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Toulouse, France

juan.cuenca-silva@irit.fr

Emanuel Aldea
SATIE CNRS UMR 8029
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Abstract—Control of small-scale resources in low and medium
voltage electricity networks is being decentralised, which in-
creases the need and frequency of use of smart grid security
assessment tools. This paper compares three data-driven ap-
proaches to classify if a smart grid is “safe” or “unsafe” (i.e.,
if grid constraints are respected) given an operational point as
input: decision trees, gradient tree boosting and deep neural
networks. Five novel training data generation strategies are
proposed as alternatives to the standard random generation
approach, aiming for data-driven models that generalise realistic
scenarios better. Simulations are conducted using the IEEE
European low voltage test network. Trained models are tested
following trends from the literature and using realistic scenarios
from the test network documentation, and electric vehicle charg-
ing patterns. Our results highlight the inadequacy of the current
training data generation strategy, and offer better-performing
alternatives. At last, we report on computational times dedicated
to training our models, and discuss potential implications for
future data-driven smart grid applications.

Index Terms—smart grids, security assessment, data-driven
methods, training data, computational time

I. INTRODUCTION

With the evolution of the electricity sector, the control and
automation of small-scale energy resources is being decen-
tralised, increasing the importance of grid supervision [1].
Regardless of how and who deploys the active management
of such resources, it is paramount for distribution system
operators (DSO) to guarantee that no operational state results
in congestion events (e.g., under/overvoltage, and/or line and
transformer current/power ratings being exceeded), as this
could trigger protections or damage equipment in smart grids
(SG), with service interruptions as a consequence.

This project was conducted as part of the EDEN4SG project funded by the
French National Research Agency (ANR). It also received financial support
from the CNRS through the MITI interdisciplinary programs through its
exploratory research program. Source code at: https://gitlab.com/satie.sete

The supervision of distribution grids is currently done with
a solution inherited from transmission systems, power flow
(PF) simulations: numerous computational tools have been
proposed to solve a set of equations to verify the physical
quantities of the SG. In brief terms, a software takes the
topology of the grid (i.e., buses, lines, loads, generators,
etc.), and evaluates an operational state to approximate the
voltage in each bus and the power flow in each line using
an iterative approach (e.g., Newton-Raphson or fixed-point
iterative methods [2]). One important concern is balancing
this need of DSOs to verify operational states, with the non-
negligible computational effort associated.

The evolution in computational power over time has seen
the development of data-driven techniques in many fields.
Artificial Intelligence (AI) for example has been applied to
different power systems problems [3]. Given enough experi-
ence (data) it is possible to train a tool to replicate results
from measurements or simply replace the PF simulator for
a fraction of the computational time [4]. For the purpose of
this study we will focus on a classification problem applied to
grid supervision: given an operational point (OP) as input (e.g.,
each customer’s demand), a data-driven model must classify
it in a binary output: as “safe” or “unsafe”; which can then
facilitate decision making by DSOs.

An effective data-driven model must be trained to capture
the complex input-output relationships in this multi-input-
single-output type of problem. Literature on classification
algorithms for grid supervision (also defined as “security
assessment”) in [3], [5], showcase different models that can
reach accuracies of up to 99 % with significant reductions
in computational time compared to iterative PF methods.
These good performances suggest that data-driven methods are
indeed a valid solution to tackle security assessment; however,

https://anr.fr/Project-ANR-22-CE05-0023
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two important limitations are noted from these surveys.
1) Training and testing datasets generation: in real life, it is

difficult to obtain real measurements for low voltage SGs due
to privacy concerns [6], this means that training datasets must
be generated synthetically. The current trend is generating
operational scenarios randomly within an upper and lower
margin from the base case of the SG (e.g., between 50 %
and 120 % of the base load of a network), but there are no
formal guarantees of this strategy providing enough generality
for data-driven models to perform in scenarios outside of the
training distribution [7]. To the best of the authors knowledge,
no alternative data generation strategy has been applied to SG
supervision in the literature.

2) Negligence of the computational effort required to train
the models: a major gap found in the surveys referenced
earlier is the lack of reporting on training times. Half of the
surveyed security assessment studies in [3], [5] fail to report
the time required for training. This is important because it has
been reported that data-driven models may not be resilient to
changes [5]: if every time the topology changes or a new user
is connected to the SG we must train a new model or retrain
an existing one, training time is an important metric.

Accordingly, this paper will perform a comparison of differ-
ent data-driven methods, including training effort, performance
and operational benchmarks. The objective of this study is to
shed light on the challenges which are currently overlooked,
and which must be addressed before data-driven approaches
are deployed in real life SG supervision applications. In line
with this, the contributions of this article are as follows.

• Presenting and comparing data generation strategies al-
ternative to random generation of OPs.

