
HAL Id: hal-04731841
https://hal.science/hal-04731841v1

Submitted on 11 Oct 2024 (v1), last revised 27 Nov 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning via Surrogate PAC-Bayes
Antoine Picard-Weibel, Roman Moscoviz, Benjamin Guedj

To cite this version:
Antoine Picard-Weibel, Roman Moscoviz, Benjamin Guedj. Learning via Surrogate PAC-Bayes.
Neurips 2024, Dec 2024, Vancouver, Canada. �hal-04731841v1�

https://hal.science/hal-04731841v1
https://hal.archives-ouvertes.fr


Learning via Surrogate PAC-Bayes

Antoine Picard-Weibel
MODAL

Inria
59650, Villeneuve d’Ascq, France
antoine.picard.ext@suez.com

Roman Moscoviz
CIRSEE
SUEZ

78230 Le Pecq, France
roman.moscoviz@suez.com

Benjamin Guedj
MODAL

Inria
59650, Villeneuve d’Ascq, France

benjamin.guedj@inria.fr

October 11, 2024

Abstract

PAC-Bayes learning is a comprehensive setting for (i) studying the
generalisation ability of learning algorithms and (ii) deriving new learning
algorithms by optimising a generalisation bound. However, optimising
generalisation bounds might not always be viable for tractable or computational
reasons, or both. For example, iteratively querying the empirical risk
might prove computationally expensive. In response, we introduce a novel
principled strategy for building an iterative learning algorithm via the
optimisation of a sequence of surrogate training objectives, inherited from
PAC-Bayes generalisation bounds. The key argument is to replace the
empirical risk (seen as a function of hypotheses) in the generalisation bound
by its projection onto a constructible low dimensional functional space:
these projections can be queried much more efficiently than the initial
risk. On top of providing that generic recipe for learning via surrogate
PAC-Bayes bounds, we (i) contribute theoretical results establishing that
iteratively optimising our surrogates implies the optimisation of the original
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generalisation bounds, (ii) instantiate this strategy to the framework
of meta-learning, introducing a meta-objective offering a closed form
expression for meta-gradient, (iii) illustrate our approach with numerical
experiments inspired by an industrial biochemical problem.

1 Introduction
Generalisation is arguably one of the central problems in machine learning.
Among the different techniques to study generalisation, PAC-Bayes has gained
considerable traction over the past decade, as evidenced by the surge in publications.
We refer to the seminal works of Shawe-Taylor and Williamson [1997], McAllester
[1999], Catoni [2004, 2007] and to the recent surveys and monographs from Guedj
[2019], Hellström et al. [2023], Alquier [2024] for a thorough overview of the field.

One appealing feature is that PAC-Bayes learning is a comprehensive setting
for (i) studying the generalisation ability of learning algorithms and (ii) deriving
new learning algorithms by optimising a PAC-Bayes generalisation bound. This
is the strategy pursued in a number of recent works, among which Germain
et al. [2009], Biggs and Guedj [2021], Germain et al. [2015], Viallard et al. [2023],
Zantedeschi et al. [2021], Rivasplata et al. [2019], Pérez-Ortiz et al. [2021], Zhou
et al. [2019].

We now regard this strategy of substituting a generalisation bound to
more classical training objectives as established, and we focus here on the
computational aspect of this strategy. Indeed, optimising generalisation bounds
might not always be viable for tractable or computational reasons, or both. Most
PAC-Bayes bounds do not admit a close form minima formulation; moreover,
such bounds involve expectations and divergence terms which in general settings
can not be evaluated in closed form and thus require the use of approximation
methods such as Monte-Carlo sampling (see amongst others Seldin and Tishby
[2010], Dziugaite and Roy [2017], Neyshabur et al. [2017], Mhammedi et al. [2019]).
Such approximation methods can prove computationally intensive, notably if
the empirical risk, whose expectation is optimised in the bound, is hard to query.
Picard-Weibel et al. [2024] reports that such queries proved to be the main
computational bottleneck when optimising a PAC-Bayes bound in a bio-chemical
model calibration task. More generally, models whose predictions require solving
stiff ordinary differential equations (ODE) or partial differential equations (PDE),
such as naturally occurs in physics or biology inspired problems, result in
empirical risks whose query can be computationally expensive, in practice all
but making numerous iterative computations of PAC-Bayes objective’s gradients
impracticable.

