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LINEARLY IMPLICIT TIME INTEGRATION SCHEME OF LAGRANGIAN
SYSTEMS VIA QUADRATIZATION OF A NONLINEAR KINETIC ENERGY.

APPLICATION TO A ROTATING FLEXIBLE PIANO HAMMER SHANK

Guillaume Castera* and Juliette Chabassier

Abstract. This paper presents a general and practical approach for nonlinear energy quadratization
based on the Euler–Lagrange formulation of the physical equations. A Scalar Auxiliary Variable -like
method based on a phase formulation of the equations is applied. The proposed scheme is linearly
implicit, reproduces a discrete equivalent of the power balance. It is applied to a rotating and flexible
piano hammer shank. An efficient solving strategy leads to a quasi explicit algorithm which shows
quadratic space/time convergence.
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1. Introduction

Nonlinear equations are quite frequently encountered in many application domains like acoustics, fluid and
solid state, optics, quantum, and others. We consider in this work an Euler–Lagrange system of equations, which
can also be described entirely from the knowledge of a Hamiltonian function. These systems have power balance
identities that can be exploited to perform the mathematical analysis of the equations.

Such a property is also very useful for numerical computation as ensuring the preservation of a discrete
analog of the power balance identity, at least in simple cases, allows to derive a-posteriori stability estimates
and convergence results of the time integration scheme [10,21]. These estimates can especially be used to couple
multiple systems even if each one of them has a different integration strategy.

Amongall thenonlinear termsencountered inphysics,wecandistinguish thepotentialnonlinear termsdepending
only of the unknown field, and the kinetic ones that usually depend on the unknown field and its time derivatives.

A widely spread strategy to solve nonlinear Hamiltonian equations with power balanced methods is the
use of Discrete Gradients. In [17, 27] such schemes are used in space dimensions 2 and 3. Allen–Cahn and
Cahn–Hilliard equations are discretized in [28] where convergence proofs are also given. Non-linear elasticity
is considered in [16], and in [2, 12], a Discrete Gradient approach is used to tackle contact terms in musical
acoustics. In [11] such schemes are used for the 1D non-linear piano string, and [9] a discrete gradient scheme
is applied to a rotating flexible hammer shank, which has both potential and kinetic nonlinear energies.

Keywords and phrases. Energy quadratization, Scalar Auxiliary Variable, Scalar Lagrangian Quadratization, flexible piano
hammer shank.
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The discrete gradient schemes have the major drawback of leading to implicit non-linear schemes that must
be solved with iterative techniques. It requires to choose a convergence threshold, and induces a consequent
number of iterations depending on how “hard” the nonlinear term is. The computation cost is often very high
and unpredictable, as well as the implementation effort.

Recently appeared strategies guarantee a discrete power balance identity while increasing efficiency with
linearly implicit numerical schemes. The so-called Invariant Energy Quadratization (IEQ) schemes were intro-
duced in [35, 36] in the context of phase-fields models. The so-called Scalar Auxiliary Variable (SAV) schemes
introduced in [29] and all its variants [25,26] were applied to gradient flows, but also for incompressible Navier–
Stokes [23], Sine-Gordon equation [19], or general Hamiltonian equations [3, 20, 22]. These techniques were
applied recently to the geometrically exact piano string in [13–15].

Although the literature is very rich and creative, the quadratized nonlinear terms are always of potential
type. To the best of our knowledge, there is no method that could allow to use IEQ or SAV-like methods to
solve kinetic nonlinear systems.

In the first part of this paper, we present a quadratization process based on the weak Euler–Lagrange
equations for any kind of nonlinear energy, potential and kinetic. A time discretization strategy based on a
phase formulation of the equations is proposed and applied in the second part to the rotating and flexible piano
hammer shank described in [9] hitting first a rigid wall, then a vibrating string. The desire to write an efficient
and precise integration method to compute the vibrations of the piano hammer shank comes from the past
studies [9,18,33] which raise the question of the influence of the pianistic touch on the sound. The authors point
out that the bending of the shank could depend of the input of the pianist and then create a scuffing motion
of the hammer head on the string depending on the touch and therefore influencing the sound. Simulation
of these subtle phenomena requires precise, stable and efficient numerical methods. The scheme proposed in
this work ensures unconditional power balance preservation, and shows quadratic space/time convergence. A
solving strategy leads to a quasi explicit algorithm. The presented application cases are of interest for a realistic
modeling of the piano, but their nonlinear kinetic energy is not distributed over space. Hence, they do not
illustrate all the possibilities offered by the algorithm proposed in the first section, which could be tested in a
further work on more intricate systems of equations.

2. Scalar Lagrangian Quadratization technique for nonlinear equations

Let Ω ⊂ R𝑁 be a bounded domain. Let us consider a physical system described by some vectorial unknown
𝑞 ≡ 𝑞(𝑥, 𝑡), for 𝑥 ∈ Ω and 𝑡 ∈ [0, 𝑇 ], expected to belong to C1([0, 𝑇 ], 𝑉 ) ∩ C2([0, 𝑇 ], 𝐻), where 𝐻 is a Hilbert
space equipped with a norm ‖·‖𝐻 =

√︀
(·, ·)𝐻 on Ω, typically L2(Ω), and 𝑉 ⊂ 𝐻 another Hilbert space equipped

with a norm induced by a symmetrical and invertible operator 𝐴11 : 𝑉 → 𝐻 : ‖ · ‖𝑉 = (𝐴11·, ·)𝐻 , and possibly
accounting for some essential boundary conditions, typically H1

0(Ω) which is induced by the Laplace operator.
Let ℒ : 𝑉 × 𝑉 −→ R be the Lagrangian of the system and ℋ : 𝑉 × 𝑉 −→ R the function defined by

∀(𝑞1, 𝑞2) ∈ 𝑉 2, ℋ(𝑞1, 𝑞2) =
𝜕ℒ
𝜕𝑞2

(𝑞1, 𝑞2)(𝑞2)− ℒ(𝑞1, 𝑞2) = ℐ(𝑞1, 𝑞2)− ℒ(𝑞1, 𝑞2), (1)

with
∀(𝑞1, 𝑞2) ∈ 𝑉 2, ℐ(𝑞1, 𝑞2) =

𝜕ℒ
𝜕𝑞2

(𝑞1, 𝑞2)(𝑞2), (2)

where the directional derivatives of the Lagrangian function are such that for all (𝑞1, 𝑞2) ∈ 𝑉 2,

𝜕ℒ
𝜕𝑞1

(𝑞1, 𝑞2) :

⃒⃒⃒⃒
⃒𝑉 −→ R
𝑞* ↦−→ lim

ℎ→0

ℒ(𝑞1+ℎ𝑞*,𝑞2)−ℒ(𝑞1,𝑞2)
ℎ ,

𝜕ℒ
𝜕𝑞2

(𝑞1, 𝑞2) :

⃒⃒⃒⃒
⃒𝑉 −→ R
𝑞* ↦−→ lim

ℎ→0

ℒ(𝑞1,𝑞2+ℎ𝑞*)−ℒ(𝑞1,𝑞2)
ℎ , (3)

𝜕2ℒ
𝜕𝑞1𝜕𝑞2

(𝑞1, 𝑞2) :

⃒⃒⃒⃒
⃒𝑉 −→ (𝑉 −→ R)

𝑞* ↦−→ lim
ℎ→0

𝜕ℒ
𝜕𝑞2

(𝑞1+ℎ𝑞*,𝑞2)− 𝜕ℒ
𝜕𝑞2

(𝑞1,𝑞2)

ℎ .

Note that by definition these derivatives are linear with respect to the argument 𝑞*.
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The considered physical system is described by the weak form of the Euler–Lagrange equations: seek 𝑞 :
[0, 𝑇 ] → 𝑉 such that

∀𝑞* ∈ 𝑉,
d
d𝑡

(︂
𝜕ℒ
𝜕𝑞2

(𝑞, 𝑞)
)︂

(𝑞*)− 𝜕ℒ
𝜕𝑞1

(𝑞, 𝑞)(𝑞*) = 𝑄(𝑞, 𝑞, 𝑞*), (4)

where 𝑄 represents the constraints and dissipative terms that are not included in the Lagrangian. Also for
generality, the initial conditions are not written in this section.

Remark 2.1. By developing the time derivation, we can write the Euler–Lagrange equations (4) in an alter-
native form, which consists of seeking 𝑞 : [0, 𝑇 ] → 𝑉 such that

∀𝑞* ∈ 𝑉,
𝜕2ℒ
𝜕𝑞2

2

(𝑞, 𝑞)(𝑞)(𝑞*) +
𝜕2ℒ

𝜕𝑞1𝜕𝑞2
(𝑞, 𝑞)(𝑞)(𝑞*)− 𝜕ℒ

𝜕𝑞1
(𝑞, 𝑞)(𝑞*) = 𝑄(𝑞, 𝑞, 𝑞*). (5)

Theorem 2.2 (Conservation of the Hamiltonian). Any regularly enough solution 𝑞 ∈ C1([0, 𝑇 ], 𝑉 ) ∩
C2([0, 𝑇 ], 𝐻) to (4) verifies

d
d𝑡

[︁
ℋ(𝑞, 𝑞)

]︁
= 𝑄(𝑞, 𝑞, 𝑞), (6)

with ℋ(𝑞, 𝑞) = ℐ(𝑞, 𝑞)− ℒ(𝑞, 𝑞) the Hamiltonian of the system.

Proof.

d
d𝑡

[︁
ℋ(𝑞, 𝑞)

]︁
=

d
d𝑡

[︁
ℐ(𝑞, 𝑞)

]︁
− d

d𝑡

[︁
ℒ(𝑞, 𝑞)

]︁
(7)

=
[︂

d
d𝑡

(︂
𝜕ℒ
𝜕𝑞2

(𝑞, 𝑞)
)︂

(𝑞) +
𝜕ℒ
𝜕𝑞2

(𝑞, 𝑞)(𝑞)
]︂
−
[︂

𝜕ℒ
𝜕𝑞2

(𝑞, 𝑞)(𝑞) +
𝜕ℒ
𝜕𝑞1

(𝑞, 𝑞)(𝑞)
]︂

(8)

=
d
d𝑡

(︂
𝜕ℒ
𝜕𝑞2

(𝑞, 𝑞)
)︂

(𝑞)− 𝜕ℒ
𝜕𝑞1

(𝑞, 𝑞)(𝑞) (9)

= 𝑄(𝑞, 𝑞, 𝑞), (10)

because 𝑞 ∈ 𝑉 . �

Let us now decompose the Lagrangian between its linear and nonlinear part as ℒ = ℒLIN + ℒNL. The
Euler–Lagrange equation (4) rewrites: seek 𝑞 : [0, 𝑇 ] → 𝑉 such that

∀𝑞* ∈ 𝑉,
d
d𝑡

(︂
𝜕ℒLIN

𝜕𝑞2
(𝑞, 𝑞)

)︂
(𝑞*)− 𝜕ℒLIN

𝜕𝑞1
(𝑞, 𝑞)(𝑞*)

+
d
d𝑡

(︂
𝜕ℒNL

𝜕𝑞2
(𝑞, 𝑞)

)︂
(𝑞*)− 𝜕ℒNL

𝜕𝑞1
(𝑞, 𝑞)(𝑞*) = 𝑄(𝑞, 𝑞, 𝑞*). (11)

Since the Lagrangian ℒLIN and Hamiltonian ℋLIN come from a linear part, they can be represented by quadratic
forms like

∀(𝑞1, 𝑞2) ∈ 𝑉 2,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ℒLIN(𝑞1, 𝑞2) =
1
2

(𝐴22𝑞2, 𝑞2)𝐻 + (𝐴12𝑞1, 𝑞2)𝐻 − 1
2

(𝐴11𝑞1, 𝑞1)𝐻

+ (𝑉2, 𝑞2)𝐻 − (𝑉1, 𝑞1)𝐻 , (12a)

ℋLIN(𝑞1, 𝑞2) =
1
2

(𝐴22𝑞2, 𝑞2)𝐻 +
1
2

(𝐴11𝑞1, 𝑞1)𝐻 + (𝑉1, 𝑞1)𝐻 , (12b)

ℐLIN(𝑞1, 𝑞2) = (𝐴22𝑞2, 𝑞2)𝐻 + (𝐴12𝑞1, 𝑞2)𝐻 + (𝑉2, 𝑞2)𝐻 , (12c)

with symmetrical operators 𝐴11, 𝐴12, 𝐴21 : 𝑉 −→ 𝐻, 𝐴22 : 𝐻 −→ 𝐻 such that 𝐴12 = 𝐴*21 and 𝐴11 is bijective.
Moreover, (𝑉1, 𝑉2) ∈ 𝐻2.
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Remark 2.3. In this formalism, we implicitly assume that 𝐴11 is the operator that requires the most regularity,
and whose natural space is 𝑉 . Indeed, the operators 𝐴𝑖𝑗 often found in physics are such that 𝐴11 acts like a
Laplace operator, and 𝐴22 is a simple constant weighting term. The bijective nature of 𝐴11 : 𝑉 → 𝐻 is usually
respected for suitable boundary conditions like Dirichlet, using classical elliptic theory results. Any model that
would not satisfy these assumptions would necessitate another functional framework.