• Benchmarking state of the art data-driven methods for the
security assessment classification problem applied to low
voltage SGs.

The remainder of this paper is structured as follows. Section II
presents the methodology used for this benchmark, including
details of the data-driven methods compared, data generation
strategies and relevant metrics. Section III presents details
of the electricity grid used for study and associated dataset
considerations. This is followed by Section IV where the
simulation results are presented and discussed. The conclu-
sions and future research opportunities are presented at the
end, in Section V.

II. PROPOSED METHODOLOGY

For the purpose of this work, three state-of-the-art data-
driven methods will be trained using one traditional and
five novel data generation strategies. This is to study model
performances, as well as the computational times dedicated to
training them and how fast they classify compared to existing
iterative PF solutions.

A. Data-driven methods

1) Decision trees (DT): require the development of a hi-
erarchical tree of rules. Training is done through the iterative
adaptation to partitions of the training dataset [8]. Each node

of the DT represents a splitting criterion that defines which
branch (i.e., possible occurence) is followed in the decision
path. The lowest endpoint nodes are called leafs and are
associated to the classification output. DTs were selected for
this study for their easiness of interpretation, as it is possible
to visualise the hierarchical decision-making process [8]

2) Gradient tree boosting (GTB): also known as gradient
boosted regression tree or gradient boosting machine, is a
state-of-the-art machine learning technique [9]. GTB’s most
important reported quality is scalability: running ten times
faster than existing hierarchical classification algorithms. In
essence the innovation behind GTB is its ability to handle
sparse data though a weighted quantile sketch procedure to
approximate tree learning [9].

3) Deep neural networks: Artificial neural networks are
reportedly able to capture appropriately non-linear relation-
ships in complex problems [5]. A neuron receives an input,
performs a non-linear but differentiable function, and gives an
output, which is then passed on to some or all neurons in the
next network layer as their input. The weights are iteratively
tuned in the training of the algorithm using an optimizer [10],
[11] based on the backpropagation of the error gradient to
adapt to specific problems. A “deep” network has multiple
hidden layers of neurons, which can achieve higher accuracy
in non-linear problems, provided that weights are tuned with
a sufficiently large amount of data [3]. Various heuristics have
been proposed [12] to aid the DNN designer with their choice
for number of layers, neurons and other hyper-parameters that
better adapts to their problem, and this exploration remains
mostly experimental.

B. Data generation strategies

The performance of data-driven methods is largely influ-
enced by an appropriate training dataset. In the absence of real-
life information, it is necessary to generate synthetic datasets
and to label them as “safe” or “unsafe” before training can
start. We put forward different alternatives for the problem
of security assessment applied to low and medium voltage
SGs. Note that datasets generated this way are in no way
realistic, but may allow data-driven models to better infer their
classification.

a) Random data generation: all articles surveyed in [3],
[5] use randomly generated operational scenarios between
two margins associated to the base loading of the SG [5],
this may not work for SGs in the medium and low voltage.
On one hand, medium to low-voltage SGs have fewer users
connected at each node, which means consumption is not as
aggregated. This demand presents a wider normalised interval
for the upper and lower bounds to be considered, increasing
the likelihood of outlier injections. On the other hand, the
selection of the upper bound greatly limits the proportion
of safe and unsafe scenarios (i.e., if the upper bound is too
small, all scenarios will be safe; if it is too large, all scenarios
will be unsafe), thus creating a highly imbalanced training
dataset whose influence on the algorithm performance can be
extremely negative. Therefore, we argue that training using



randomly generated data is not able to generalise for real life
scenarios for medium to low voltage networks.

b) Guided single random step: we propose to explore
iteratively a frontier of high-information content as defined in
[7]. This data generation strategy involves generating a first
OP and labelling it with the PF simulator. If the OP is safe,
one of the nodes is randomly selected to increase its load by a
random quantity, making the next OP “less safe”. If the OP is
unsafe, its load is decreased by a random quantity, making the
next OP “safer”. By repeating this label-oriented process we
aim at “guiding” the dataset towards having a balanced pool
of safe and unsafe scenarios.

c) Guided single fixed step: similar to that above, but
instead of increasing/decreasing the load by a random step, a
fixed step is predefined to discretise the search space.

d) Guided global random step: In this strategy, instead of
selecting one random node at each iteration, the power con-
sumption of all nodes is increased/decreased simultaneously
by randomly generated quantities.

e) Guided single random step with multiple explorations:
This strategy is equivalent to that in paragraph (b) but after a
number of scenarios has been generated, a completely random
OP restarts the exploration. This way several high information
content frontiers can be explored.

f) Guided single fixed step with multiple explorations:
Following the logic from the previous strategy, we also pro-
pose to generate a dataset using a fixed step like in paragraph
(c), but with multiple explorations in different frontiers.