In response to the aforementioned difficulties for optimising PAC-Bayes
generalisation bounds in practice, we introduce a novel principled strategy
designed to mitigate the computational cost of querying the empirical risk. We
build a learning algorithm which iteratively optimises a sequence of surrogate
training objectives in which the empirical risk is replaced by a proxy. This proxy
is built as the orthogonal projection of the true empirical risk on a functional
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vector space of finite dimension, which we conjecture can be queried much
more efficiently than the initial risk. A key motivation is that such surrogate
objectives can offer adequate approximations of the true objective valid much
further away than the linear approximation offered by the gradient, and enable
larger optimisation steps. This effectively decouples the complexity of querying
the empirical risk and optimising PAC-Bayes objectives.

Our contributions. Our four main contributions span theory, algorithmic,
application to meta-learning and numerical experiments.

1. We provide a generic recipe for learning via surrogate PAC-Bayes bounds,
which we believe is of practical interest for machine learning tasks involving
computationally intensive models with moderate dimension (e.g. physics
models with less than few hundred parameters),

2. contribute theoretical results establishing that iteratively optimising our
surrogates implies the optimisation of the original generalisation bounds.
This is established by theorem 1 and further developed in corollary 1 and
theorem 2,

3. instantiate this strategy to the framework of meta-learning, introducing a
meta-objective with a closed form expression for meta-gradient,

4. illustrate our approach with numerical experiments inspired by an industrial
biochemical setting using an anaerobic digestion model.

Outline. The paper is organised as follows: in section 2 we set the stage
and introduce our generic framework. In section 3, we construct functional
approximation spaces and establish generic guarantees for our framework. In
section 4, we focus on Catoni’s bound [Catoni, 2007] and describe a practical
implementation of our framework. In section 5, we investigate how our surrogate
PAC-Bayes minimisation strategy can be used in meta-learning settings. Numerical
experiments are described in section 6. Future prospects are discussed in section 7.
The manuscript closes with an appendix in which we gather (i) technical proofs
in appendix A, (ii) implementation details in appendix B.

2 A generic surrogate framework
Consider a measurable space H of predictors, denote P the set of all probability
distributions on H, and M(H) the set of measurable real valued functions. For
a probability distribution π ∈ P, let L1(π) (resp. L2(π)) denote the set of
integrable (resp. square integrable) functions with respect to π. For a f ∈ L1(π),
π[f ] denotes the mean of f with respect to π (the notation is extended for
functions outputting vectors), while for functions in L2(π), Vπ[f ] denotes the
variance of f (resp. covariance).
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A PAC-Bayes bound, denoted PB, can generically be summarised as a real
valued function of four variables: a generic distribution π ∈ P , a prior distribution
πp ∈ P, an empirical risk function R ∈ P, and other factors which we regroup
as γ (e.g. the confidence level, the PAC-Bayes temperature, the size of the
dataset). A PAC-Bayes theorem states that, under given assumptions on the
data generation mechanisms and risk, the average risk function R = E[R] satisfies
for some function q

P
[
∀π ∈ P, π

[
R
]
≤ PB (π,R, πp, γ)

]
≥ 1− q(γ), (1)

where the probability is taken on the data generation mechanism. Due to
the bound holding simultaneously for all distributions with high probability, it
notably holds with high probability on the minimiser of the bound, hence the
PAC-Bayes minimisation task

arg inf
π∈P

PB (π,R, πp, γ) . (2)