This allows to define a linear operator ̃︁L such that for all (𝑞1, 𝑞2, 𝑞3, 𝑞4) ∈ 𝑉 × 𝑉 × 𝑉 ×𝐻 and all 𝑞* ∈ 𝑉

̃︁L (𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞
*) =

𝜕2ℒLIN

𝜕𝑞2
2

(𝑞1, 𝑞2)(𝑞4)(𝑞*) +
𝜕2ℒLIN

𝜕𝑞1𝜕𝑞2
(𝑞1, 𝑞2)(𝑞3)(𝑞*)− 𝜕ℒLIN

𝜕𝑞1
(𝑞1, 𝑞2)(𝑞*) (13)

= (𝐴22𝑞4, 𝑞
*)𝐻 + (𝐴12𝑞3, 𝑞

*)𝐻 − (𝐴12𝑞2, 𝑞
*)𝐻 + (𝐴11𝑞1, 𝑞

*)𝐻 + (𝑉1, 𝑞
*)𝐻 , (14)

and such that for the specific case 𝑞1 = 𝑞, 𝑞2 = 𝑞3 = 𝑞 and 𝑞4 = 𝑞 we havẽ︁L (𝑞, 𝑞, 𝑞, 𝑞, 𝑞*) = (𝐴22𝑞, 𝑞
*)𝐻 + (𝐴11𝑞, 𝑞

*)𝐻 + (𝑉1, 𝑞
*)𝐻 . (15)

This leads to the definition of an other linear operator L such that for all (𝑞1, 𝑞2) ∈ 𝑉 ×𝐻 and all 𝑞* ∈ 𝑉

L (𝑞1, 𝑞2, 𝑞
*) = (𝐴22𝑞2, 𝑞

*)𝐻 + (𝐴11𝑞1, 𝑞
*)𝐻 + (𝑉1, 𝑞

*)𝐻 . (16)

Its relation with the linear Hamiltonian function ℋLIN is

L (𝑞, 𝑞, 𝑞) =
d
d𝑡

[ℋLIN(𝑞, 𝑞)]. (17)

Equation (11) therefore transforms into seeking 𝑞 : [0, 𝑇 ] → 𝑉 such that

∀𝑞* ∈ 𝑉, L (𝑞, 𝑞, 𝑞*) +
[︂

d
d𝑡

(︂
𝜕ℒNL

𝜕𝑞2
(𝑞, 𝑞)

)︂
(𝑞*)− 𝜕ℒNL

𝜕𝑞1
(𝑞, 𝑞)(𝑞*)

]︂
= 𝑄(𝑞, 𝑞, 𝑞*). (18)

2.1. Quadratization of Euler–Lagrange equations

Let us introduce a suitable auxiliary constant 𝑐 ∈ R*+ and a scalar auxiliary variable 𝑧, depending only on
time and not on space since ℋNL sends elements of 𝑉 × 𝑉 to R, and such that

𝑧2(𝑡) = 2ℋNL(𝑞, 𝑞) + 𝑐. (19)

Note that 𝑧 is a real number. A derivation with respect to time gives

�̇�𝑧 =
d
d𝑡

[ℋNL(𝑞, 𝑞)] (20)

=
d
d𝑡

[ℐNL(𝑞, 𝑞)]− d
d𝑡

[ℒNL(𝑞, 𝑞)] (21)

=
[︂

d
d𝑡

(︂
𝜕ℒNL

𝜕𝑞2
(𝑞, 𝑞)

)︂
(𝑞) +

𝜕ℒNL

𝜕𝑞2
(𝑞, 𝑞)(𝑞)

]︂
−
[︂
𝜕ℒNL

𝜕𝑞2
(𝑞, 𝑞)(𝑞) +

𝜕ℒNL

𝜕𝑞1
(𝑞, 𝑞)(𝑞)

]︂
(22)

=
d
d𝑡

(︂
𝜕ℒNL

𝜕𝑞2
(𝑞, 𝑞)

)︂
(𝑞)− 𝜕ℒNL

𝜕𝑞1
(𝑞, 𝑞)(𝑞) (23)

=
𝜕2ℒNL

𝜕𝑞2
2

(𝑞, 𝑞)(𝑞)(𝑞) +
𝜕2ℒNL

𝜕𝑞1𝜕𝑞2
(𝑞, 𝑞)(𝑞)(𝑞)− 𝜕ℒNL

𝜕𝑞1
(𝑞, 𝑞)(𝑞). (24)

The so-called auxiliary function necessary for quadratization is denoted 𝐺 and writes

∀(𝑞1, 𝑞2, 𝑞3, 𝑞
*) ∈ 𝑉 × 𝑉 ×𝐻 × 𝑉, 𝐺(𝑞1, 𝑞2, 𝑞3, 𝑞

*)

=
1√︀

2ℋNL(𝑞1, 𝑞2) + 𝑐

[︂
𝜕2ℒNL

𝜕𝑞2
2

(𝑞1, 𝑞2)(𝑞3) +
𝜕2ℒNL

𝜕𝑞1𝜕𝑞2
(𝑞1, 𝑞2)(𝑞2)− 𝜕ℒNL

𝜕𝑞1
(𝑞1, 𝑞2)

]︂
(𝑞*),

(25)
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which is a nonlinear form with respect to the first three arguments, and linear with respect to the last one 𝑞*. The
Euler–Lagrange equation (11) rewrites in a quadratized form: seek 𝑞 : [0, 𝑇 ] → 𝑉 and 𝑧 : [0, 𝑇 ] → R such that

∀𝑞* ∈ 𝑉,

{︃
L (𝑞, 𝑞, 𝑞*) + 𝑧𝐺(𝑞, 𝑞, 𝑞, 𝑞*) = 𝑄(𝑞, 𝑞, 𝑞*), (26a)

�̇� = 𝐺(𝑞, 𝑞, 𝑞, 𝑞). (26b)

Theorem 2.4 (Power balance of the quadratized formulation (26)). If the solution to (26) is regular enough,
i.e. 𝑞 ∈ C1([0, 𝑇 ], 𝑉 ) ∩ C2([0, 𝑇 ], 𝐻) and 𝑧 ∈ C1([0, 𝑇 ], R), it verifies⎧⎪⎨⎪⎩

dℰ
d𝑡

= 𝑄(𝑞, 𝑞, 𝑞), (27a)

ℰ(𝑡) = ℋLIN(𝑞, 𝑞) +
1
2
𝑧2. (27b)

Proof. If 𝑞 ∈ 𝑉 , using 𝑞* = 𝑞 ∈ 𝑉 gives

L (𝑞, 𝑞, 𝑞) + 𝑧𝐺(𝑞, 𝑞, 𝑞, 𝑞) = 𝑄(𝑞, 𝑞, 𝑞). (28)

Then L (𝑞, 𝑞, 𝑞) = d
d𝑡 [ℋLIN(𝑞, 𝑞)] from equation (17), and 𝐺(𝑞, 𝑞, 𝑞, 𝑞) = �̇� from equation (26b). �

Note that the second equation in (26) describes the evolution of the auxiliary variable and is a scalar equation.
Unlike in the usual quadratization on potential energies, it is important to notice the presence of the time deriva-
tives 𝑞 and 𝑞 inside the nonlinear auxiliary function 𝐺. Even if the quadratization procedure described above is
possible, the writing of an interesting linearly implicit numerical scheme with only explicit approximations as
arguments of 𝐺 is not straightforward.

2.2. Phase formulation of the equations

To achieve an efficient numerical integration strategy, let us rewrite the quadratized equations (26) in the
phase space. To do so, two extra variables 𝑝1 ∈ 𝑉 and 𝑝2 ∈ 𝐻 are introduced such that 𝑝1 = 𝑞 and 𝑝2 = �̇�1 in
the distribution sense. We now seek 𝑞 : [0, 𝑇 ] → 𝑉 , 𝑧 : [0, 𝑇 ] → R and 𝑝1, 𝑝2 two distributions such that

∀𝑞* ∈ 𝑉,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑞 = 𝑝1, (29a)
𝑝1 = 𝑝2, (29b)
L (𝑞, 𝑝2, 𝑞

*) + 𝑧 𝐺(𝑞, 𝑝1, 𝑝2, 𝑞
*) = 𝑄(𝑞, 𝑝1, 𝑞

*), (29c)
�̇� = 𝐺(𝑞, 𝑝1, 𝑝2, 𝑝1). (29d)

Then a complete weak formulation of this system is proposed: seek (𝑞, 𝑝1, 𝑝2, 𝑧) : [0, 𝑇 ] → 𝑉 × 𝑉 ×𝐻 × R such
that ⎧⎪⎪⎪⎨⎪⎪⎪⎩

∀𝑝*1 ∈ 𝑉, (𝑞, 𝑝*1)𝑉 = (𝑝1, 𝑝
*
1)𝑉 , (30a)

∀𝑝*2 ∈ 𝐻, (𝑝1, 𝑝
*
2)𝐻 = (𝑝2, 𝑝

*
2)𝐻 , (30b)

∀𝑞* ∈ 𝑉, L (𝑞, 𝑝2, 𝑞
*) + 𝑧 𝐺(𝑞, 𝑝1, 𝑝2, 𝑞

*) = 𝑄(𝑞, 𝑝1, 𝑞
*), (30c)

�̇� = 𝐺(𝑞, 𝑝1, 𝑝2, 𝑝1). (30d)

Theorem 2.5 (Power balance of the phase quadratized formulation (30)). If the solution of (30) is regular
enough, i.e. 𝑞 ∈ C1([0, 𝑇 ], 𝑉 ), 𝑝1 ∈ C0([0, 𝑇 ], 𝑉 ) ∩ C1([0, 𝑇 ], 𝐻), 𝑝2 ∈ C0([0, 𝑇 ], 𝐻) and 𝑧 ∈ C1([0, 𝑇 ], R), it
verifies ⎧⎪⎨⎪⎩

dℰ
d𝑡

= 𝑄(𝑞, 𝑝1, 𝑝1), (31a)

ℰ = ℋLIN(𝑞, 𝑝1) +
1
2
𝑧2. (31b)

