STE). It is defined as 
the deviation between the actual position of the output shaft and its theoretical position [1, 2]. 
STE calculation relies on the resolution of the static teeth contact equations. For each position 
θ of the driving gear, a kinematical analysis of the mesh allows the determination of the 
theoretical contact line on the tooth surfaces. Contact equation solving leads to STE δ(θ) 
evaluation and load distribution P over the contact lines. 

In the case of planetary gears, equations of contact are solved taking account of all 
meshings j simultaneously. Unlike cylindrical gears with fixed axes, the input torque is not 
necessary shared equally between the planet gears. Thus, it become an additional unknown of 
the problem. The resolution principle is as follows. First, a planet gear is defined as reference. 
Contact points for the other gears are deduced for each successive angular position 𝜃 of the 
reference gear. With knowledge of the contact line location between the sun and the planets, 
the contacts between ring and planets are deduced from geometrical construction. The 
resolution of contact equations of each mesh j is:  

 

 ቊ
𝐇𝐣𝐏𝐣 = 𝛿𝒋(𝜃). 𝟏 − 𝐞𝐣

𝐏𝐣 = 𝐹௝
 (1) 

 
At each contact, the constraints are: 

 ቊ
−𝐇𝐣𝐏𝐣 + 𝛿௝(θ). 𝟏 ≤ 𝐞𝐣

𝐏𝐣 ≥ 0
 (2) 

With:  
 𝐇 the compliance matrix, 
 𝐏𝐣 the vector of the load distribution on the contact line, 
 𝛿𝒋(𝜃) the STE at mesh j, which corresponds to a linear displacement of the gear 

related to the pinion along the line of action, 
 𝐞𝐣 the vector of the initial gaps between the contact surfaces determined from tooth 

modifications and manufacturing errors, 
 𝐹௝  the static load oriented along the line of action, induced by the input torque, 
 𝟏 a unitary vector used for dimensional considerations. 

 
Furthermore, the instantaneous local mesh stiffness is defined from the derivative of the 

force transmitted by the mesh in relation to the static transmission error, for each angular 
position of the driving gear and for each mesh:  

 𝑘௝(𝜃௦) =
𝜕𝐹௝

𝜕𝛿௝

(𝜃௦) (3) 

 
3.2 Dynamic response of the kinematic chain by a spectral iterative method 
The numerical model proposed is based on the following main assumptions:  
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 The ring gear is assumed to be axisymmetric. Thus, the modal basis is independent of 
the angular position of the planets. As a result, one modal basis is enough to solve 
equations at each angular position.  

 The equations of motion are first solved in a reference frame associated with the 
carrier, which is equivalent to considering that the ring gear is moving in this 
reference frame. This lead to the modal basis being computed in this frame. Indeed, 
the maximum relative speed of the ring gear to the carrier is about 12 m/s. This 
represents about 0.2% of the pressure wave propagation speed of 5200 rpm. 

 Gyroscopic and centrifugal effects are neglected, as the carrier rotational speed is low 
in this application. 

 
To access the modal behavior of the gearbox, a 3D finite element model is built, see Figure 

3. The housing, gears, input and output shafts and the carrier are modelled using 3D elements. 
The bearings are modelled using axial and radial spring elements. Inertias are used to model 
the presence of a motor and a brake. These boundary inertias are connected to the input and 
output shafts with torsional stiffnesses, modelling the flexible couplings on the test bench. 
Mean mesh stiffness values are included in the finite element model to ensure kinematic links 
between the gears. 

 

 
Figure 3: Finite element model of the planetary gear 

 
The equations of motion are expressed from the linearized teeth dynamic loads: 

 𝐌𝐄𝐅𝑥̈ + 𝐂𝐱̇ + 𝐊𝐄𝐅𝑥 + ෍ k୨(t)

୫

୨ୀଵ

𝐑𝐣𝐑𝐣
𝐓𝐱 = ෍ k୨(t)

୫

୨ୀଵ

𝐑𝐣𝐑𝐣
𝐓𝐱𝐬(t) (4) 

With 𝐌𝐄𝐅  and 𝐊𝐄𝐅  respectively the mass and stiffness matrix from the finite element 
model and 𝐂 the damping matrix considered a posteriori through the Basile hypothesis. R୨ is 
the structural vector that couples the wheel, R୨

୘x is the dynamic transmission error and R୨
୘xୱ 

the static transmission error.  
Time discretization methods lead to prohibitive calculation times, as low frequencies 

require long time periods and high frequencies require fine time sampling. Hence, parametric 
equations of motion are solved using the spectral iterative method, where large systems of 
periodic differential equations can be solved with minimal calculation times. The method is 
detailed in [7]. Previous studies have demonstrated the validity of this method for multi-
meshing systems [4], like planetary gear sets [8]. 