We consider a restriction of this minimisation task on a subset Π ⊂ P of
all probability distributions. Such a restriction might be justified by various
considerations, including storage of the calibrated distribution, simplification of
the minimisation task or even expert knowledge [Alquier et al., 2016, Dziugaite
and Roy, 2017, Picard-Weibel et al., 2024]. However, even this simplified
minimisation problem might prove computationally difficult for Gradient Descent
(GD) based algorithm. This is especially the case when evaluating the empirical
risk is costly, e.g. when the prediction model involves solving stiff ODEs or
PDEs. As PAC-Bayes bounds depend on the π-mean of the empirical risk,
each gradient estimation rely on numerous new evaluations of the empirical
risk. For ODEs Ẋ = F (X, t, θ) where F is very sensitive with respect to X,
numerous evaluations of F are required to obtain adequate numerical solutions.
These evaluations must moreover be performed iteratively, and hence can not
be parallelized. Moreover, implementing the ODE solver in a way to benefit
from GPU speeds up might not be practicable, since most ODE solver use a
varying step size which will depend on θ. This will result in typically long model
calls which can not be massively parallelised. To overcome this difficulty, we
introduce the Surrogate PAC-Bayes bound learning framework (SuPAC ), which
is based on alternatively building and solving surrogate problems.

Formally, we consider an approximation algorithm F : Π×M(H) 7→ M(H) in
conjunction with an approximate solving algorithm Solve : P ×Π×M(H) 7→ Π.
Informally, F constructs a proxy of the empirical risk valid for the current
posterior estimation π; while Solve updates the posterior estimation by solving
the resulting surrogate objective.

Algorithm 1 offers a lot of leeway for building surrogates (e.g., iteratively
refining an ODE/PDE solver, tailored made surrogates for physical models,
polynomial approximations) as well as solving the surrogate problem. For such
a framework to be practicable, two conditions should apply: the construction of
the surrogate and approximate solving should be faster than solving the initial
problem, and the algorithm’s result should tend to diminish the PAC-Bayes
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bound. Intuitively, the choice of the approximation mechanisms plays a critical
role; indeed, the more precise the approximation, the more likely is the minima
of the surrogate task to be close to the true minimiser, but the harder the
approximation task and the surrogate construction task.

3 Constructing surrogate function spaces

Algorithm 1 Surrogate PAC-Bayes
Learning framework (SuPAC )

Require: PB, π0 ∈ Π, πp ∈ P , R ∈
M(H)
π ← π0

while not converged do
f ← F(π,R)
π ← Solve(πp, π, f)

end while

A core contribution of the present work
is to show that for generic PAC-Bayes
bounds and generic probability families
Π of dimension d, L2(π) orthogonal
projection of the true score on a
functional vector space of dimension
d+ 1 is sufficient to obtain convergence
guarantees.

A few assumptions on the PAC-Bayes
bounds, the risk R and the probability
family Π are required.

Assumptions. (A1) Π = {πθ, θ ∈ Θ}
is a parametric set indexed by an

open subset Θ ⊆ Rd;

(A2) ∀θ ∈ Θ, πθ is absolutely continuous
with respect to πp and dπθ

dπp
(x) =

exp(ℓ(θ, x)) with θ 7→ ℓ(θ, x) differentiable
for all x;

(A3) ∀θ ∈ Θ, ∃Nθ a neighbourhood of θ
such that x 7→ supθ∈Nθ

|∂θℓ(θ, x)| ∈
L2(πθ);

(A4) R ∈ ∩θ∈ΘL2(πθ);

(A5) There exists P̃B such that PB(πθ, R, πp, γ) =

P̃B(θ, πθ[R], πp, γ) ( i.e. the PAC-
Bayes bound dependence on the empirical
risk is limited to the posterior average
of the empirical risk). Moreover,
P̃B is differentiable with respect to
its two first arguments.