Proof. The weak formulation (30) is applied with 𝑞* = 𝑝1 ∈ 𝑉 . This gives

L (𝑞, 𝑝2, 𝑝1) + 𝑧 𝐺(𝑞, 𝑝1, 𝑝2, 𝑝1) = 𝑄(𝑞, 𝑝1, 𝑝1). (32)
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Thanks to equation (30d) it writes

L (𝑞, 𝑝2, 𝑝1) + 𝑧�̇� = 𝑄(𝑞, 𝑝1, 𝑝1). (33)

Now let’s consider the linear term L (𝑞, 𝑝2, 𝑝1). Thanks to equation (15) and symmetry of 𝐴22, we have

L (𝑞, 𝑝2, 𝑝1) = (𝐴22𝑝2, 𝑝1)𝐻 + (𝐴11𝑞, 𝑝1)𝐻 + (𝑉1, 𝑝1)𝐻 (34)
= (𝐴22𝑝1, 𝑝2)𝐻 + (𝐴11𝑞, 𝑝1)𝐻 + (𝑉1, 𝑝1)𝐻 . (35)

Since 𝑝1 ∈ 𝑉 ⊂ 𝐻, 𝐴22𝑝1 ∈ 𝐻, equation (30b) with 𝑝*2 = 𝐴22𝑝1 writes

(𝐴22𝑝1, 𝑝2)𝐻 = (𝐴22𝑝1, �̇�1)𝐻 . (36)

Also, using 𝑝*1 = 𝑞 ∈ 𝑉 in equation (30a) gives

(𝑞, 𝑝1)𝑉 = (𝑞, 𝑞)𝑉 . (37)

By definition of the inner product of 𝑉 we have:

(𝐴11𝑞, 𝑝1)𝐻 = (𝐴11𝑞, 𝑞)𝐻 . (38)

Since 𝐴11 is bijective, 𝑉1 a unique antecedent 𝑋1 ∈ 𝑉 such that 𝐴11𝑋1 = 𝑉1. Using equation (30a) with
𝑝*2 = 𝑋1 ∈ 𝑉 gives

(𝑋1, 𝑝1)𝑉 = (𝑋1, 𝑞)𝑉 , (39)

and so
(𝑉1, 𝑝1)𝐻 = (𝑉1, 𝑞)𝐻 . (40)

These combined results show that

L (𝑞, 𝑝2, 𝑝1) = (𝐴22𝑝1, �̇�1)𝐻 + (𝐴11𝑞, 𝑞)𝐻 + (𝑉1, 𝑞)𝐻 (41)

=
d
d𝑡

[ℋLIN(𝑞, 𝑝1)]. (42)

�

Remark 2.6. Note that equation (29c) is no longer an evolution equation. The evolution in contained in the
extra equations (29a) and (29b).

Remark 2.7. The reformulation (29) allows to take advantage of the usual time discretization strategies used
for potential energies quadratization. It is detailed in the next paragraph.

2.3. Discretization strategy

In order to write a time discretization of the quadratized equations, the time interval [0, 𝑇 ] is regularly divided
with a step ∆𝑡. Let us introduce the discrete approximations

𝜇𝑞 =
𝑞𝑛+1 + 𝑞𝑛

2
, 𝛿𝑞 =

𝑞𝑛+1 − 𝑞𝑛

∆𝑡
, 𝜋𝑞 =

1
2
(︀
3𝑞𝑛 − 𝑞𝑛−1

)︀
. (43)

and note that 𝜋 is explicit, centered in (𝑛+ 1
2 )∆𝑡 but depends only on past iterations, while 𝜇 and 𝛿 are centered

in (𝑛+ 1
2 )∆𝑡 in an implicit manner. We propose the following time integration scheme, which is linearly implicit.

Find 𝑞𝑛+1 ∈ 𝑉, 𝑝𝑛+1
1 ∈ 𝑉, 𝑝𝑛+1

2 ∈ 𝐻 and 𝑧𝑛+1 ∈ R such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
∀𝑝*1 ∈ 𝑉, (𝛿𝑞, 𝑝*1)𝑉 = (𝜇𝑝1, 𝑝

*
1)𝑉 , (44a)

∀𝑝*2 ∈ 𝐻, (𝛿𝑝1, 𝑝
*
2)𝐻 = (𝜇𝑝2, 𝑝

*
2)𝐻 , (44b)

∀𝑞* ∈ 𝑉, L (𝜇𝑞, 𝜇𝑝2, 𝑞
*) + 𝜇𝑧 𝐺(𝜋𝑞, 𝜋𝑝1, 𝜋𝑝2, 𝑞

*) = 𝑄(𝜇𝑞, 𝜇𝑝1, 𝑞
*), (44c)

𝛿𝑧 = 𝐺(𝜋𝑞, 𝜋𝑝1, 𝜋𝑝2, 𝜇𝑝1). (44d)
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Theorem 2.8 (Discrete power balance of the scheme (44)). The solution to (44) verifies⎧⎨⎩ 𝛿ℰ = 𝑄(𝜇𝑞, 𝜇𝑝1, 𝜇𝑝1), (45a)

ℰ𝑛 = ℋLIN(𝑞𝑛, 𝑝𝑛
1 ) +

1
2

(𝑧𝑛)2. (45b)

Proof. Let us use 𝑞* = 𝜇𝑝1 ∈ 𝑉 in equation (44c). Thanks to (44d) it is true that

𝜇𝑧 𝐺(𝜋𝑞, 𝜋𝑝1, 𝜋𝑝2, 𝜇𝑝1) = 𝜇𝑧𝛿𝑧 =
1

∆𝑡

(︂
1
2
(︀
𝑧𝑛+1

)︀2 − 1
2

(𝑧𝑛)2
)︂

. (46)

This gives the expected result for the auxiliary variable 𝑧.
Now let us consider the term L (𝜇𝑞, 𝜇𝑝2, 𝜇𝑝1). Thanks to (15) and symmetry of 𝐴22, it writes

L (𝜇𝑞, 𝜇𝑝2, 𝜇𝑝1) = (𝐴22𝜇𝑝2, 𝜇𝑝1)𝐻 + (𝐴11𝜇𝑞, 𝜇𝑝1)𝐻 + (𝑉1, 𝜇𝑝1)𝐻 (47)
= (𝐴22𝜇𝑝1, 𝜇𝑝2)𝐻 + (𝐴11𝜇𝑞, 𝜇𝑝1)𝐻 + (𝑉1, 𝜇𝑝1)𝐻 . (48)

Since 𝜇𝑝1 ∈ 𝑉 ⊂ 𝐻, 𝐴22𝜇𝑝1 ∈ 𝐻, equation (44b) with 𝑝*2 = 𝐴22𝜇𝑝1 ∈ 𝐻 writes

(𝐴22𝜇𝑝1, 𝜇𝑝2)𝐻 = (𝐴22𝜇𝑝1, 𝛿𝑝1)𝐻 . (49)

Also, using 𝑝*1 = 𝜇𝑞 ∈ 𝑉 in equation (44a) gives

(𝜇𝑞, 𝜇𝑝1)𝑉 = (𝜇𝑞, 𝛿𝑞)𝑉 . (50)

By definition of the inner product of 𝑉 we have:

(𝐴11𝜇𝑞, 𝜇𝑝1)𝐻 = (𝐴11𝜇𝑞, 𝛿𝑞)𝐻 . (51)

Since 𝐴11 is bijective, 𝑉1 a unique antecedent 𝑋1 ∈ 𝑉 such that 𝐴11𝑋1 = 𝑉1. Using equation (44a) with
𝑝*2 = 𝑋1 ∈ 𝑉 gives

(𝑋1, 𝜇𝑝1)𝑉 = (𝑋1, 𝛿𝑞)𝑉 , (52)

and so
(𝑉1, 𝜇𝑝1)𝐻 = (𝑉1, 𝛿𝑞)𝐻 , (53)

these results combined with the definition (12b) of the Hamiltonian show that:

L (𝜇𝑞, 𝜇𝑝2, 𝜇𝑝1) = (𝐴22𝜇𝑝1, 𝛿𝑝1)𝐻 + (𝐴11𝜇𝑞, 𝛿𝑞)𝐻 + (𝑉1, 𝛿𝑞)𝐻 (54)

=
1

∆𝑡

[︀
ℋLIN

(︀
𝑞𝑛+1, 𝑝𝑛+1

1

)︀
−ℋLIN(𝑞𝑛, 𝑝𝑛

1 )
]︀
. (55)

�

Remark 2.9. It is tempting to quadratize the whole equation (4) with no linear part L left outside the
quadratized function 𝐺. One would obtain

∀𝑞* ∈ 𝑉,

{︃
𝑧𝐺(𝑞, 𝑞, 𝑞, 𝑞*) = 𝑄(𝑞, 𝑞, 𝑞*), (56a)

�̇� = 𝐺(𝑞, 𝑞, 𝑞, 𝑞), (56b)

and the associated scheme would be⎧⎪⎪⎪⎨⎪⎪⎪⎩
∀𝑝*1 ∈ 𝑉, (𝛿𝑞, 𝑝*1)𝑉 = (𝜇𝑝1, 𝑝

*
1)𝑉 , (57a)

∀𝑝*2 ∈ 𝐻, (𝛿𝑝1, 𝑝
*
2)𝐻 = (𝜇𝑝2, 𝑝

*
2)𝐻 , (57b)

∀𝑞* ∈ 𝑉, 𝜇𝑧 𝐺(𝜋𝑞, 𝜋𝑝1, 𝜋𝑝2, 𝑞
*) = 𝑄(𝜇𝑞, 𝜇𝑝1, 𝑞

*), (57c)
𝛿𝑧 = 𝐺(𝜋𝑞, 𝜋𝑝1, 𝜋𝑝2, 𝜇𝑝1). (57d)

In the absence of dissipation and constraints, i.e. if 𝑄(𝜇𝑞, 𝜇𝑝1, ·) is independent of the unknowns, this scheme is
not invertible and therefore unusable in practice. To avoid this pitfall, there should always be a part of the linear
terms outside the quadratization. In theory, leaving any proportion of the linear part is enough to make the
system invertible. However, numerical experiments should be carried out to verify the behavior of the scheme
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in these situations where the linear part tends to be completely absorbed by the quadratization, and maybe to
find an optimal balance.

3. Application to a rotating flexible piano hammer

In a piano, the mechanical action of the player is converted into vibro-acoustic waves by an ingenious mech-
anism that allows the strings to be struck by hammers without being muffled by them.

The pianist operates the key, which in turn sets in motion several elements that generate a force on the
hammer shank, as illustrated in Figure 1. This force rotates the hammer and enables the head to strike the
strings. It also causes a bending of the shank that could depend on the acceleration profile imposed by the
pianist on the key, and thus explain the influence of the pianistic touch on the sound [9,18,33]. For this reason,
accurate modeling and efficient resolution of the vibrating shank is essential.

3.1. Physical model

In the following we use the physical model derived in [9]. The piano hammer is modeled as a Timoshenko 1D
beam of length 𝐿 and section 𝑆 submitted to gravity −𝑔u𝑦 and to which two exterior forces apply

– Fmeca the force coming from the input of the pianist and transmitted through the action;
– Fcoupl the force of the hammer head on the hammer shank.

The hammer head is considered as a second separate body acting on the shank through the force Fcoupl and on
which the obstacle (usually strings) exerts a force Fobs. Other parameters are the density 𝜌, the Young modulus
𝐸, the shear modulus 𝐺, the quadratic momentum 𝐼, and 𝜅 is a Timoshenko coefficient. Small deformations
are supposed so that the theory of Timoshenko holds.