 
3.3 Vibroacoustic response of the planetary gear housing 

The dynamic response computation with the spectral iterative method makes it possible to 
describe the vibratory state of any point of the finite element model. However, at this step the 
dynamic resolution is performed neglecting the relative mobility of the planets regarding the 
ring gear. Thus, no modulation effects can be observed. In order to introduce the effects of 
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modulation due to carrier rotation at its rotational frequency [9], a complementary 
computational step is needed to compute the response of any point on the ring gear. The 
principle is based on a change of reference frame, by considering the effect induced by the 
relative rotation between the observation point (fixed point located on the ring gear) and the 
meshes (attached to the carrier reference frame).  

 

 
 

Figure 4: Ring gear dynamic response computation – Numerical model. 
 
The radial dynamic response of the cylindrical ring gear node #n is noted 𝑢෥ ௡(𝑅, 𝜓, 𝑧, 𝑡). 

The angular position of the observation point is noted 𝜓 and in the carrier reference frame 
൫𝑋⃗௖ , 𝑌ሬ⃗௖ , 𝑍⃗௖൯ and 𝜑 in the housing frame൫𝑋⃗௥ , 𝑌ሬ⃗௥ , 𝑍⃗௥൯. The dynamic responses are computed by 
considering the system under torque, without any relative movement between the ring gear 
and the carrier. Figure 4 depicts the different terms introduced. In practice, the dynamic 
response 𝑢௡(𝑅, 𝜑, 𝑧, 𝑡) of a fixed point on the ring gear (in relative motion to the carrier) is 
measured. 

By choosing the initial position of the carrier at 𝑡 = 0, one can write: 
 𝑢௡൫𝑅,  𝜑,  𝑧,  𝑡൯ = 𝑢෤௡൫𝑅,  𝜓,  𝑧,  𝑡൯ = 𝑢෤௡(𝑅, 𝜑 − 𝛺௖𝑡, 𝑧,  𝑡൯ (5) 

 
Therefore, a point 𝐵(𝑅, 𝜑஻, 𝑧஻, 𝑡) on the ring gear has a dynamic response out of phase 

from point 𝐴(𝑅, 𝜑஺, 𝑧஺ = 𝑧஻, 𝑡), with a delay of: 

 𝑡஻ − 𝑡஺ = −
𝜑஻ − 𝜑஺

Ω௖
 (6) 

With Ω௖ the planet carrier rotational speed. This lead leads to: 

 𝑢௡൫𝑅,  𝜑஻,  𝑧஻,  𝑡൯ = 𝑢௡ ൬𝑅,  𝜑஺,  𝑧஺ = 𝑧஻,  𝑡 −
𝜑஻ − 𝜑஺

Ω௖
൰ (7) 

 
To access the dynamic response 𝑢௡൫𝑅,  𝜑௡ ,  𝑧,  𝑡൯, a linear temporal interpolation between 

the responses  𝑢෥ ௜൫𝑅,  𝜓௜,  𝑧,  𝑡൯  is built. This interpolation is based on the assumptions of 
axisymmetry of the ring gear and invariability of the modal basis whatever the position of the 
planet axis.  

On the time interval  𝑡௜ ≤ 𝑡 ≤ 𝑡௜ାଵ,  the following linear time interpolation scheme is 
proposed:  

 

 
𝑢௡൫𝑅,  𝜑௜,  𝑧,  𝑡൯

=
𝑢෤௡൫𝑅,  𝜑 − 𝛺௖𝑡௜,  𝑧,  𝑡൯(𝑡௜ାଵ − 𝑡) + 𝑢෤௡൫𝑅,  𝜑 − 𝛺௖𝑡௜ାଵ,  𝑧,  𝑡൯(𝑡 − 𝑡௜)

(𝑡௜ାଵ − 𝑡)
 

(8) 
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From a practical point a view, the iterative spectral method gives access to the answers 

in discrete nodes 𝑖  of the ring gear  𝑢෤௜(𝑅,  𝜓௜ , 𝑧,  𝑡) , 𝑖 = 1  to  𝐺  (54 points considered in our 
application).  

 
 

Figure 5: Localization of the 54 nodes along the ring gear. 
 