We emphasise that these assumptions are valid for practically all PAC-Bayes
bounds, most risks, and for a wide variety of probability families, and are thus
rather more technical than restrictive. Although the second assumption rules out
probability distributions whose support is not included in the prior support, we
remark that such distributions usually obtain unbounded PAC-Bayes bounds due
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to penalisation terms, and as such are already ruled out. Most standard family
of distributions, including Gaussian and Gaussian mixtures, satisfy (A1) to (A3)
for adequate parameterizations. The fourth assumption is automatically satisfied
for all bounded risks, which is a typical assumption of PAC-Bayes bounds, but
also allows for unbounded risks provided that they are square integrable (e.g.
polynomials if Π span Gaussian would satisfy (A4)). The last assumption is
satisfied by most PAC-Bayes bound, e.g. McAllester [1999], Maurer [2004].

Since Π is parameterised by Θ, we will abuse notations for functions of Π
and write G(θ) := G(πθ). For a given θ, the functional vector space Fθ :={
fη,C : x 7→ η · ∂θℓ(θ, x) + C | η ∈ Rd, C ∈ R

}
provides a natural approximation

space of dimension d+1. We are now in a position to state our main approximation
result

Theorem 1. Under assumptions (A1) to (A5), replacing the empirical risk R
by the proxy risk

fR,θ := arg inf
f∈Fθ

πθ[(R− f)2]

leaves the gradient of the objective PB invariant, i. e.

∂1PB(θ,R, πp, γ) = ∂1PB(θ, fR,θ, πp, γ).

This result also holds if the approximation space Fθ is replaced by {f + g |
f ∈ Fθ,G} for any set G ⊂ L2(πθ).

Proof. Assumptions (A3) and (A4) allow differentiating θ 7→ πθ[R] = π
[dπθ

dπ R
]

under the integral sign (see Theorem 6.28 in Klenke [2020]), yielding ∇πθ[R] =

πθ[R∂θℓ]. As such, the derivative of P̃B(θ, πθ[R], πp, γ) with respect to θ equals
∂1P̃B(θ, πθ[R], πp, γ) + ∂2P̃B(θ, πθ[R], πp, γ)πθ[R∂θℓ].

As the only dependence on the gradient with respect to R is on the value of
π[R] at which the derivative is evaluated and on the vector πθ[R∂θℓ], it follows
that ∂θPB is not modified by replacing R by a function f ∈ L2(πθ) satisfying
the following linear system:{

πθ[R∂θℓ] = πθ[f∂θℓ],

πθ[R] = πθ[f ].
(3)

By construction of Fθ, the linear system (3) is satisfied if and only if (f−R) ∈ F⊥
θ ,

where A⊥ denotes the orthogonal complement of A in L2(πθ). Hence for any
set G ⊂ L2(πθ), the orthogonal projection of R on F̃ = Fθ + G satisfies the
linear system (3). Noticing that the orthogonal projection fR,θ of R on space F̃
satisfies fR,θ = arg inff∈F̃ πθ[(R− f)2] ends the proof.

Informally, Theorem 1 guarantees that if searching for a PAC-Bayes posterior
in a space of size d, adequately projecting the score on a space of dimension at
most d+ 1 preserves the immediate surrounding of the PAC-Bayes objective. If
the approximation built at θ maintains near optimal performance for a large
neighbourhood of θ, this surrogate task provides a valid approximation of the

6



true task for a wide range of distributions, and offers approximate solutions θ̃
much further away than the range of validity of the objective’s gradient.

The extension of the result for Fθ + G implies that proxy score functions
combining a known, simplified model with a learnt correction term can be used.
For G = {h}, it implies that the result holds if the approximation space consists
of a fixed user defined proxy and a correction term. This can have direct practical
implications in settings where efficient, natural proxy are available; the learnt
corrective term would presumably be smaller, and hence the approximation’s
validity larger.