Because of the flexibility of the shank, the definition of the rotation angle 𝜃 of the rotating frame (u𝑟,u𝜃)
with respect to the fixed frame (u𝑥,u𝑦) is not unique. The choice is made to define this angle with respect to
a zero-average bending position ∫︁ 𝐿

0

𝑤(𝑥) d𝑥 = 0, (58)

and this constraint is enforced with a Lagrange multiplier 𝜆. In the Cartesian frame (u𝑥,u𝑦), the rotating
vectors u𝑟 and u𝜃 write

u𝑟 =
(︂

cos 𝜃
sin 𝜃

)︂
, u𝜃 =

(︂
sin 𝜃
− cos 𝜃

)︂
. (59)

The motion of the center of gravity of the head with mass 𝑚𝐻 , located at a height 𝐻 above the shank, is
described by the position vector 𝜉, see Figure 2. The contact with the obstacle happens when 𝑑 = 𝜉 · u𝑦 6 𝑑0.

Let ℋ = L2([0, 𝐿]) and 𝒱0 be the functions of 𝒱 = H1([0, 𝐿]) such that

𝒱0 =
{︀

𝑤 ∈ H1([0, 𝐿])
⃒⃒

𝑤(0) = 0
}︀
. (60)

The following model derived in [9] is obtained with the virtual work principle applied to the shank.

Figure 1. Sketch of the different parts of a grand piano action, from [9].
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Figure 2. Flexible hammer parametrization.

It consists in seeking (𝑤, 𝜙, 𝜃, 𝜆,Fcoupl, 𝜉 ) : [0, 𝑇 ] → 𝒱0×𝒱×R×R×R2×R2, so that for all (𝑤*, 𝜙*) ∈ 𝒱0×𝒱⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Shank equations:∫︁ 𝐿

0

𝜌𝑆�̈�𝑤* +
∫︁ 𝐿

0

𝑆𝐺𝜅(𝜕𝑥𝑤 − 𝜙)𝜕𝑥𝑤* + 𝜆

∫︁ 𝐿

0

𝑤*

−
∫︁ 𝐿

0

𝜌𝑆
(︁
𝑤𝜃2 + 𝜃𝑥 + 𝑔 cos 𝜃

)︁
𝑤* = (Fcoupl · u𝜃)𝑤*(𝐿) + 𝑓𝑤(𝑤*),

(61a)

∫︁ 𝐿

0

𝜌𝐼𝜙𝜙* +
∫︁ 𝐿

0

𝑆𝐺𝜅(𝜕𝑥𝑤 − 𝜙)𝜙* +
∫︁ 𝐿

0

𝐸𝐼𝜕𝑥𝜙𝜕𝑥𝜙* − 𝜌𝐼𝜃

∫︁ 𝐿

0

𝜙* = 𝑓𝜙(𝜙*), (61b)

Zero mean-value of the flexion / Equation on 𝜆:∫︁ 𝐿

0

𝑤 = 0, (61c)

Equation on 𝜃:

𝜃

∫︁ 𝐿

0

𝜌𝑆(𝑤2 + 𝑥2) + 2𝜃

∫︁ 𝐿

0

𝜌𝑆𝑤�̇� +
∫︁ 𝐿

0

𝜌𝐼(𝜃 − 𝜙)−
∫︁ 𝐿

0

𝜌𝑆𝑥�̈�

+
∫︁ 𝐿

0

𝜌𝑆𝑔(𝑥 cos 𝜃 + 𝑤 sin 𝜃) = (𝑤(𝐿)−𝐻)(Fcoupl · u𝑟)− 𝐿(Fcoupl · u𝜃) + 𝑓𝜃,

(61d)

Equation of the hammer head (Newton’s law):
𝑚𝐻𝜉 = −𝑚𝐻𝑔u𝑦 − Fcoupl − Fobs, (61e)

Shank-Head continuity:
𝜉 = 𝐿u𝑟 + (𝑤(𝐿)−𝐻)u𝜃. (61f)
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The initial conditions at 𝑡 = 0 are given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∀𝑥 ∈ [0, 𝐿], 𝑤(𝑥, 0) = 0,

∀𝑥 ∈ [0, 𝐿], 𝜙(𝑥, 0) = 0,

𝜃(0) = 𝜃0,

𝜉(0) = 𝐿

(︃
cos 𝜃0

sin 𝜃0

)︃
−𝐻

(︃
sin 𝜃0

− cos 𝜃0

)︃
.

(62)

The force Fmeca, coming for the action, is here represented by the source terms 𝑓𝑤, 𝑓𝜙 and 𝑓𝜃.

Remark 3.1. For a usual linear Timoshenko system, the Hille–Yosida theorem ensures the existence and
uniqueness of a strong solution in (𝑤, 𝜙) ∈ C1([0, 𝑇 ],𝒱0 × 𝒱) ∩ C2([0, 𝑇 ],ℋ2) (see [7]). To the best of our
knowledge, there is no proof of such a result for the model (61), but the considered nonlinearity remains weak
enough so that we will look for solutions in the same spaces nonetheless for this paper. The maximal-dissipative
character of the evolution operator, necessary to apply Hille–Yosida theorem, is closely related to the following
power balance, but would necessitate a further analysis. Note that well-posedness is obtained for Euler–Bernouli
blades with an imposed rotation in [24].

Theorem 3.2 (Power balance of the rotating shank (61)). If the solution to (61) is regular enough, i.e. (𝑤, 𝜙) ∈
C1([0, 𝑇 ],𝒱0 × 𝒱) ∩ C2([0, 𝑇 ],ℋ2), it verifies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dℰ
d𝑡

= 𝑓𝑤(�̇�) + 𝑓𝜙(�̇�) + 𝑓𝜃𝜃 − Fstring · 𝜉, (63a)

ℰ =
1
2

∫︁ 𝐿

0

𝜌𝑆𝑤2𝜃2 d𝑥 +
1
2

∫︁ 𝐿

0

𝜌𝑆(�̇� − 𝑥𝜃)2 d𝑥 +
1
2

∫︁ 𝐿

0

𝜌𝐼(𝜃 − �̇�)2 d𝑥

+
1
2

∫︁ 𝐿

0

𝑆𝐺𝜅(𝜕𝑥𝑤 − 𝜙)2 d𝑥 +
1
2

∫︁ 𝐿

0

𝐸𝐼𝜕𝑥𝜙2 d𝑥

+
∫︁ 𝐿

0

𝜌𝑆𝑔(𝑥 sin 𝜃 − 𝑤 cos 𝜃) d𝑥 +
1
2
𝑚𝐻

⃒⃒⃒
𝜉
⃒⃒⃒2

+ 𝑚𝐻𝑔𝜉 · u𝑦.

(63b)

Proof. Use the weak formulation (61) with 𝑤* = �̇� ∈ 𝒱0, 𝜙* = �̇� ∈ 𝒱 and multiply the equation on 𝜃 by 𝜃. �

Remark 3.3. Dissipative terms can be added to the equations (61). For example, damping terms internal to
the shank, or a dissipation term associated with the 𝜃 angle and due to friction in the pivot link. For the sake
of readability, we neglect them here, as they can be treated independently from the quadratization process.

Remark 3.4. Notice that system (61) leads to a power balance (63) where the nonlinear terms of the kinetic
energy are not distributed over space, but are rather related to the scalar unknown 𝜃. Hence this application
case only illustrates part of the possibilities covered by scheme (44). More intricate models with a distributed
nonlinear kinetic energy could be the object of future work.

3.2. Scalar Lagrangian Quadratization

The energy of Theorem 3.2 is mostly a quadratic form, but also has two nonlinear energy terms. The term∫︀ 𝐿

0
𝜌𝑆𝑔(𝑥 sin(𝜃) − 𝑤 cos(𝜃)) d𝑥 is a potential nonlinear energy, and 1

2

∫︀ 𝐿

0
𝜌𝑆𝑤2𝜃2 d𝑥 brings a nonlinear kinetic

contribution. In order to quadratize the system, the Lagrangian method resented in Section 2 is applied. The
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nonlinear Lagrangian and Hamiltonian read, for any (𝑤1, 𝑤2, 𝜙1, 𝜙2, 𝜃1, 𝜃2, 𝜃3) ∈ 𝒱2
0 × 𝒱2 × R3,⎧⎪⎪⎪⎨⎪⎪⎪⎩

ℒ(𝑤1, 𝜙1, 𝑤2, 𝜙2, 𝜃1, 𝜃2) =
1
2

∫︁ 𝐿

0

𝜌𝑆𝑤2
1𝜃2

2 d𝑥−
∫︁ 𝐿

0

𝜌𝑆𝑔(𝑥 sin 𝜃1 − 𝑤1 cos 𝜃1) d𝑥, (64a)

ℋ(𝑤1, 𝜙1, 𝑤2, 𝜙2, 𝜃1, 𝜃2) =
1
2

∫︁ 𝐿

0

𝜌𝑆𝑤2
1𝜃2

2 d𝑥 +
∫︁ 𝐿

0

𝜌𝑆𝑔(𝑥 sin 𝜃1 − 𝑤1 cos 𝜃1) d𝑥. (64b)

Remark 3.5. These Lagrangian and Hamiltonian are linked by the relation (1). It should also be remarked
that they do not depend on the second argument of the distributed variables 𝑤2 and 𝜙2, but only on the variable
𝜃2 which is scalar.

Remark 3.6. Because of the constraint (58), the solution to (61) satisfies

∫︁ 𝐿

0

𝜌𝑆𝑔(𝑥 sin 𝜃 − 𝑤 cos 𝜃) d𝑥 =
1
2
𝜌𝑆𝑔𝐿2 sin 𝜃, (65)

which is lower bounded.

Following (19), let us introduce a constant 𝑐 ∈ R*+ and define the auxiliary variable as

∀𝑡 ∈ [0, 𝑇 ], 𝑧(𝑡) ≡
√︂

2ℋ
(︁
𝑤, 𝜙, �̇�, �̇�, 𝜃, 𝜃

)︁
+ 𝑐. (66)

The nonlinear Euler–Lagrange term of the equations is defined for any (𝑤1, 𝑤2, 𝑤
*, 𝜙1, 𝜙2, 𝜙

*, 𝜃1, 𝜃2, 𝜃3, 𝜃
*) ∈

𝒱3
0 × 𝒱3 × R4, as

𝐸𝐿(𝑤1, 𝜙1, 𝑤2, 𝜙2, 𝜃1, 𝜃2, 𝜃3, 𝑤
*, 𝜙*, 𝜃*)

=
∫︁ 𝐿

0

⎡⎣𝜌𝑆

⎛⎝ −𝑤1𝜃2
2

0
2𝑤1𝑤2𝜃2 + 𝑤2

1𝜃3

⎞⎠+ 𝜌𝑆𝑔

⎛⎝ − cos 𝜃1

0
𝑥 cos 𝜃1 + 𝑤1 sin 𝜃1

⎞⎠⎤⎦ ·
⎛⎝𝑤*

𝜙*

𝜃*

⎞⎠d𝑥,
(67)

and following (25), the quadratization auxiliary function is defined as

𝐺(𝑤1, 𝜙1, 𝑤2, 𝜙2, 𝜃1, 𝜃2, 𝜃3, 𝑤
*, 𝜙*, 𝜃*) =

𝐸𝐿(𝑤1, 𝜙1, 𝑤2, 𝜙2, 𝜃1, 𝜃2, 𝜃3, 𝑤
*, 𝜙*, 𝜃*)√︀

2ℋ(𝑤1, 𝜙1, 𝑤2, 𝜙2, 𝜃1, 𝜃2) + 𝑐
· (68)