Considering discretization of the ring gear, the answer 𝑢௡൫𝑅,  𝜑,  𝑧,  𝑡൯ is evaluated at the 

node of the model identified by: 

 𝜑௞ =
2𝑘𝜋

𝐺
, (𝑘 = 0, 1, … 𝐺 − 1) (9) 

i.e. 𝑢௡൫𝑅,  𝜑௞,  𝑧,  𝑡൯. From equation 8 ones obtains:  

 
𝑢௡൫𝑅,  𝜑௞,  𝑧,  𝑡൯

=
𝑢෤௡൫𝑅,  𝜑௞ − 𝛺௖𝑡௜ ,  𝑧,  𝑡൯(𝑡௜ାଵ − 𝑡) + 𝑢෤௡൫𝑅,  𝜑௞ − 𝛺௖𝑡௜ାଵ,  𝑧,  𝑡൯(𝑡 − 𝑡௜)

(𝑡௜ାଵ − 𝑡)
 

(10) 

Where 𝑡௜ is chosen such that:  

 𝑡௜ =
2𝑖𝜋

𝐺𝛺௖
, 𝑖 ∈ ℕ (11) 

 
Thus, the time interval becomes:  

 𝑡௜ାଵ − 𝑡 =  
2𝜋

𝐺𝛺௖
 (12) 

 
Finally, the dynamics response of the nodes identified by the angle 𝜑௞ at time 𝑡 is equal 

to:  

 

𝑢௡൫𝑅,  𝜑௞,  𝑧,  𝑡൯

=
𝐺𝛺௖

2𝜋
෍ ൤𝑢෤௜ ൬𝑅,

2𝜋(𝑘 − 𝑖)

𝐺
,  𝑧,  𝑡൰ (𝑡௜ାଵ − 𝑡)

ீିଵ

௜ୀ଴

+ 𝑢෤௜ ൬𝑅,
2𝜋(𝑘 − 1 − 𝑖)

𝐺
,  𝑧,  𝑡൰ (𝑡 − 𝑡௜)൨ 𝐻(𝑡 − 𝑡௜ାଵ) 𝐻(𝑡௜ − 𝑡) 

(13) 

 
For the interval 0 ≤ 𝑡 ≤ 𝑇௖ , with 𝐻 the Heaviside Function. 
 
All the nodes on a peripheral circle of the ring gear have an identical response to within 

one phase. Therefore, it is sufficient to calculate the response for 𝜑௞ = 0, i.e. 



Proceedings of INTER-NOISE 2024 
 

 
𝑢௡൫𝑅,  0,  𝑧,  𝑡൯ =

𝐺𝛺௖

2𝜋
෍ ൤𝑢෤௡ ൬𝑅,

2𝜋(𝐺 − 𝑖)

𝐺
,  𝑧,  𝑡൰ (𝑡௜ାଵ − 𝑡)

ீିଵ

௜ୀ଴

+ 𝑢෤௡ ൬𝑅,
2𝜋(𝐺 − 1 − 𝑖)

𝐺
,  𝑧,  𝑡൰ (𝑡 − 𝑡௜)൨ 𝐻(𝑡 − 𝑡௜ାଵ) 𝐻(𝑡௜ − 𝑡) 

(14) 

 
4. NUMERICAL RESULTS 

Two test cases are discussed:  
 Dynamic response at a low speed (250 rpm), when the harmonics of the mesh 

frequency are lower than the system’s eigenfrequencies, 
 Dynamic response at a high speed (3100 rpm), when the harmonics of the mesh 

frequency may coincide with frequencies for which the ring gear exhibits significant 
operational dynamic deformation.  

 
4.1 Dynamic response of the ring gear at a low speed 
The dynamic response of the ring gear is evaluated for a sun gear rotational speed of 250 rpm. 
The mesh frequency is then equal to 𝑓௠ = 90 Hz. At low rotational speeds, the first harmonics 
of the mesh frequency are lower than the first natural mode of the system, thus the ring gear 
responds on its static deformation, i.e. the static contribution of the modes. This static 
deformation, calculated by considering unitary forces directed along the lines of action, is 
shown in Figure 6. 

 
Figure 6: Static deformation of the ring gear induced by unitary force oriented along the line of 
action. 
 

Figure 7 (a) depicts the time evolution of the dynamic response of the ring gear for one 
carrier rotational period Tୡ, for purely harmonic excitation at the mesh frequency Hଵ଴଼, and 
Figure 7 (b) its associated spectrum, plotted as a function of the planet carrier order. 
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  (a)  (b) 

Figure 7: (a) Temporal evolution of the ring gear dynamic response at 250 rpm. (b) Amplitude 
spectra in function of the mesh frequency order. 

 
A perfectly axisymmetric finite element model would present a periodic temporal 

response with a period equal to  Tୡ/3 , corresponding to the periodic passage of the three 
planets. In the current application, there is a slightly different behavior because the system is 
not perfectly axisymmetric. It is also clear that the envelope of the temporal response has six 
lobes, reflecting the amplitude modulation phenomena. The spectrum has a moderate 
amplitude at the mesh frequency  f୫. The dominant lines are the sidebands at f୫ ± N, where 𝑁 
is the number of planets. Detailed analysis of the time response envelope for this operating 
regime makes it possible to establish a link between its amplitude and the static deformation 
of the ring gear (see Figure 6). 

