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Abstract—The return of inflation raises the issue of assessing
cross-dependencies in the interest rates of long-term government
bonds. Learning cross-dependencies directly from data is framed
here as a graph learning problem that requires to address the
issues of bond rates heterogeneous and nonstationary evolutions,
with sharp changes along time and across countries, and of man-
aging missing samples. As a first contribution, the present work
devises a data driven time-dependent graph for bonds markets,
specifically based on risk premia. As a second contribution, it
shows the relevance of such constructions when applied to a
broad database of 29 countries over 6 decades (1960-2020), that
includes the high inflation episode of the 1970s.

I. INTRODUCTION

Recent works have studied multivariate time series through
the lens of dynamic graphs [1]–[6]. In these works, one
seeks to capture the inter-dependencies of the series by fitting
a dynamic graph to model the connections between them
across times. Learning such a graph is a question of dynamic
network inference. Static network inference is now a well
studied problem, either from graphical model inference [7], or
from the learning of Laplacian or Adjacency matrices from a
constraint of smoothness of the data on the associated graph –
see reviews in [8], [9]. Other works have tackled the challenge
of generalizing existing approaches to time-varying settings.
This is the objective of Time-Varying Graphical lasso [2], [10]
for graphical models, of the works in [3], and of works based
on a smoothness criteria for the signals on the graph to be
learned, leveraging the static case of [11], [12], to propose
dynamic methods in [1], [4]–[6].

The objective of the present work is the study of global,
long-term financial series of international bond markets. We
will show how we can leverage the work of [4] to expose a
descriptive structure as a dynamic network. We have adapted
existing network inference methods to deal with the usual
features of series: missing samples, nonstationary evolution
of the number of available countries, and global heterogeneity
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across both countries and times of the data. The present study
will extract, from the resulting dynamic network of inter-
dependencies between bond rates, specific networks features
such as the number of edges, of clusters, their sizes and the
centrality of countries in the network, to describe the long-term
evolutionary patterns of these international bond markets.
Economic context and rationale for the study. After 4
decades of steady decline, global long-term interest rates rise
sharply from 2022, in the context of resurgent inflation and
growing public deficits associated with the current polycrisis.
Public policies designed to mitigate the effects of this rise in
long-term interest rates require to understand interdependen-
cies between bond markets. The literature in financial cliomet-
rics and macroeconomics focuses on the historical dynamics
of international bond markets and their effects on portfolio
composition and investment financing [13]–[21]. A narrower
literature in financial networks studies the interdependencies
of international bond markets using graph models [22]–[26].
Related work in financial cliometrics and financial macroe-
conomics. Interest rates on long-term loans are based on bond
rates (i.e. interest rates on debt securities). A major feature
is the difference between bond rates for different maturities,
i.e. the “price of time”, referred to as the yield curve. This
means that differences in bond rates is what matters most.
Long-term bond rates also depend on, especially, the nature
of the issuer [13]. Government bonds offer the lowest risks,
i.e. “sovereign risk”. Any other borrower has to pay a risk
premium. Moreover, not all sovereign borrowers offer the
same level of risk [20]. Throughout the Gold standard period
(1870-1930’s), British consols were the lowest sovereign risk
[14]. At present, the lowest risk is German debt, while the
benchmark global borrower is the United States, whose debt
is denominated in the dominant currency [17]. Generally
speaking, advanced economies have lowest risk levels and
lowest bond rates [21].

In optimal portfolios derived from the Capital Asset Pricing
Model (CAPM) [15], sovereign bonds are “risk-free”. The
separation into two funds, “risk-free” and risky, has been



corroborated by cliometric studies highlighting portfolio di-
versification since the British and French imperialisms [16],
[18], [19]. This portfolio model is still widely used today
by deposit banks and institutional investors. This raises the
question of accurately assessing, with a data-driven technique,
which sovereign bonds can be considered as the core and risk-
free assets at a given time. For that, we propose to leverage
time-varying graph learning methods [1]–[6].
Related work in financial networks. Interdependencies be-
tween asset prices are the subject of a specific literature on
financial networks, dominated by studies on equity markets.
A few works cover sovereign bond markets. They replicate
the standard approach for equity markets, i.e. correlation-
based networks; e.g., [24] combines cDCC-FIAPARCH and
stable networks. Correlation measures may take into account
nonlinear dynamics and tail-dependency: [26] employs partial
correlations associated with a graphical lasso; and [25] con-
ditional correlations associated with various network filtering
methods. An alternative approach to network models involves
clustering from sovereign bond mapping, e.g. [22]. Studies
often involve around 15 debt securities, mostly European [24]–
[26], dating back only to the early 2000s. No paper studies
bond market dynamics specific to periods of high inflation.
Goals, contributions and outline. Our contribution is
twofold: i) we study the international inter-dependencies of
long-term interest rates by leveraging a specific time-varying
graph learning framework which is not based on correlations
but on yield differentials, allowing us to characterize “risk
premia”; ii) we employ a broad database of 29 countries,
including the high inflation episode of the 1970s-1980s,
allowing us to discuss current issues on inflation from a
long-term economic (i.e. cliometric) perspective. For signal
processing, our contribution is to showcase that the dynamic
graph learning framework is fruitful for the study of long series
with many missing data, a structure of several clusters, and a
notion of core and periphery for the nodes. Section II presents
the studied data and associated challenges. Section III recalls
the dynamic graph learning setting elaborated in [4], [5] and
the learning algorithm under hypotheses of signal smoothness
on the graphs and of sparseness of the temporal variations.
Section IV presents some features about the obtained dynamic
graphs. We conclude by discussing the results.