Let us introduce the matrices and vectors

𝑀 =
(︂

𝜌𝑆 0
0 𝜌𝐼

)︂
, 𝐴 =

(︂
𝑆𝐺𝜅 0

0 𝐸𝐼

)︂
, 𝐵 =

(︂
0 −𝑆𝐺𝜅
0 0

)︂
, 𝐶 =

(︂
0 0
0 𝑆𝐺𝜅

)︂
, 𝑓𝑞 =

(︂
𝑓𝑤

𝑓𝜙

)︂
, (69)

and a vectorial unknown 𝑞 = t(𝑤, 𝜙). The model (61) rewrites: seek (𝑞, 𝜃, 𝜆,Fcoupl, 𝜉 ) : [0, 𝑇 ] → 𝒱0 × 𝒱 × R×
R× R2 × R2 so that for all 𝑞* ∈ 𝒱0 × 𝒱
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫︁ 𝐿

0

𝑀𝑞 · 𝑞* +
∫︁ 𝐿

0

𝐶𝑞 · 𝑞* +
∫︁ 𝐿

0

𝐵𝑞 · 𝜕𝑥𝑞* +
∫︁ 𝐿

0

t𝐵𝜕𝑥𝑞 · 𝑞* +
∫︁ 𝐿

0

𝐴𝜕𝑥𝑞 · 𝜕𝑥𝑞* − 𝜃

∫︁ 𝐿

0

𝑀

(︂
𝑥
1

)︂
· 𝑞*

+ 𝜆

∫︁ 𝐿

0

𝑞* ·
(︂

1
0

)︂
+ 𝐸𝐿

(︁
𝑞, 𝑞, 𝜃, 𝜃, 𝜃, 𝑞*, 0

)︁
= (Fcoupl · u𝜃)𝑞*(𝐿) ·

(︂
1
0

)︂
+ 𝑓𝑞(𝑞*),

(70a)

∫︁ 𝐿

0

𝑞 ·
(︂

1
0

)︂
= 0, (70b)

𝜃

∫︁ 𝐿

0

𝑀

(︂
𝑥
1

)︂
·
(︂

𝑥
1

)︂
−
∫︁ 𝐿

0

𝑀

(︂
𝑥
1

)︂
· 𝑞 + 𝐸𝐿

(︁
𝑞, 𝑞, 𝜃, 𝜃, 𝜃, 0, 1

)︁
=
(︂

𝑞(𝐿) ·
(︂

1
0

)︂
−𝐻

)︂
(Fcoupl · u𝑟)− 𝐿(Fcoupl · u𝜃) + 𝑓𝜃,

(70c)

𝑚𝐻𝜉 = −𝑚𝐻𝑔u𝑦 − Fcoupl − Fobs, (70d)

𝜉 = 𝐿u𝑟 +
(︂

𝑞(𝐿) ·
(︂

1
0

)︂
−𝐻

)︂
u𝜃. (70e)

Thanks to the auxiliary function (68) and the auxiliary variable (66), a quadratized formulation writes: seek
(𝑞, 𝜃, 𝜆, 𝑧,Fcoupl, 𝜉 ) : [0, 𝑇 ] → 𝒱0 × 𝒱 × R× R× R× R2 × R2 so that for all 𝑞* ∈ 𝒱0 × 𝒱⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫︁ 𝐿

0

𝑀𝑞 · 𝑞* +
∫︁ 𝐿

0

𝐶𝑞 · 𝑞* +
∫︁ 𝐿

0

𝐵𝑞 · 𝜕𝑥𝑞* +
∫︁ 𝐿

0

t𝐵𝜕𝑥𝑞 · 𝑞* +
∫︁ 𝐿

0

𝐴𝜕𝑥𝑞 · 𝜕𝑥𝑞* − 𝜃

∫︁ 𝐿

0

𝑀

(︂
𝑥
1

)︂
· 𝑞*

+ 𝜆

∫︁ 𝐿

0

𝑞* ·
(︂

1
0

)︂
+ 𝑧𝐺

(︁
𝑞, 𝑞, 𝜃, 𝜃, 𝜃, 𝑞*, 0

)︁
= (Fcoupl · u𝜃)𝑞*(𝐿) ·

(︂
1
0

)︂
+ 𝑓𝑞(𝑞*),

(71a)

∫︁ 𝐿

0

𝑞 ·
(︂

1
0

)︂
= 0, (71b)

𝜃

∫︁ 𝐿

0

𝑀

(︂
𝑥
1

)︂
·
(︂

𝑥
1

)︂
−
∫︁ 𝐿

0

𝑀

(︂
𝑥
1

)︂
· 𝑞 + 𝑧𝐺

(︁
𝑞, 𝑞, 𝜃, 𝜃, 𝜃, 0, 1

)︁
=
(︂

𝑞(𝐿) ·
(︂

1
0

)︂
−𝐻

)︂
(Fcoupl · u𝑟)− 𝐿(Fcoupl · u𝜃) + 𝑓𝜃,

(71c)

�̇� = 𝐺
(︁
𝑞, 𝑞, 𝜃, 𝜃, 𝜃, 𝑞, 𝜃

)︁
, (71d)

𝑚𝐻𝜉 = −𝑚𝐻𝑔u𝑦 − Fcoupl − Fobs, (71e)

𝜉 = 𝐿u𝑟 +
(︂

𝑞(𝐿) ·
(︂

1
0

)︂
−𝐻

)︂
u𝜃. (71f)
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Following the process of Section 2, the phase formulation of these hammer equations writes:
find (𝑞, 𝑝, 𝜃, 𝑇1, 𝑇2, 𝜆, 𝑧,Fcoupl, 𝜉, 𝑋 ) : [0, 𝑇 ] → (𝒱0 × 𝒱)2 × R5 × (R2)3 so that for all 𝑞* ∈ 𝒱0 × 𝒱 and

𝑝* ∈ 𝒱0 × 𝒱,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜃 = 𝑇1,

�̇�1 = 𝑇2,∫︁ 𝐿

0

𝐶𝑞 · 𝑝* +
∫︁ 𝐿

0

𝐵𝑞 · 𝜕𝑥𝑝* +
∫︁ 𝐿

0

t𝐵𝜕𝑥𝑞 · 𝑝* +
∫︁ 𝐿

0

𝐴𝜕𝑥𝑞 · 𝜕𝑥𝑝*

=
∫︁ 𝐿

0

𝐶𝑝 · 𝑝* +
∫︁ 𝐿

0

𝐵𝑝 · 𝜕𝑥𝑝* +
∫︁ 𝐿

0

t𝐵𝜕𝑥𝑝 · 𝑝* +
∫︁ 𝐿

0

𝐴𝜕𝑥𝑝 · 𝜕𝑥𝑝*,

∫︁ 𝐿

0

𝑀�̇� · 𝑞* +
∫︁ 𝐿

0

𝐶𝑞 · 𝑞* +
∫︁ 𝐿

0

𝐵𝑞 · 𝜕𝑥𝑞* +
∫︁ 𝐿

0

t𝐵𝜕𝑥𝑞 · 𝑞* +
∫︁ 𝐿

0

𝐴𝜕𝑥𝑞 · 𝜕𝑥𝑞* − 𝑇2

∫︁ 𝐿

0

𝑀

(︂
𝑥
1

)︂
· 𝑞*

+ 𝜆

∫︁ 𝐿

0

𝑞* ·
(︂

1
0

)︂
+ 𝑧𝐺(𝑞, 𝑝, 𝜃, 𝑇1, 𝑇2, 𝑞

*, 0) = (Fcoupl · u𝜃)𝑞*(𝐿) ·
(︂

1
0

)︂
+ 𝑓𝑞(𝑞*),

∫︁ 𝐿

0

𝑞 ·
(︂

1
0

)︂
= 0,

𝑇2

∫︁ 𝐿

0

𝑀

(︂
𝑥
1

)︂
·
(︂

𝑥
1

)︂
−
∫︁ 𝐿

0

𝑀

(︂
𝑥
1

)︂
· �̇� + 𝑧𝐺(𝑞, 𝑝, 𝜃, 𝑇1, 𝑇2, 0, 1)

=
(︂

𝑞(𝐿) ·
(︂

1
0

)︂
−𝐻

)︂
(Fcoupl · u𝑟)− 𝐿(Fcoupl · u𝜃) + 𝑓𝜃,

�̇� = 𝐺
(︁
𝑞, 𝑞, 𝜃, 𝜃, 𝜃, 𝑞, 𝜃

)︁
,

𝜉 = 𝑋,

𝑚𝐻�̇� = −𝑚𝐻𝑔u𝑦 − Fcoupl − Fobs,

𝑋 = 𝑇1

(︂
𝑞(𝐿) ·

(︂
1
0

)︂
−𝐻

)︂
u𝑟 +

(︂
𝑝(𝐿) ·

(︂
1
0

)︂
− 𝐿𝑇1

)︂
u𝜃.

(72a)

(72b)

(72c)

(72d)

(72e)

(72f)

(72g)

(72h)

(72i)

(72j)

The equation 𝑞 = 𝑝 is written in the weak form (72c) with the scalar product associated to the bilinear form

∀(𝑢, 𝑣) ∈ (𝒱 × 𝒱0)2, 𝑎(𝑢, 𝑣) =
∫︁ 𝐿

0

𝐶𝑢 · 𝑣 +
∫︁ 𝐿

0

𝐵𝑢 · 𝜕𝑥𝑣 +
∫︁ 𝐿

0

t𝐵𝜕𝑥𝑢 · 𝑣 +
∫︁ 𝐿

0

𝐴𝜕𝑥𝑢 · 𝜕𝑥𝑣. (73)

which can be represented by Riesz theorem by an operator 𝐴11 similar to the one defined in Section 2.

Remark 3.7. Note that the present system does not need a variational equation like (30b) because the nonlinear
term actually does not depend on the second derivatives in time of the distributed unknowns. Only an equivalent
scalar form for the scalar variable 𝜃 is necessary, leading to (72b).
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3.3. Space discretization

The space discretization is based on high order (𝑟 ∈ N*) spectral finite elements on a regular mesh [0, 𝐿] =⋃︀
𝑘[𝑥𝑘, 𝑥𝑘+1] of the shank with a constant step ∆𝑥. The discrete finite dimensional spaces of dimension 𝑛ℎ ∈ N*

are 𝒱ℎ ⊂ 𝒱 and 𝒱ℎ,0 ⊂ 𝒱0 and so that

𝒱ℎ =
{︀

𝑢 ∈ 𝒱 | ∀𝑘, 𝑢|[𝑥𝑘,𝑥𝑘+1] ∈ P𝑟

}︀
, 𝒱ℎ,0 =

{︀
𝑢 ∈ 𝒱0 | ∀𝑘, 𝑢|[𝑥𝑘,𝑥𝑘+1] ∈ P𝑟

}︀
, (74)

with P𝑟 the space of polynomials of degree 𝑟 at most. The product space is 𝒬ℎ = 𝒱ℎ,0 × 𝒱ℎ. The degrees of
freedom (𝜁𝑖)𝑖∈[[1,𝑛ℎ]] are chosen as the points of Gauss-Lobatto, which achieves mass lumping, and the basis
functions of 𝒬ℎ are denoted (𝜑𝑖)𝑖∈[[1,2𝑛ℎ]]. The scalar variable 𝜃 does not need any space discretization. In the
following 𝑄ℎ and 𝑃ℎ are the vectorial representations of 𝑞ℎ and 𝑝ℎ in this finite elements basis, and the finite
elements matrices and vectors are defined as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀(𝑖, 𝑗) ∈ [[1, 2𝑛ℎ]]2, (𝑀ℎ)𝑖,𝑗 =
∮︁ 𝐿