C. Data augmentation

To avoid biases towards a dominant category [4], it is
proposed to use a state-of-the-art data augmentation strategy
called Synthetic Minority Oversampling Technique (SMOTE),
which increases the number of samples of the minority clas-
sification without adding new information to the model [13].
All generated datasets will be augmented using SMOTE to
also test the effects of balancing in model performance.

D. Relevant metrics

After defining SG supervision as a binary classification
problem (i.e., under an OP or input, the SG is either “safe” and
“unsafe”), it is important to define which of the labels is more
informative or important. The SG is a critical infrastructure,
and DSOs are interested in knowing which OPs make it “un-
safe”: metrics will focus on this classification label. Moreover,
out of numerous classification metrics registered in [3] this
study will focus simultaneously on precision and recall.

Precis. = TP/(TP + FP ) (1)

Recall = TP/(TP + FN) (2)

Precision is the proportion of correct predictions for “un-
safe” (i.e., true positives (TP)) in all predicted scenarios,
including false positives (FP). This metric evaluates out of
all the scenarios classified by the models as “unsafe”, how
many are actually not safe (i.e., how precise is the “unsafe”

Fig. 1: Structure of the simulations performed.

model classification). Recall, also called sensitivity or true
positive rate, represents the proportion of correct predictions
(i.e., TP) out of all real occurrences (i.e., including the false
negatives (FN)). For our problem, this metric evaluates out of
all real “unsafe” situations, which proportion is the model able
to correctly classify. These metrics are very important: DSOs
want a model that is able to classify and not miss “unsafe”
scenarios, as these would be the origin of service interruptions.

III. SIMULATION DETAILS

Data-driven methods defined in Subsection II-A were im-
plemented using Python libraries Sklearn.tree, XGBoost and
Keras for DT, GTB and DNN respectively, the details of the
models (e.g., hyperparameters, optimisers, etc.) can be found
in the code repository provided with the article. Simulation
were performed using a PC with a 32-core AMD 3970X
(3.69 GHz) processor and 128 GB of RAM running Windows
10. Ten independent runs following structure in Fig. 1 were
performed for different train dataset sizes, and data generation
strategies to obtain several models for comparison in two tests.

A. Case study

The studied SG is the standard IEEE European low voltage
test network (ELVTN) [14]. The ELVTN is a radial distribution
system representative of urban networks. It is operated at
400 V, 50 Hz and has a total of 55 injection points (i.e.,
customers). 100 minute-long daily load profiles are part of
the documentation for time-series simulations. An electrically
equivalent model in the PF simulator OpenDSS [15] was used
to label the OPs for the training and test datasets below.

B. Datasets

Several OPs were generated (i.e., each OP has 55 injections,
one per customer) and labelled as “safe” if voltage at each
node is not outside of a ± 0.05 p.u. band, and if the line
Ampere limits of each line are respected, “unsafe” otherwise.
This was done separately for training and testing as follows.

1) For training: each of the six data generation strategies in
Subsection II-B and the corresponding six augmented datasets
(i.e., using SMOTE) give the total twelve training dataset
with 1 million OPs, each used for training. Fig. 2 shows the
distribution of injections (i.e., consumption) in ten of the 55
nodes for the selected case study. Generating data randomly
within two boundaries (i.e., strategy (a) used in the literature)
explores a limited area of potential OPs. Note that for this
strategy it is not relevant to explore values higher than 6
kW, as OPs generated this way would mostly be labelled
“unsafe” (i.e., there would be high consumption at several
places simultaneously), which ultimately makes the learning



(a) (b)

(c) (d)

(e) (f)

Fig. 2: Box plots for ten nodes showing generated OPs using the corresponding
strategies a) to f) in Subsection II-B.

(a) (b)

Fig. 3: Box plots for ten nodes with OPs dedicated for testing: (a) test 1 -
random generation, and (b) test 2 - realistic scenario.

task far more difficult due to the large imbalance in the training
dataset between the two classifications. In contrast, the other
data generation strategies appear to cover a larger portion of
the search space. To verify the effect of dataset size in training,
four subsets of the generated datasets were used for training
with random permutations at each run: 103 , 104, 105, and
106 OPs.

2) For testing: two datasets are proposed. First, a randomly
generated test dataset following current trends from the liter-
ature (i.e., training and testing with data generated with the
same strategy) was generated with 1 million labelled points for
Test 1. Last, the daily profiles included in the documentation
of the ELVTN were used (i.e., privacy sensitive information
that is usually not available for training). This was coupled
with electric vehicle (EV) charging patterns as described in
[16]. One million OPs were generated randomly superposing
permutations of profiles and EV charging patterns in this
realistic scenario called Test 2. Fig. 3 shows box plots with
these two test datasets.