II. LONG-TERM FINANCIAL SERIES OF BOND MARKETS

A. Main dataset

The present study deals with sovereign world bond mar-
kets over a long period, and the evolution of their inter-
dependencies. We use a database of monthly sovereign bond
yields from 29 advanced, emerging and developing economies,
from 1960 to 2020. The data source is the International
Monetary Fund, and the data is retrieved from FRED (Federal
Reserve Bank of St. Louis: https://fred.stlouisfed.org/). Fig. 1
shows the series by country. For easier reading, they are
divided into 5 groups: Eurozone, Non Eurozone European
Union (EU), Non-EU Europe, Other advanced economies,
Developing and emerging economies.
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Fig. 1. Long-term interest rates. Top: Number Nt of countries whose data
is known at t. Bottom: Government bond yields, in %, for the countries in the
database (10 to 29 countries) grouped into 5 economic groups, 1960-2020.

B. Challenges: nonstationarity and missing samples

Fig. 1 illustrates that, until the end of the 1970s, inter-
est rates slowly increase (by around 5 to 10%), with little
dispersion for the countries in the database (10 initially).
With the culmination of inflation in the late 1970s, they rise
sharply, peaking at over 30% for developing economies, and
20% for advanced economies. They then steadily decline until
the recent resurgence of inflation. We also note a marked
convergence of European rates, notably the Eurozone (with the
exception of the 2011 debt crisis, especially affecting Greece);
and a persistent gap of around 10% points between advanced
and developing or emerging economies. This emphasizes the
first challenges: the global nonstationary behavior of the series,
the fact that they neither change globally at some times, nor
smoothly along the time, and the fact that globally bond rates
are decreasing. Hence, a given difference is not perceived the
same at a later time.

The second challenge is that there is a lot of missing
samples, both over extended periods of time for some countries
(e.g., when not in the international bond markets) and locally
for others (e.g., some countries report bond rates with gaps).
We write Nt the number of countries with available data at t.

III. METHOD: DYNAMIC GRAPH LEARNING

A. Smoothness-based methods for static graph learning

Since correlations are sensitive to sharp fluctuations, we
exclude the use of graphical model inference [2], [7] to repre-
sent inter-dependencies between countries over time. Instead,
assuming that countries are inter-dependent when their interest
rates are close, we consider graph inference by maximising the
smoothness of these signals (the rates) on the graph [11], [12].

A graph is denoted by G = (V,E) where V is a set of N
nodes (here, countries) and E is a set of edges. W ∈ W is the
adjacency matrix, meaning that Wij is the weight of the edge
between nodes vi and vj . The admissible set is W = {W ∈
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Fig. 2. Vector form of temporal adjacency matrices Wk , showing the
edge persistence along time. Edges are arbitrarily numbered.
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Fig. 3. Number of edges and graph density along time.

RN×N
+ s.t. W = W⊤,diag(W) = 0} for undirected weighted

graphs without self-loops. Given Zij = ∥xi − xj∥2, the basic
term capturing the global variations of signals X ∈ RN×m

(having m components per node, e.g. 12 for a monthly signal
spanning a year) on a graph is written as:

1

2

∑
(i,j)∈V×V

Wij∥xi − xj∥2 = ∥W ◦ Z∥1. (1)

In the work [11], the optimization problem to find a graph
G on which the signals X are smooth, is formulated as:

min
W∈W

f(W ) = min
W∈W

∥W ◦ Z∥1 − α1⊤ log(W1) + β∥W∥2F .
(2)

The first term controls the smoothness of the signals on the
inferred graph G (see eq. (1)). To exclude the trivial solution
W = 0, the second term constrains each node to have at
least one neighbour, and α controls the average degree node.
The third term permits to control the density of the graph
independently from signals; for a fixed α, denser graphs are
obtained with larger β.