0

𝑀𝜑𝑗 · 𝜑𝑖,

∀(𝑖, 𝑗) ∈ [[1, 2𝑛ℎ]]2, (𝐾ℎ)𝑖,𝑗 =
∮︁ 𝐿

0

𝐶𝜑𝑗 · 𝜑𝑖 +
∮︁ 𝐿

0

𝐵𝜑𝑗 · 𝜕𝑥𝜑𝑖

+
∮︁ 𝐿

0

t𝐵𝜕𝑥𝜑𝑗 · 𝜑𝑖 +
∮︁ 𝐿

0

𝐴𝜕𝑥𝜑𝑗 · 𝜕𝑥𝜑𝑖,

∀𝑖 ∈ [[1, 2𝑛ℎ]], (𝑉ℎ)𝑖 =
{︂

𝜁𝑝 if 𝑖 = 2𝑝,
1 if 𝑖 is odd,

∀𝑖 ∈ [[1, 2𝑛ℎ]], (𝐼𝑤
ℎ )𝑖 =

∮︁ 𝐿

0

𝜑𝑖 ·
(︂

1
0

)︂
,

∀𝑖 ∈ [[1, 2𝑛ℎ]],
(︁
𝐼

𝑤(𝐿)
ℎ

)︁
𝑖

= 𝜑𝑖(𝐿) ·
(︂

1
0

)︂
,

∀𝑖 ∈ [[1, 2𝑛ℎ]], (𝐹ℎ,𝑄)𝑖 = 𝑓𝑞(𝜑𝑖),

∀𝑖 ∈ [[1, 2𝑛ℎ]], ∀(𝑄ℎ, 𝑃ℎ, 𝜃ℎ, 𝑇ℎ,1, 𝑇ℎ,2) ∈ R2𝑛ℎ × R2𝑛ℎ × R3,

(G𝑞(𝑄ℎ, 𝑃ℎ, 𝜃ℎ, 𝑇ℎ,1, 𝑇ℎ,2))𝑖 = 𝐺(𝑞ℎ, 𝑝ℎ, 𝜃ℎ, 𝑇ℎ,1, 𝑇ℎ,2, 𝜑𝑖, 0),

∀(𝑄ℎ, 𝑃ℎ, 𝜃ℎ, 𝑇ℎ,1, 𝑇ℎ,2) ∈ R2𝑛ℎ × R2𝑛ℎ × R3,

G𝜃(𝑄ℎ, 𝑃ℎ, 𝜃ℎ, 𝑇ℎ,1, 𝑇ℎ,2) = 𝐺(𝑞ℎ, 𝑝ℎ, 𝜃ℎ, 𝑇ℎ,1, 𝑇ℎ,2, 0, 1)

(75a)

(75b)

(75c)

(75d)

(75e)

(75f)

(75g)

(75h)

where
∮︀

denotes the use of the numerical Gauss-Lobatto quadrature. Note that G𝑞 and G𝜃 are nonlinear with
respect to all their arguments, and that G𝑞 yields a vector of R2𝑛ℎ .
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The space discretized model writes in the phase formulation:
find (𝑄ℎ, 𝑃ℎ, 𝜃ℎ, 𝑇ℎ,1, 𝑇ℎ,2, 𝜆ℎ, 𝑧ℎ, 𝐹coupl, 𝜉ℎ, 𝑋ℎ) ∈ R2𝑛ℎ × R2𝑛ℎ × R5 × (R2)3 such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜃ℎ = 𝑇1,ℎ, (76a)

�̇�1,ℎ = 𝑇ℎ,2, (76b)

t𝐾ℎ�̇�ℎ = t𝐾ℎ𝑃ℎ

(︁
⇐⇒ �̇�ℎ = 𝑃ℎ since 𝐾ℎ is invertible

)︁
, (76c)

𝑀ℎ�̇�ℎ + 𝐾ℎ𝑄ℎ − 𝑇ℎ,2𝑀ℎ𝑉ℎ + 𝜆ℎ𝐼𝑤
ℎ + 𝑧ℎG𝑞(𝑄ℎ, 𝑃ℎ, 𝜃ℎ, 𝑇1,ℎ, 𝑇ℎ,2)

= (Fcoupl · u𝜃)𝐼𝑤(𝐿)
ℎ + 𝐹ℎ,𝑄,

(76d)

𝐼𝑤
ℎ ·𝑄ℎ = 0, (76e)

𝑇ℎ,2𝑀ℎ𝑉ℎ · 𝑉ℎ −𝑀ℎ𝑉ℎ · �̇�ℎ + 𝑧ℎG𝜃(𝑄ℎ, 𝑃ℎ, 𝜃ℎ, 𝑇ℎ,1, 𝑇ℎ,2)

=
(︁
𝑄ℎ · 𝐼𝑤(𝐿)

ℎ −𝐻
)︁

(Fcoupl · u𝑟)− 𝐿(Fcoupl · u𝜃) + 𝐹ℎ,𝜃,
(76f)

�̇�ℎ = G𝑞(𝑄ℎ, 𝑃ℎ, 𝜃ℎ, 𝑇ℎ,1, 𝑇ℎ,2) · 𝑃ℎ + G𝜃(𝑄ℎ, 𝑃ℎ, 𝜃ℎ, 𝑇ℎ,1, 𝑇ℎ,2)𝑇ℎ,1, (76g)

𝜉ℎ = 𝑋ℎ, (76h)

𝑚𝐻�̇�ℎ = −𝑚𝐻𝑔u𝑦 − Fcoupl − Fobs, (76i)

𝑋ℎ = 𝑇ℎ,1

(︁
𝑄ℎ · 𝐼𝑤(𝐿)

ℎ −𝐻
)︁
u𝑟 +

(︁
𝑃ℎ · 𝐼𝑤(𝐿)

ℎ − 𝐿𝑇ℎ,1

)︁
u𝜃. (76j)

3.4. Time discretization

3.4.1. Force coming from the obstacle

The coupling with real nonlinear piano strings is beyond the scope of this article (see [5] for details about
numerical methods for the strings). The focus is on the shank itself and so it will be considered that the hammer
impacts a rigid obstacle located at the height 𝑦𝑠.

The force Fobs models the crushing of the hammer made of felt, as (see [7, 9, 31])

𝐹obs = Fobs · u𝑦 = Φ(𝜉 · u𝑦), Φ(𝜉𝑦) = 𝐾
[︁
(𝑑0 + 𝜉𝑦 − 𝑦𝑠)+

]︁𝑝
, (77)

where 𝑝 is a positive real number that quantifies the nonlinear effects, 𝐾 is a stiffness parameter of the hammer
felt, and (·)+ stands for the positive part.

Remark 3.8. For the same reasons as before (see Rem. 3.3) the dissipative terms of the interaction is neglected
in this paper. Moreover, the hammer does not have any interaction with the obstacle in the horizontal direction.
Such friction motion (see [33]) is a way to transmit the vibrations of the shank and could allow the pianist to
influence the longitudinal modes of the string with his touch. This is left for future studies.

Since the function Φ is nonlinear, a classical potential quadratization is applied following [15]. Let Ψ be the
primitive function of Φ such that:

∀𝑦 ∈ R, Ψ(𝑦) =
∫︁ 𝑦

−∞
Φ(𝑠) d𝑠. (78)

Let us introduce a constant 𝑐𝐻 > 0. The auxiliary variable for the hammer head is 𝑧𝐻 =
√︀

2Φ(𝜉𝑦) + 𝑐𝐻 and
𝐺𝐻 is the quadratization auxiliary function defined as

∀𝑦 ∈ R, 𝐺𝐻(𝑦) =
Φ(𝑦)√︀

2Ψ(𝑦) + 𝑐𝐻

, (79)
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so that
Fobs · u𝑦 = 𝑧𝐻𝐺𝐻(𝜉 · u𝑦) and �̇�𝐻 = 𝐺𝐻(𝜉 · u𝑦)𝜉 · u𝑦 = 𝐺𝐻(𝜉 · u𝑦)𝑋 · u𝑦, (80)

with 𝑋 = 𝜉.

3.4.2. Scalar Lagrangian Quadratization (SLQ) scheme

Using the notations (43) for discrete time approximations, the following linearly implicit time scheme is
derived: find (𝑄𝑛+1

ℎ , 𝑃𝑛+1
ℎ , 𝜃𝑛+1

ℎ , 𝑇𝑛+1
ℎ,1 , 𝑇𝑛+1

ℎ,2 , 𝜆ℎ, 𝑧𝑛+1
ℎ ,Fcoupl, 𝜉

𝑛+1
ℎ , 𝑋𝑛+1

ℎ , 𝑧𝑛+1
𝐻ℎ ) ∈ R2𝑛ℎ×R2𝑛ℎ×R5×(R2)3×R

so that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛿𝜃ℎ = 𝜇𝑇ℎ,1, (81a)

𝛿𝑇ℎ,1 = 𝜇𝑇ℎ,2, (81b)

𝛿𝑄ℎ = 𝜇𝑃ℎ, (81c)

𝑀ℎ𝛿𝑃ℎ + 𝐾ℎ𝜇𝑄ℎ − 𝜇𝑇ℎ,2𝑀ℎ𝑉ℎ + 𝜆ℎ𝐼𝑤
ℎ + 𝜇𝑧ℎG𝑞(𝜋𝑄ℎ, 𝜋𝑃ℎ, 𝜋𝜃ℎ, 𝜋𝑇ℎ,1, 𝜋𝑇ℎ,2)

= (Fcoupl · 𝜋u𝜃)𝐼𝑤(𝐿)
ℎ + 𝐹

𝑛+1/2
ℎ,𝑄 ,

(81d)

𝐼𝑤
ℎ · 𝜇𝑄ℎ = 0, (81e)

𝜇𝑇ℎ,2𝑀ℎ𝑉ℎ · 𝑉ℎ −𝑀ℎ𝑉ℎ · 𝛿𝑃ℎ + 𝜇𝑧ℎG𝜃(𝜋𝑄ℎ, 𝜋𝑃ℎ, 𝜋𝜃ℎ, 𝜋𝑇ℎ,1, 𝜋𝑇ℎ,2)

=
(︁
𝜋𝑄ℎ · 𝐼𝑤(𝐿)

ℎ −𝐻
)︁

(Fcoupl · 𝜋u𝑟)− 𝐿(Fcoupl · 𝜋u𝜃) + 𝐹
𝑛+1/2
ℎ,𝜃 ,

(81f)

𝛿𝑧ℎ = G𝑞(𝜋𝑄ℎ, 𝜋𝑃ℎ,𝜋𝜃ℎ, 𝜋𝑇ℎ,1, 𝜋𝑇ℎ,2) · 𝜇𝑃ℎ + G𝜃(𝜋𝑄ℎ, 𝜋𝑃ℎ, 𝜋𝜃ℎ, 𝜋𝑇ℎ,1, 𝜋𝑇ℎ,2)𝜇𝑇ℎ,1, (81g)

𝛿𝜉ℎ = 𝜇𝑋ℎ, (81h)

𝑚𝐻𝛿𝑋ℎ = −𝑚𝐻𝑔u𝑦 − Fcoupl − 𝐹obsu𝑦, (81i)

𝜇𝑋ℎ = 𝜇𝑇ℎ,1

(︁
𝜋𝑄ℎ · 𝐼𝑤(𝐿)

ℎ −𝐻
)︁
𝜋u𝑟 +

(︁
𝜇𝑃ℎ · 𝐼𝑤(𝐿)

ℎ − 𝐿𝜇𝑇ℎ,1

)︁
𝜋u𝜃, (81j)

𝐹obs = 𝜇𝑧𝐻ℎ𝐺𝐻(𝜋𝜉ℎ · u𝑦), (81k)

𝛿𝑧𝐻ℎ = 𝐺𝐻(𝜋𝜉ℎ · u𝑦)𝜇𝑋ℎ · u𝑦. (81l)

The initial conditions are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑄0
ℎ = 𝜋𝑄

1/2
ℎ = 𝑃 0

ℎ = 𝜋𝑃
1/2
ℎ = 0,

𝜃0
ℎ = 𝜋𝜃

1/2
ℎ = 𝜃0,

𝑇 0
ℎ,1 = 𝜋𝑇

1/2
ℎ,1 = 𝑇 0

ℎ,2 = 𝜋𝑇
1/2
ℎ,2 = 0,

𝑧0
ℎ =

√
𝑐,

𝜉 0
ℎ = 𝜋𝜉

1/2
ℎ = 𝐿

(︃
cos(𝜃0)
sin(𝜃0)

)︃
−𝐻

(︃
sin(𝜃0)
− cos(𝜃0)

)︃
,

𝑋0
ℎ = 0,

𝑧0
𝐻 =

√
𝑐𝐻

(82)

and with 𝜋𝑢𝑟 =
(︂

cos(𝜋𝜃)
sin(𝜋𝜃)

)︂
and 𝜋𝑢𝜃 =

(︂
sin(𝜋𝜃)
− cos(𝜋𝜃)

)︂
.