A direct consequence of Theorem 1 is a fixed point characterisation of the
minima of the PAC-Bayes objective for instances of Algorithm 1 using GD based
surrogate solver (see proof in appendix A.1):

Corollary 1. Under assumptions (A1) to (A5), the minimiser θ̂ of the original
PAC-Bayes bound is a fixed point of any instance of Algorithm 1 such that:

• the approximation function is F(πθ, R) := arg inff∈Fθ
πθ[(R− f)2],

• the surrogate solving Solve strategy is any (corrected) gradient descent
strategy starting at the current θ, using update steps of form Updt(θ) = θ−
M(π, θ, f, γ)∂θPB(θ, f, πp, γ), where M stands for any function returning
an endomorphism, for any number of steps, any convergence criteria.

It should be stressed that Corollary 1 does not imply that algorithm 1
improves on GD. Corollary 1 only guarantees that replacing the score by a low
dimensional approximation is harmless locally. Informally, if the approximation
built at θ maintains near optimal performance for a large neighbourhood of θ,
this surrogate task provides a valid approximation of the objective for this wide
radius, and can construct approximate solutions θ̃ much further away than the
range of validity of the gradient. SuPAC decouples the variations of the bound
due to the evolution of θ and fθ,R; such a decoupling is particularly interesting
if fθ,R is stable.

4 Exponential family and Catoni’s bound

4.1 Closed form surrogate solution and fixed point property
Theorem 1 involves approximation of the empirical risk through orthogonal
projection on a local functional vector space Fθ of dimension at most d + 1.
A setting of particular interest concerns families of probabilities such that the
space Fθ does not depend on θ. Exponential families, i.e. family of distributions
of the form

ΠT =

{
πθ |

dπθ

dπref
= exp(θ · T − g(θ) + h)

}
,

are a well studied class of probability family which satisfy this property (and
essentially the only such class if Θ is connected and the likelihood smooth,
see theorem 3 in appendix A.3). The approximation space can be written as
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F = {fC,θ := θ · T + C}. Without loss of generality, we assume that functions
(1, T1, . . . , Td) are linearly independent.

Exponential families define a tractable, yet flexible class of probability families,
spanning from simple, fixed variance distributions to multimodal distributions
[Cobb et al., 1983]. They englobe most familiar distribution families such as
multivariate Gaussians, Beta and Gamma [Brown, 1986]. The approximation
space they generate can equally vary. For Gaussian distributions, we remark
that F covers quadratic forms.

We now focus on Catoni’s PAC-Bayes bound [Catoni, 2007, Alquier, 2024],

PBCat(π, πp, R, (λ, δ, n, C)) = π[R] + λKL(π, πp) +
C2

8λn
− λ log(δ),

where KL(ν, µ) = ν
[

dν
dµ

]
is the Kullback–Leibler divergence and λ is the PAC-

Bayes temperature. Catoni’s bound holds with probability 1− δ if 0 ≤ R ≤ C.
Due to its particular form, minimising the bound amounts to minimising the
simpler objective π[R] + λKL(π, πp).

For simplicity’s sake, we will assume that πp = πθp ∈ Θ. In this setting, (A1),
(A2) and (A4) are automatically verified. A key incentive to use Catoni’s bound
is that the surrogate objective can be solved in closed form; for risks of form
fη,C , if the prior belongs to the exponential family, the minimiser of Catoni’s
bound on P belongs to Π, and it follows that

arg inf
θ

PBCat(πθ, πθp , fη,C) = θ̃(η) := θp − λ−1η,

provided that θp − λ−1η ∈ Θ (if not, Catoni’s bound does not admit a minima)
(see Lemma 2.2, and Corollary 2.3 in Alquier [2024]). Since the posterior
distribution does not depend on the constant term C we will note fη for any
fη,C ∈ F .