This formulation is well-suited to the technical challenges
raised by economic data:

• Some countries have missing data. Using a window Ωk

spanning m months starting at time k enables us to propose
a proxy to compute distances despite some missing samples:

Zij,k =
∑
t∈Ωk

(xi,t − xj,t)
2 m

m− Card(isNaN(xi,t − xj,t))
.

(3)
isNaN is the operator returning that the value cannot be
computed (i.e., xi,t or xj,t is missing) and Card is the cardinal.
When all months in Ωk are missing, this term is obviously
infinite and this prohibits this edge to exist in window Ωk.
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Fig. 4. Temporal variations and changing edges. Top: terms of temporal
variations of the inferred graph ∥Wk−Wk−1∥1, and of the original distances
∥Zk −Zk−1∥2. Bottom: number of added or removed edges at each time k
in Gk (counting in non-zeros unweighted edges).

• We impose that nodes with no data at all on the considered
time window to be disconnected (they are not put in the
optimization problem). For the other nodes, having data, the
log barrier on the degree (second term of (2)) forces them to
be connected to at least one other node.
• However, the graph is not necessarily connected (like what

would happen with Minimum Spanning Trees [25]). As will
be shown in Fig. 6, there exists time periods with disconnected
clusters. This is a valuable outcome of the tools used here.
• The differences in bond interest rates are what interests

us, contrary to studying correlations as it is usually done for
equity securities. Still, one could generalize it to any distance,
e.g., the ℓp distances: Z(p)

ij,k = (
∑

t∈Ωk
|xi,t − xj,t|p)

1
p .

B. Dynamic graph learning with sparse edge edition

In [1], the method has been extended to a time-varying
setting by imposing smooth variations of the inferred graphs
between successive time windows. This amounts to add, in
the optimisation problem, a Tikhonov regularization term:∑T

k=2∥Wk − Wk−1∥2F . However, as argued in [2] for a
graphical lasso setting, and in [4], [5] for a smoothness-based
one, a temporal sparsity prior on the variations of Wk is better
suited when sharp changes occur rather than smooth ones. [5]
introduced a group lasso term when graphs are expected to
globally change at sparse time points, and a fused lasso term
when only some edges change at sparse time points. For long-
term financial time series, the latter case is more adapted as
global restructuring are expected to be rare.

The dynamical problem that we consider here is then:

min
Wk∈W

T∑
k=1

fk(Wk) + η

T∑
k=2

∥Wk −Wk−1∥1, (4)

where fk(Wk) is the expression of eq. (2) for the graph at time
k, with distance Zk defined in (3) and parameters αk and βk.
The algorithm of [27] solves the optimization problem (4).
It relies on the primal dual optimization algorithm as in [4],
[5] using the primal-dual splitting framework of [28]. This
provides a dynamic weighted adjacency matrix Wk which
defines temporal graphs Gk.
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Fig. 5. Graphs learned dynamically, selected at certain dates. The layout
is obtained by the ForceAtlas method. Node colors: blue = Eurozone, cyan =
non-eurozone European Union (EU), green = non-EU Europe, black = other
advanced, red = emerging.
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Fig. 6. Number of clusters in Wk and Closeness Centrality along time.
This shows the various levels in integration, with periods of fragmentation of
bond markets (more than 1 cluster). Yet there almost always exists a large
cluster of more than 50% of countries.

We refer to [4], [5] for the details on the derivation of
the algorithm, and the pseudo-code to solve (4). Note though
that the ℓ1 proximal operator uses η to correctly penalize
the problem. Iterations are stopped when the relative changes
become smaller than a given threshold. We force the solution
to be zero on the diagonal, and to be sparse by thresholding
to the desired numerical precision (here, set to 10−5).

The parameters are set by following [11] and its implemen-
tation in the gsp toolbox [29]. Adaptations have been nec-
essary, as the dynamic version has been coded from scratch.
The window length is m = 4 months. Parameter αk scales
as α0/N

2
k which imposes that ∥αkZk∥1 would be constant

across times for stationary distances with a changing number
of nodes. With the scaling theorem (Prop. 12 of [11]), we
can set βk = β0N

2
k . Then, imposing α0 = 1 and an averaged

density of Wk of 1/3, we tested several values of β0 to achieve
this density, while changing η to promote sparse temporal
variations.

IV. STUDY OF THE DYNAMICS OF GRAPHS OF LONG-TERM
FINANCIAL EVOLUTIONARY PATTERNS

A. Features of dynamical graphs for world bond markets

The inference framework of Section III is used on the data
presented in Section II. Remember that the present work is
focused on the application and interpretability of the time-
varying graph learning method. Fig. 2 shows the persistence
of edges along time. It highlights the obtention of stable
structures over long periods.