All the nonlinear arguments of the auxiliary functions G𝑞, G𝜃 and 𝐺𝐻 are treated explicitly with the approx-
imation 𝜋. So this scheme is linearly implicit and does not need any iterative procedure to be solved. The
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drawback is that the matrix to invert changes at every iteration, but this problem can very often be limited
with the use of special inversion formulas (see next Sect. 3.5).

Note that 𝑀ℎ𝑉ℎ ∈ R2𝑛ℎ and 𝑀ℎ𝑉ℎ ·𝑉ℎ ∈ R are constant over time and can be pre-computed before the time
iterations.

3.4.3. Discrete power balance

The scheme (81) reproduces a discrete analog of the continuous power balance (3.2).

Theorem 3.9 (Discrete power balance of the scheme (81)). The solution to the scheme (81) verifies⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝛿ℰℎ = 𝐹
𝑛+1/2
ℎ,𝑄 · 𝜇𝑃ℎ + 𝐹

𝑛+1/2
ℎ,𝜃 𝜇𝑇ℎ,1, (83a)

ℰ𝑛
ℎ =

1
2
𝑀ℎ

(︀
𝑃𝑛

ℎ − 𝑉ℎ𝑇𝑛
ℎ,1

)︀
·
(︀
𝑃𝑛

ℎ − 𝑉ℎ𝑇𝑛
ℎ,1

)︀
+

1
2
𝐾ℎ𝑄𝑛

ℎ ·𝑄𝑛
ℎ +

1
2

(𝑧𝑛
ℎ )2 +

1
2

(𝑧𝑛
𝐻ℎ)2

+
1
2
𝑚𝐻 |𝑋𝑛

ℎ |
2 + 𝑚𝐻𝑔𝜉𝑛

ℎ · u𝑦.

(83b)

Proof. Take the inner product of (81d) with 𝜇𝑃ℎ, multiply (81f) by 𝜇𝑇ℎ,1, multiply (81i) by 𝜇𝑋ℎ, and sum
these three contributions to get

𝑀ℎ𝛿𝑃ℎ · 𝜇𝑃ℎ + 𝐾ℎ𝜇𝑄ℎ · 𝜇𝑃ℎ − 𝛿𝑇ℎ,1𝑀ℎ𝑉ℎ · 𝜇𝑃ℎ + 𝜇𝑧ℎG𝑞(𝜋𝑄ℎ, 𝜋𝑃ℎ, 𝜋𝜃ℎ, 𝜋𝑇ℎ,1, 𝜋𝑇ℎ,2) · 𝜇𝑃ℎ

+ 𝜇𝑇ℎ,2𝜇𝑇ℎ,1𝑀ℎ𝑉ℎ · 𝑉ℎ − 𝜇𝑇ℎ,1𝑀ℎ𝑉ℎ · 𝛿𝑃ℎ + 𝜇𝑧ℎG𝜃(𝜋𝑄ℎ, 𝜋𝑃ℎ, 𝜋𝜃ℎ, 𝜋𝑇ℎ,1, 𝜋𝑇ℎ,2)𝜇𝑇ℎ,1

+ 𝑚𝐻𝛿𝑋ℎ · 𝜇𝑋ℎ + 𝑚𝐻𝑔u𝑦 · 𝜇𝑋ℎ + 𝐹obsu𝑦 · 𝜇𝑋ℎ

= (Fcoupl · 𝜋u𝜃)𝜇𝑃ℎ · 𝐼𝑤(𝐿)
ℎ + 𝐹

𝑛+1/2
ℎ,𝑄 · 𝜇𝑃ℎ

+
(︁
𝜋𝑄ℎ · 𝐼𝑤(𝐿)

ℎ −𝐻
)︁

(Fcoupl · 𝜋u𝑟)𝜇𝑇ℎ,1 − 𝐿(Fcoupl · 𝜋u𝜃)𝜇𝑇ℎ,1 + 𝐹
𝑛+1/2
ℎ,𝜃 𝜇𝑇ℎ,1 − Fcoupl · 𝜇𝑋ℎ.

(84)

The interior coupling force in the right-hand side vanishes thanks to equation (81j). The nonlinear terms simplify
because of equation (81g):

𝜇𝑧ℎG𝑞(𝜋𝑄ℎ, 𝜋𝑃ℎ, 𝜋𝜃ℎ, 𝜋𝑇ℎ,1, 𝜋𝑇ℎ,2) · 𝜇𝑃ℎ + 𝜇𝑧ℎG𝜃(𝜋𝑄ℎ, 𝜋𝑃ℎ, 𝜋𝜃ℎ, 𝜋𝑇ℎ,1, 𝜋𝑇ℎ,2)𝜇𝑇ℎ,1 = 𝜇𝑧ℎ𝛿𝑧ℎ, (85)

and similarly for the head terms with equations (81k) and (81l):

𝐹obsu𝑦 · 𝜇𝑋ℎ = 𝜇𝑧𝐻ℎ𝐺𝐻(𝜋𝜉ℎ · u𝑦)𝜇𝑋ℎ · u𝑦 = 𝜇𝑧𝐻ℎ𝛿𝑧𝐻ℎ. (86)

After using the equations to substitute 𝛿 and 𝜇 when necessary, it remains:

𝑀ℎ𝛿𝑃ℎ · 𝜇𝑃ℎ − 𝛿𝑇ℎ,1𝑀ℎ𝑉ℎ · 𝜇𝑃ℎ + 𝛿𝑇ℎ,1𝜇𝑇ℎ,1𝑀ℎ𝑉ℎ · 𝑉ℎ − 𝜇𝑇ℎ,1𝑀ℎ𝑉ℎ · 𝛿𝑃ℎ + 𝐾ℎ𝜇𝑄ℎ · 𝜇𝑃ℎ

+ 𝜇𝑧ℎ𝛿𝑧ℎ + 𝜇𝑧𝐻ℎ𝛿𝑧𝐻ℎ + 𝑚𝐻𝛿𝑋ℎ · 𝜇𝑋ℎ + 𝑚𝐻𝑔u𝑦 · 𝛿𝜉ℎ = 𝐹
𝑛+1/2
ℎ,𝑄 · 𝜇𝑃ℎ + 𝐹

𝑛+1/2
ℎ,𝜃 𝜇𝑇ℎ,1.

(87)

The proof is completed after noticing that

1
2∆𝑡

[︁
𝑀ℎ

(︁
𝑃𝑛+1

ℎ − 𝑉ℎ𝑇𝑛+1
ℎ,1

)︁
·
(︁
𝑃𝑛+1

ℎ − 𝑉ℎ𝑇𝑛+1
ℎ,1

)︁
−𝑀ℎ

(︀
𝑃𝑛

ℎ − 𝑉ℎ𝑇𝑛
ℎ,1

)︀
·
(︀
𝑃𝑛

ℎ − 𝑉ℎ𝑇𝑛
ℎ,1

)︀]︁
= 𝑀ℎ𝛿𝑃ℎ · 𝜇𝑃ℎ − 𝛿𝑇ℎ,1𝑀ℎ𝑉ℎ · 𝜇𝑃ℎ + 𝛿𝑇ℎ,1𝜇𝑇ℎ,1𝑀ℎ𝑉ℎ · 𝑉ℎ − 𝜇𝑇ℎ,1𝑀ℎ𝑉ℎ · 𝛿𝑃ℎ.

(88)

�

Remark 3.10. The only term which is not necessarily positive is 𝑚𝐻𝑔𝜉𝑛
ℎ ·u𝑦, but it is only due to the definition

of the origin of the Cartesian referential in which the potential energy due to gravity is computed. A positive
constant can be added to this term to make sure it is positive without any loss of generalities.
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Table 1. Values of the model parameters used in the simulations.

Shank parameters

𝐿 [m] 𝑆 [m2] 𝜌 [kg/m3] 𝐸 [Pa] 𝐺 [Pa] 𝐼 [m4] 𝜅 [–]

0.13 6.31868× 10−5 560 10.18× 109 0.64× 109 6.38999× 10−9 0.85

Head parameters

𝑚𝐻 [g] 𝐻 [m] 𝑑0 [m] 𝑦𝑠 [m] 𝑝 [–] 𝐾

12.09 0.025 0.027659 0.0565 1.8 4× 108

3.5. Solving strategy

Quadratized schemes can usually be solved by Sherman-Morrisson-Woodbury formulas (see [30,34]) by elim-
inating auxiliary variables through Schur complements techniques. These methods avoid complete re-inversion
of a new matrix at each time step, and instead allow the inverse to be updated by a low-rank perturbation.
More precisely, the auxiliary variables are eliminated by the relation

𝜇𝑧 =
∆𝑡

2
𝛿𝑧 + 𝑧𝑛. (89)

Then the Lagrange multiplier 𝜆ℎ and the coupling force Fcoupl should be eliminated, and finally the unknowns
𝑇𝑛+1

ℎ,1 and 𝑇𝑛+1
ℎ,2 . After that one would obtain only one equation to solve to compute 𝑃𝑛+1

ℎ of the form[︀
𝐴ℎ + 𝑈ℎ

(︀
𝑡𝑛, 𝑡𝑛−1

)︀
𝑎ℎ

t𝑈ℎ

(︀
𝑡𝑛, 𝑡𝑛−1

)︀]︀
𝜇𝑃ℎ = 𝑏

(︀
𝑡𝑛, 𝑡𝑛−1

)︀
, (90)

with a right-hand side 𝑏, 𝐴ℎ a constant matrix of size 2𝑛ℎ×2𝑛ℎ, 𝑎ℎ also constant of size 𝑘×𝑘, and 𝑈 a changing
matrix of size 2𝑛ℎ × 𝑘. Then the Woodbury [34] inversion formula writes[︀

𝐴ℎ + 𝑈ℎ

(︀
𝑡𝑛, 𝑡𝑛−1

)︀
𝑎ℎ

t𝑈ℎ

(︀
𝑡𝑛, 𝑡𝑛−1

)︀]︀−1
= 𝐴−1

ℎ −𝐴−1
ℎ 𝑈ℎ

(︀
𝑎−1

ℎ + t𝑈ℎ𝐴−1
ℎ 𝑈ℎ

)︀−1 t𝑈ℎ𝐴−1
ℎ . (91)

The inverse 𝐴−1
ℎ is pre-computed once and for all, and if 𝑘 is small enough the update only requires a cheap

inversion of (𝑎−1
ℎ + t𝑈ℎ𝐴−1

ℎ 𝑈ℎ)−1 of size 𝑘 × 𝑘 and a few matrix-vector products.
In the present case, 𝑘 = 3 and the computational cost is divided by about 3 when using this technique

compared to a direct inversion of (81) in practical cases.

4. Numerical results

This section first presents results for a flexible hammer alone that comes into contact with a rigid wall in
order to demonstrate the good behaviour of the scheme proposed above. Secondly, in order to show its practical
use for the numerical simulation of the piano, a simulation result with a coupling to a geometrically exact
nonlinear string is presented. The C++ source code used for the following simulations is distributed under a
GPLv3 licence, see [6].