IV. RESULTS

Computational efforts for DT, GTB and DNN models
trained using different data generation strategies and training
dataset sizes are presented in Fig. 4a. Note that the computa-
tional cost of evaluating one OP is on average the lowest for

(a)

(b)

Fig. 4: Average computational efforts of the models: (a) operational time (i.e.,
how long it takes to evaluate one OP), and (b) training times (not including
data generation and augmentation).

GTB, followed by DTs both in the order of a fraction of µs,
DNN are slowest with tens of µs. For completeness, we report
OpenDSS taking on average 395.2 µs to run a PF, plus 7.08
ms interfacing with Python, and defining if one OP is safe or
not. This is translated to computational times gains oscillating
in the ranges 2×103 to 104 times, 104 to 6×104 times, and 10
to 3× 102 times for DT, GTB and DNN models respectively.

Results in Fig. 4b show that training effort largely depends
on the training dataset size: DT and GTB show linear be-
haviours, while DNN show an exponential increase in training
time with larger datasets. Moreover, note that for a training
dataset size of 1 million OPs the training effort is on average
up to 109, 108 and 107 times larger than the operational effort
for DT, GTB and DNN respectively.

Another concern that is often passed over in the literature
is the size of trained models. The largest model trained in
this study was a DT that takes up 136.2 MB of disk space.
Both DT and GTB create linearly heavier models with larger
training datasets (e.g., a DT model trained with 103, 104,
105, and 106 OPs, weighted approximately 100 kB, 1 MB,
10 MB, and 100 MB respectively). In contrast the size of DNN
models is decided with the hyper-parameter selection (i.e.,
independent of training dataset size): the size of the model
is known a priori (e.g., all DNN models trained weighted
approximately 104 kB). This information is relevant for some
SG applications (e.g., when the security assessment classifier
is part of embedded systems).

Model metrics are presented in Fig. 5, a scatter plot with
average model precision and recall for the two different tests
shows if the model is able to classify correctly. For the
purpose of this study, a model is considered to have a good
performance if both the precision and recall for “unsafe” label
classification are higher than 0.98 (i.e., if they are within the
insets of Fig. 5).



(a)

(b)

Fig. 5: Scatter plot with average precision and recall for models with different
training datasets and sizes for: (a) test 1 - random, and (b) test 2 - realistic.

Test 1 replicates results from the literature. Results in Fig. 5a
suggest that it is possible to have a good-performance model
of any type with at least one data generation strategy. Training
DTs with a dataset similar to that used for testing yields
the best performance with all training dataset sizes. For GTB
and DNN, multiple data generation strategies and data sizes
achieve good performance models, suggesting better overall
results. Note that data-driven methods trained with randomly
generated data appear to work on randomly generated data.
This is put in perspective when the same models are now
tested with realistic scenarios. As shown in Fig. 5b, none
of the DT or GTB models shows good performance in Test
2: models that appeared to work in Test 1 are now unable
to classify correctly “unsafe” OPs. Moreover, models trained
with random generation (i.e., data strategy (a), current trend
in the literature), are the worse performing on average. These
results highlight the importance of data-generation strategies,
alternatives to that of random generation.

While DT and GTB models fail the second test regardless
of data generation strategy (i.e., none achieve simultaneous
precision and recall above 0.98), DNN models trained using
strategies f, f+SMOTE, d and d+SMOTE are promising al-
ternatives even when using a smaller training dataset (e.g.,
subset with size 105 OPs). In addition to this, these models
also passed Test 1, suggesting good ability to generalise. No
formal guarantees are provided at this stage, but the authors
expect this exploratory study to trigger further research on data
generation strategies.

V. CONCLUSIONS

This article benchmarks three data-driven methods for secu-
rity assessment classification applied to low voltage SGs. Five
novel training dataset generation strategies, the use of data
augmentation, and different dataset sizes were used to train
numerous DT, GTB and DNN models. We provide evidence on

the inadequacy of the standard training data generation strategy
found in the literature, and we offer alternatives to train models
that show better performance in realistic scenarios. Future
work on this includes first, the inclusion of other data-driven
methods in our benchmark, second, the inclusion of hyper-
parameter fine-tuning when measuring training computational
efforts, and third the use of other open-source synthetically-
generated datasets.

A contrast between heavy efforts in training and com-
putational gains in operation is put forward. This trade-off
is often not reported in the literature and may be relevant
depending on the application. If training and operation is
performed with similar computational resources, our results
suggest that designers must consider the life cycle of their
data-driven model, and not only its performance: is the training
of the algorithm justified by the number of OPs that will be
evaluated? Alternatively, we note that if training is performed
with significantly more computational resources, the training
effort would be close to zero, eliminating this trade-off.
Ultimately, this potential trade-off in computational efforts
opens the door for the application of deep active learning to
increase model resiliency and to reduced training times, which
will be explored by the authors in future work.
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