The learning problem (4) controls well the density of the
dynamic graphs (defined as |Et|/(Nt(Nt−1)/2) as displayed
on Fig. 3. Indeed, the number of edges (also on Fig. 4
bottom) changes dramatically, yet the time-averaged density
is controlled while the actual instantaneous density can vary.
It is roughly stationary around 0.5 in the two main periods of
high bond market convergence (of the data at hand at each t),
between 1960 and 1970 (only developed countries in the data)
and 1999-2008, despite rates which are more spread out than
in the 1960s.

The second point is to check the usefulness of solving
the time-varying optimization problem of eq. (4) instead of
solving only eq. (2) on sliding windows. Fig. 4 gives a first
answer: the temporal term ∥Wk −Wk−1∥1 is indeed sparser
than ∥Zk−Zk−1∥2. We clearly see specific instants of changes
(upper plot), associated to both addition of new edges in the
graphs and removal of edges. Sticking to the raw data (Fig. 1)
or the distances Zk, it is harder to extract periods of stability.
On Fig. 4, the temporal evolution of ∥Zk − Zk−1∥2 only
points to a larger integration (i.e. reduction of differences) of
bond markets from 1990 on, while Fig. 3 pinpoints extended
periods of integration, and others of its regression (e.g., after
the repeated crises in 2008, 2011, and the 2010s).

B. Clusters and centralities

A second lesson extracted from the learned Gk comes from
the study of the structure of the graphs at each instant. First, we
show instances of these dynamic graphs on Fig. 5. Globally,
they are made up, from core to periphery, of: (i) Europe;
(ii) other advanced economies (close or connected to the
core: USA, Switzerland, Japan, etc.); (iii) emerging economies
(including Greece after 2011). At the start of the 2000s, (i)
and (ii) almost overlap. Post 2008 they are more spread out
and more separated. Note also, as from the top of Fig. 6,
that Gt is not always a connected graph (e.g., see Jan-1988 in
Fig. 5). While there is often a large cluster, which contains a
dominant fraction of the existing nodes at k (orange curve on
top of Fig. 6), the number of clusters itself becomes as high
as 4 or 5 at some times. This adds weights to the comment
about Fig. 3 that, despite a controlled density, the graph reveals
changes in the integration of bond markets. The periods (70-
95 and again post 2007) where there is more than one cluster
have less integration that in between (even if integration before
1970 is also linked to the absence of emerging countries).

We compute the centrality of each country in Gk, so as to de-
termine if there are countries having a more central role in the



series of Gt. To keep things simple, Fig. 6 reports the Closeness
Centralities: Ck(i) = (Ri,k/(Nk−1))2/

∑
j∈Vk

dk(i, j) where
dk(i, j) is the shortest path distance in Gk = (Vk, Ek), and
Ri,k is the number of reachable nodes through Gk from node
i. The evolution of the average of the centrality on all nodes
Vk (in black) further shows periods of high integration. If
one would look also at the ranking of the various countries
(not displayed), often hubs like The Netherlands or Belgium,
benchmark countries like the USA or France (because in EU)
are ranked among the first (and are in the center of graphs as
seen in Fig. 5). Also, EU countries in the 2000s and 2010s
have a high Closeness Centrality as they are in majority close
one to another (exception: Greece in the 2010s).

V. DISCUSSION AND CONCLUSION

We have used the time-varying graph learning optimization
framework of [4], [5], based on signal smoothness on the
graphs and sparseness of the temporal variations of the graphs,
to extract relevant patterns from long-term financial series of
sovereign bond markets. The method has been adapted to
missing data, and to be able to extract edges when there is
a varying number of nodes with a controlled density.

The obtained dynamic graph, as in Fig. 5 and having the
specific features reported in the other Figs., illustrates well
the very strong nonstationarity in the increasing integration
of bond markets of advanced economies in the 1980s and
1990s, fuelled by financial deregulation and European integra-
tion. Then, under the impact of repeated crises (2008, 2011,
pandemic, etc.), integration regresses.

The connections and density of the graph (Fig. 3) show a
strong progression of integration in the 1990s. Specifically, the
number of edges (Fig. 3 top) increases rapidly. A plateau of
around 10 years is then observed, followed by an first decline.
From the beginning of the 2010s, as a result of repeated crises,
connections decline again (see Fig. 4). Density (Fig. 3 bottom)
sheds further light: until the early 1970s, it is essentially made
up of advanced economies with high long term interest rates,
and comparable to that of the global graph of the 2000s
with much lower rates, highlighting period-specific forms of
integration. These results illustrate that, in the current period
of high inflation, long term interest rates are doubly affected:
by the rise in US rates, which are the benchmark, as the direct
consequence of inflation; and by the rise in risk premia.

A second conclusion is that the graph leaning method can be
efficently leveraged for complex datasets, avoiding the many
pitfalls of missing data and nonstationarities, while providing
interpretable dynamic graphs.
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