4.1. Source input

For the simulations we use the parameters listed in Table 1 based on the hammer models of [7, 32].
For the source term 𝑓𝑤, a C∞ function in space and time is applied. It is displayed in Figure 3 and writes

𝑓𝑤(𝑥, 𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐴 𝑒

1− 1

1−( 𝑥−𝑥0
𝜎𝑥 )2

𝑒
1− 1

1−( 𝑡−𝑡0
𝜎𝑡

)2

if (𝑥, 𝑡) ∈ [𝑥0 − 𝜎𝑥, 𝑥0 + 𝜎𝑥]× [𝑡0 − 𝜎𝑡, 𝑡0 + 𝜎𝑡],

0 otherwise.
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Figure 3. Source function 𝑓𝑤 for fixed time (left) and fixed space (right).

Figure 4. Evolution of the hammer head position (left) and shank angle (right).

with 𝐴 = 100, 𝑡0 = 3 ms, 𝜎𝑡 = 2 ms, 𝑥0 = 0.0165 m and 𝜎𝑥 = 0.005 m, meaning that the source starts at 𝑡 = 1 ms
and ends at 𝑡 = 5 ms and is applied on the shank at the usual position of the hammer knuckle. The other source
terms 𝑓𝜙 and 𝑓𝜃 are set to zero in this simplified case, but would be non-zero with a force Fmeca coming from
a real piano action (measured or simulated).

4.2. Solution

The following numerical results are computed with 49 elements of order 4 and with a time step ∆𝑡 = 10−6s.
The auxiliary constants 𝑐 and 𝑐𝐻 are chosen equal to 1, and the initial angle of the shank is 𝜃 = −2∘.

Figure 4 shows the motion of the hammer head perpendicularly to the obstacle. The hammer accelerates
upwards between 0 and 7 ms, then makes contact with the obstacle between 7 and 7.5 ms. Then it changes
direction and goes back downwards. The crushing of the hammer during the contact is clearly visible. On the
right-hand side figure the angle 𝜃 shows some oscillations after the contact occurred.

The deformations of the shank are visible on Figure 5. The application of the source is visible between 1 and
5 ms, and then the shank oscillates freely between 5 and 7 ms (the hammer is not submitted to any force except
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Figure 5. Evolution of the vibrations of the tip (𝑥 = 𝐿) of the shank, flexion 𝑤(𝐿, 𝑡) (left)
and shear 𝜙(𝐿, 𝑡) (right).

Figure 6. Evolution of the energy residual 𝜀 as defined in (93).

gravity). The contact with the obstacle occurs between 7 and 7.5 ms and the amplitude of the oscillations are
greatly amplified.

4.3. Discrete power balance

The discrete energy is well preserved in the sense of Theorem 3.9. Let us introduce the energy residual 𝜀 as

𝜀 =
ℰ𝑛+1

ℎ − ℰ𝑛
ℎ

ℰmax
− 𝐹

𝑛+1/2
ℎ,𝑄 ·

𝑄𝑛+1
ℎ −𝑄𝑛

ℎ

ℰmax
· (93)

The energy residual 𝜀 are multiples of the machine error on Figure 6, excepted during the application of the
source which corresponds to the erratic part between 1 and 5 ms.
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Figure 7. Space-Time convergence curves for different values of 𝜂: 10 in solid blue line, 100
in dashed green line, 1000 in dotted red line. Left: consecutive relative ℓ∞ in time error with
respect to the spatial discretisation parameter ∆𝑥 on the two components 𝑥 (+ symbol) and
𝑦 (× symbol) of the variable 𝜉. Right: consecutive relative 𝐿∞([0, 𝑇 ]; 𝐻1) error with respect to
the spatial discretisation parameter ∆𝑥 on the variables 𝑤 (+ symbol) and 𝜙 (× symbol).

4.4. Computation times and convergence

The scheme (81) unconditionally satisfies the power balance, hence is expected to be unconditionally stable.
To perform a space/time convergence analysis, we still introduce a parameter 𝜂 acting as a fictive CFL ratio

𝜂 = ∆𝑡2𝜌
(︀
𝑀−1

ℎ 𝐾ℎ

)︀
. (94)

The convergence errors are computed consecutively between a solution computed with 𝑁𝑥 elements and the
refined solution with 2𝑁𝑥 elements. They are compared on an interpolated regular grid of 100 points. The
computed errors on the scalar unknowns are defined as

∀(𝑋, 𝑌 ) ∈ R𝑛 × R𝑛, 𝐸ℓ∞(𝑋, 𝑌 ) =
‖𝑋 − 𝑌 ‖∞
‖𝑌 ‖∞

=
max

𝑖∈[[1,𝑛]]

⃒⃒
𝑥𝑖 − 𝑦𝑖

⃒⃒
max

𝑖∈[[1,𝑛]]
|𝑦𝑖|

, (95)

and the computed errors on the distributed unknowns are defined as

∀
(︀
𝑋1

ℎ, ..., 𝑋𝑛
ℎ , 𝑌 1

ℎ , ..., 𝑌 𝑛
ℎ

)︀
∈ 𝒬2𝑛

ℎ , 𝐸𝐿∞([0,𝑇 ],H1)(𝑋, 𝑌 ) =
max

𝑖∈[[1,𝑛]]

⃦⃦
𝑋𝑖

ℎ − 𝑌 𝑖
ℎ

⃦⃦
H1

max
𝑖∈[[1,𝑛]]

⃦⃦
𝑌 𝑖

ℎ

⃦⃦
H1

, (96)

where for all 𝑋 ∈ 𝒬ℎ,
‖𝑋‖2𝐻1 = ‖𝑋‖2L2 + ‖∇𝑋‖2L2 . (97)

Figure 7 shows space-time convergence curves for different values of 𝜂. The convergence rate after the pre-
asymptotic regime is quadratic. However we were unable to go further in precision because of very long com-
putation times.

Figure 8 plots the evolution of the errors with respect to the computation cost for different values of 𝜂. The
computation costs are indicative and relative to the cheapest simulation.
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Figure 8. Error-Efficiency curves for different values of 𝜂: 10 in solid blue line, 100 in dashed
green line, 1000 in dotted red line. Left: consecutive relative ℓ∞ in time error with respect
to relative computation cost on the two components 𝑥 (+ symbol) and 𝑦 (× symbol) of the
variable 𝜉. Right: consecutive relative 𝐿∞([0, 𝑇 ]; 𝐻1) error with respect to relative computation
cost on the variables 𝑤 (+ symbol) and 𝜙 (× symbol).

Table 2. Values of the model parameters used for the string [8].

String parameters

𝐿 [m] 𝑆 [m2] 𝜌 [kg/m3] 𝑇0 [N] 𝐸 [Pa] 𝐺 [Pa] 𝐼 [m4] 𝜅 [–]

0.961 8.6425× 10−7 7850 766 2.02× 1011 8× 1010 5.9439× 10−14 0.85

Remark 4.1. The fact that only one linear system must be solved at each time iteration induces a computa-
tional gain over the iterative gradient method proposed in [9], where the number of iteration per time step is
not known in advance, and depends on the initial guess given by the user and on the time step. Note also that, if
the time step is too large, the iterative method often fails (for two possible reasons: the nonlinear problem might
not have a solution, and the initial guess might be too far away for the iterative algorithm to converge), which
prevents from performing comparison tests. However, such a comparison has been performed for quadratized
schemes applied to the geometrically exact string in Figure 8 of [5]. It shows that the quadratization yields a
gain in accuracy of about a factor 10 for a given computation time.

4.5. Coupling with a nonlinear string

To demonstrate the applicability of our method, we show in this paragraph a more complete example in
which the flexible hammer comes into contact with a geometrically exact stiff nonlinear string (see [4] for more
details). The physical parameters of this string are summarised in Table 2.

Such a string corresponds to a F3 note with fundamental frequency 𝑓0 ≈ 175 Hz. The contact with the
hammer head is distributed on a 2 centimeters zone, centered on a strike point 𝑥𝑠 = 𝐿/8. To solve the nonlinear
equations of the string, the phase-SAV discretization strategy is adopted along with high-order finite elements
in space [4, 5] and coupled to the quadratisation technique applied to the flexible hammer shank in rotation
presented above. The string is discretized with 49 elements of order 4 and the shank with 9 elements of order
2. The time step is chosen equal to 10−6 s. The other shank parameters are the same as in the previous section.
Dirichlet boundary conditions are enforced weakly for the string at 𝑥 = 𝐿 with two Lagrange multipliers, 𝐹𝐿
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Figure 9. Normalized power spectrum of the Lagrange multipliers (Fourier transform of 𝐹𝐿 +
𝐺𝐿) at the end of the string with respect to the frequency. The harmonic frequencies of the
longitudinal linearized wave are represented in dashed vertical lines.

for the transverse vibration and 𝐺𝐿 for the longitudinal one. They represent the forces exerted by the string at
this end point. On an algorithmic point of view, the coupling of the shank and the string requires to solve a
linear system which must be updated at each time step.

In the absence of a soundboard, the sum 𝐹𝐿 +𝐺𝐿 is a good “listening” signal because it is the force by which
all the spectral content of the string is transmitted. The soundboard would mostly act as a filter on this force.

The power spectrum of 𝐹𝐿 + 𝐺𝐿 is represented on Figure 9. The influence of the strike point is very clearly
visible: partials with ranks multiples of 8 are significantly reduced [1]. The longitudinal partials of the string
are also clearly visible as they stand out from other transverse partials.

5. Conclusion and prospects

This paper presents a quadratization method applicable for all energy nonlinearities, whether of potential or
kinetic origin. A linearly implicit time-discretization scheme, formulated in the constrained phase space, which
preserves a discrete power balance, has been given.

These general techniques were then applied to a rotating flexible piano hammer, which exhibits both kinetic
and potential nonlinear energy terms. For this application, the scheme achieves a discrete power balance with
no conditions on the discretization parameters, and converges in space/time with order 2.

In the case of the piano hammer, only the unknown 𝜃 presents its second derivative 𝜃 in the nonlinear
function but the distributed unknown 𝑞 does not appear. The proposed scheme deserves to be tested on a
system exhibiting nonlinearity with a 𝑞 sought in L2, typically with discontinuous finite elements, in order to
verify its correct convergence.

This method quadratizes all energy nonlinearities. The complete analysis of stability and convergence is an
open problem that constitutes a perspective of this work, supported by preliminary numerical illustrations.
Another interesting line of research would be to construct a similar quadratization technique for dissipative
nonlinear terms (right-hand-side of Eq. (4)), leading to a linearly implicit scheme.

Finally, we mention that this scheme could be used to strike vibrating piano strings. Coupled with the work of
[7] for the vibratory part (strings, soundboard, acoustic radiation), and with the work of [32] for the calculation
of the input force 𝐹meca by a mechanical model, we would have a complete and efficient piano simulation tool
that would allow us to study the influence of the pianist’s touch on the sound of his instrument.
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Data availability statement

The C++ code used in this paper is available online under GPLv3 licence in a Gitlab repository: https://gitlab.

inria.fr/pianotouch/pianolib [6].

References

[1] A. Askenfelt and E.V. Jansson, From touch to string vibrations. III: string motion and spectra. J. Acoust. Soc. Am.
93 (1993) 2181–2196.

[2] S. Bilbao, A. Torin and V. Chatziioannou, Numerical modeling of collisions in musical instruments. Acta Acust.
United Acust. 101 (2015) 155–173.

[3] J. Cai and J. Shen, Two classes of linearly implicit local energy-preserving approach for general multi-symplectic
Hamiltonian PDEs. J. Comput. Phys. 401 (2020) 108975.

[4] G. Castera, Modélisation, analyse numérique et simulation de la propagation des ondes longitudinales dans le piano.
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