We can here use the exact solution of the surrogate PAC-Bayes bound rather
than have to minimise the bound through GD. The following lemma (proved in
appendix A.2) bridges the gap by showing that the update rule using the closed
form solution can be interpreted as a corrected GD step:

Lemma 1. Consider an exponential family Π := {πθΘ ∈ Θ} with sufficient
statistic T . Noting F := {fη : x 7→ η · T (x) + C | η ∈ Rd, C ∈ R}, let
fη ∈ F . Then for any prior parameter θp ∈ Θ, for any parameter θ, the mapping
θ̃(η) := θp − λ−1η satisfies:

θ̃ = −λ−1I(θ)−1∇θPBCat(θ, θp, fη, γ) + θ,

where I(θ) denotes Fisher’s information matrix.

A direct consequence of Lemma 1 is that Corollary 1 applies when using the
exact solver for the surrogate Catoni task. Since Fisher’s information is positive,
it follows that the update direction θ̃ − θ always diminishes the bound locally.
We summarise these results in the following theorem.
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Theorem 2. The minimiser of Catoni’s PAC-Bayes objective on an exponential
family is a fixed point of Algorithm 1 with approximation function

F(πθ, R) := arg inf
f∈F

πθ[(R− f)2],

and surrogate solver

Solve(πp, θ, fη) := θp − λ−1η = arg inf
θ∈Θ

PBCat(θ, πp, fη, γ).

Moreover, for all θ,

∇PBCat · (Solve(πp, θ,F(θ,R))− θ) ≤ 0.

As noted above, the solution of the surrogate task must belong to Θ to
define a probability distribution. There is however no guarantee that such is
the case for any approximated risk. For instance, if the risk is estimated close
to a local maxima by a quadratic function, the resulting surrogate task might
not have a minima, and hence the resulting θ(η) might fail to be a probability
distribution, causing the algorithm to break. Another difficulty lies in solving the
approximation task. Involving an integral of a function of the risk, the objective
theoretically requires evaluations of the risk at all predictors. We show in the
next section how both these issues can be solved in practice.

4.2 Framework implementation: SuPAC -CE
Following theorem 2, we propose an algorithm, SuPAC -CE (code here), designed
to efficiently find the minimiser of Catoni’s bound on Exponential families.

4.2.1 Implementing the approximation

As the surrogate PAC-Bayes bound is solved using a closed form expression, the
computational bottleneck of algorithm 1 is the approximation task of computing
η(θ) = arg infRd πθ[(fη−R−πθ[fη−R])2]. Due to the form of fη, this is formally
a least square weighted linear approximation problem with infinite number of
observations, whose solution can be explicitly written as η = Vπ[T ]

−1π[R(T −
π[T ])]. This solution can be approximated using a finite number of function
evaluations R(xi), replacing the probability π by an empirical counterpart
πemp =

∑N
i=1 ωiδxi

.
Different choices of (xi, ωi) can be considered. A first approach consists in

drawing i.i.d. samples from πθ and considering uniform weights. This guarantees
that the approximated objective is unbiased. A main shortcoming of this
approach, however, is that it disregards all previous risk evaluations at each
step. Corrections of the form dπθ

dπθ̃
can be used to salvage samples drawn from

πθ̃, all the while guaranteeing unbiased approximated objective. This however
can drastically increase the variance, and thus might not be practical.

We advocate a "generation agnostic" approach for the weighing process,
which treats all available risk evaluations in a like manner. We assume that
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H is a metric space. For all predictors (xi)i∈[1,N ] whose risk R(xi) is known,
target weights ω̃i are defined as the probability given to the Voronoi cell xi by
distribution πθ. This target weight can be approximated using Monte Carlo
simulations and solving nearest neighbour in (xi)i∈[1,N ] tasks. The distance
used for the Voronoi cell can depend on the distribution πθ –(e.g. Mahalanobis
distance for Gaussian exponential families). This approach requires, if the
empirical distribution

∑
ωiδxi is to form an adequate approximation of the

distribution πθ, some queries from to πθ. The stack of function evaluation is
hence appended at each approximation step by evaluating samples from πθ. As
this weight computation can bring some overhead, it is only appropriate when
risk queries are the main computational bottleneck.