 
4.2 Dynamic response of the ring gear at high speed 
For high operating regimes, the mesh frequency harmonics are high enough to coincide with 
the system’s eigenmodes. To illustrate the impact of this coincidence, the dynamic response of 
the ring gear is considered for a sun rotation speed equal to 3100 rpm. The mesh frequency is 
then equal to 1116 Hz.  

Figure 8(a) shows the time evolution of the modulated dynamic response of the ring gear. 
Figure 8(d) the amplitude spectrum, plotted as a function of the carrier frequency order. An 
amplification of the fifth and sixth harmonics of the mesh frequency is observed, corresponding 
to an excitation of the modes around 5 580 and 6 695 Hz. A detailed analysis of the contribution 
of these two harmonics, depicted in Figures 8(b) and (c) (temporal evolution) and Figures 8(e) 
and (f) (amplitude spectrum), highlights that the amplitudes of the mesh frequency harmonics 
Hହସ଴ and H଺ସ଼ are lower than that of the sidebands at Hଵ଴଼×𝑖±𝑁Hଵ and Hଵ଴଼×𝑖±𝑘Hଵ, with 𝑁 the 
number of planets and 𝑘 an integer. The shape of the temporal dynamic responses’ envelope is 
complex and depends on the frequency of observation, and thus on the modes exited. The 
number of lobes seems to be driven by the difference between the two most significant 
sidebands. For example, there are six lobes for the dynamic response around the fifth harmonic 
(driven by the sidebands Hହଷ଻ and Hହସଷ), while there are four lobes for the dynamic response 
around the sixth harmonic (driven by the sidebands H଺ସହ and H଺ସଽ). The global dynamic time 
response results from the superposition of the different dynamic responses extracted around 
the mesh frequency harmonics.  
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 (a) (b) (c) 

 
 (d) (e) (f) 

Figure 8: (a) Temporal evolution of the overall ring gear dynamic response at 3100 rpm. (b) 
Temporal evolution of the ring gear dynamic response on the order range [532 548]. (c) 
Temporal evolution of the ring gear dynamic response on the order range [640 656]. (d) 
Amplitude spectra of the overall ring gear dynamic response. (e) Amplitude spectra of the ring 
gear dynamic response on the order range [532 548]. (f) Amplitude spectra of the ring gear 
dynamic response on the order range [640 656].  

 
4.3 Dynamic response of the ring gear – experimental point of view 
This section presents the verification of the consistency of the numerical observations with the 
actual behavior of the planetary gear. For the comparison between computation and 
measurement, the dynamic responses are extracted around the first four harmonics of the 
mesh frequency, including sidebands induced by carrier rotation. 

The experimental dynamic response measured at 800 and at 2 200 rpm is presented in 
Figure 9 (a, b) by retaining only the frequency contributions on the order band Hଵ଴଼×𝑖±𝑁Hଵ, 
(i=1, 2… 6), 𝑁 being the number of planets. A signal with a complex modulation is observed, 
where it is difficult to observe the three planets passing in front of the sensor. As for the 
numerical analysis, Figure 9 (c, d) shows the vibratory level extracted from specific mesh 
harmonic orders. The dynamic response at 800 rpm shows 5 lobes, whereas at 2 200, 6 lobes 
are observed. The experimental observations are qualitatively consistent with what is 
observed numerically, and highlight the modelling limitations that neglect gearbox modal 
behavior. 

 
 (a) (b) 
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 (c) (d) 

Figure 9: (a) Ring gear dynamic response measured at 800 rpm. (b) Ring gear dynamic 
response measured at 2200 rpm. (c) Ring gear dynamic response measured at 800 rpm, order 
2 of the mesh frequency. (d) Ring gear dynamic response measured at 2200 rpm, order 4 of the 
mesh frequency 
 

5. CONCLUSION 
The modulated dynamic response of the planetary gear’s ring gear is evaluated using an 
original approach which considers its operational deformation for each operating regime. The 
numerical results show that for low sun rotational speeds, the envelope of the ring gear’s 
dynamic response is driven by the static deformation of the planetary gear. At higher rotational 
speeds, when the harmonics of the mesh frequency are high enough to coincide with the 
system’s eigenmodes, the envelope of the modulated dynamic response is driven by the ring 
gear’s operational deformation. Measurement investigations show that the modulations of the 
ring gear’s dynamic response can present more lobes than the number of planets; results of a 
complex behavior.  

The use of the spectral iterative method offers low computational time and gives the 
opportunity to extract the dynamic response at several points to construct a refine modulated 
response. It also offers the opportunity to perform parametrical simulation, the key to a better 
understanding of ring gear modulation dynamic response effects.  
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