4.2.2 Boundary issues

PAC-Bayes bounds typically hold for empirical risk functions satisfying moment
bounds (with respect to the data generation mechanism) or boundedness conditions
(the latter being usually required for Catoni’s bound). Such assumptions might no
longer be met for the approximated risks. A consequence is that the minimiser of
the surrogate task might not exist. For instance, a local quadratic approximation
of the score near a local maxima can induce a surrogate task whose minima is
− inf.

To ensure that for any score approximation fη,C , the surrogate solver always
define a probability distribution, two regularisation hyperparameters klmax and
αmax are introduced. klmax ∈ R+ ∪ +∞ determines the maximum step size
allowed between two successive posterior estimation, measured in Kullback–
Leibler divergence. αmax ∈]0, 1] acts as a dampening hyperparameter. The
corrected update rule is changed to θ̃c(θ) = α̃(θ̃(η)− θ) + θ with α̃ the highest
α ≤ αmax such that KL(θ̃c, θ) ≤ klmax. Such α̃ can be easily obtained through a
Newton scheme or dichotomy, noticing that it is defined through f(α̃) = C for a
non decreasing function f .

This modification does not impact the fixed point property of Theorem 2.
Moreover, if the empirical risk R belongs to F , choosing klmax <∞, αmax = 1
results in convergence in a finite number of steps (resp. exponential convergence
for αmax < 1) (see Appendix A.4).

5 Surrogate Catoni in a Meta Learning framework
Both the Bayes and PAC-Bayes framework offer a natural connection with
Meta-Learning, as both involve a natural inductive bias in the form of the prior.
Previous work which studied Meta-Learning for PAC-Bayes include Pentina and
Lampert [2014], Amit and Meir [2018], Rothfuss et al. [2023], Zakerinia et al.
[2024]. The aim of PAC-Bayes Meta-Learning is the construction, from a sample
of independent train tasks, of a prior yielding optimal generalisation bounds
on new unknown test tasks. Such optimisation of the prior brings two benefits:
tighter generalisation bounds (smaller penalisation); and simplified PAC-Bayes
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learning task (better initial guess). For PAC-Bayes meta learning, a natural
training objective can be derived from the minimised PAC-Bayes bounds obtained
for each task. This defines the following meta training objective, analogue to an
empirical risk at the meta level:

M(πp) =
∑
i

inf
π∈Π

PB(π̂, Ri, πp, ηi), (4)

where π̂ denotes the task posterior. The objective defined in eq. (4) departs
from previous formulations which typically involve a further penalisation term
at the meta level. We advance two justifications for this simplification. First,
the extra penalisation term involves divergence terms between a meta prior
and meta posterior (both distributions on probability distributions) which in
practice make the bound vacuous and thus of limited practical interest. Second,
PAC-Bayes theory already offers guarantees on the generalisation performances
of each test task, limiting the need to assess the generalisation performance at
the meta level. Arguably, the task specific bound provided by using PAC-Bayes
as inner algorithm is more informative than the "mean" task bound offered by
a meta PAC-Bayes algorithm (when PAC-Bayes learning is used both as inner
algorithm and meta training algorithm).

We consider that assumptions (A1) to (A5) hold, and also these further mild
assumptions: the prior is looked for in Π, i.e π = πθp ; the PAC-Bayes bound PB
is differentiable w.r.t. θp. Then, noting θ̂i the posterior parameter for each task,
a simplification of the meta gradient occurs:

∇M(θp) = ∂θpPB(θ̂i(θp), Ri, θp, ηi) = ∂3PB(θ̂i, Ri, θp, ηi). (5)

Remarkably, the knowledge of the derivative of θ̂i with respect to θp is not
required to compute the meta gradient. This is due to ∂1PB being 0 when
evaluated for the prior posterior. We stress that such a simplification is specific
to our meta-learning objective. It does not occur in meta-learning strategies
such as MAML [Finn et al., 2017], where the performance of each task is assessed
on a test set. In the context of PAC-Bayes, such reliance on test sets can be
optimistically replaced by the PAC-Bayes bounds, which give test guarantees
with high probability. It is unclear whether such a simplification occurs in
previous PAC-Bayes Meta Learning objectives from the literature, as these
involve distributions on priors rather than a single prior.

A key consequence is that training the meta learning algorithm is as hard as
cycling all the Bayesian optimisation tasks. In a nutshell, meta learning is as
hard as re optimising the bound for a new prior.

SuPAC -CE brings two main benefits when used in conjunction with meta-
learning. First, by improving the optimisation efficiency for a given prior, SuPAC
-CE speeds up the meta-learning procedure. Second, the "generation agnostic"
weighing approach implies that risk revaluations from previous optimisation
procedures can be reused. As a consequence, re optimisation of a PAC-Bayes
bound for a new prior can conceivably be performed with few risk queries, bringing
an additional speed-up. Moreover, the setting considered for SuPAC -CE enjoys
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Figure 1: Experiments results. Figure 1a compares the optimisation performance
of our algorithm SuPAC -CE with gradient descent approaches on an biochemical
calibration task. Optimisation procedures were repeated 20 times; median
performance and quantiles 0.2 and 0.8 are represented. Figure 1b investigates
train and test performance of the meta-learning approach of Section 5. Mean
test performance, as well as quantiles 0.2 and 0.8 for the sequence of built prior
is assessed on 40 tasks and compared to the train performance.

an analytical expression for meta-gradients, ∇M(θp) =
∑

i λi(∇g(θ̂i)−∇g(θp))
which can be efficiently evaluated.

6 Experiments
SuPAC -CE was assessed on the learning task described by Picard-Weibel et al.
[2024]. A PAC-Bayes bound is minimised on Gaussian distributions with block
diagonal covariance in order to calibrate 30 parameters of a biological inspired
numerical model describing anaerobic digestion processes, ADM1 [Batstone et al.,
2002]. This model relies on solving a stiff ODE to predict the evolution of the
states, and is therefore quite computationally intensive (about 3 seconds per
model query in our experiments).

We compared SuPAC -CE to standard GD on a synthetic dataset from
Picard-Weibel et al. [2024], using the same family of distributions and risk
function. For SuPAC -CE , 160 risk queries where performed for the initial step,
and 32 for all further step. A maximal budget of 9600 empirical risk queries
was fixed; hyperparameters for the GD were selected after evaluating a grid on
the first 1600 queries. Mean risks were assessed at test time by resampling new
predictors from the posterior. The PAC-Bayes temperature was set to 0.002.
Training procedures were repeated 20 times.

The performance of the sequence of posteriors were compared by aligning
the number of empirical risk queries. Indeed, the main motivation of SuPAC
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-CE is the setting when querying the empirical risk is computationally expensive,
and can be assumed to be the computational bottleneck. This is indeed the
case for the anaerobic digestion example considered here. At equal number of
risk queries, SuPAC -CE required an extra 3.5% processing time compared to
gradient descent, mainly caused by the weighing process.

SuPAC -CE proved significantly more efficient at minimising the bound
than GD (see Figure 1a). The average performance of our algorithm proved
better after 1800 queries than the best performance obtained after the full 9600
queries for GD. The experiments also indicate that our procedure offers much
higher stability compared to GD, both during training and between the training
duplicates. This could be attributed to the "generation agnostic" weighing
approach, which relies on all previous risk evaluations at each step and is thus
more stable. On the other hand, the noisy gradients estimates have some
probability of leading to problematic steps during GD, leading to sharp increase
in the objective. In our experiments, 4 out of 20 GD procedures thus led to a
worse performance than the one obtained by a single optimisation step of SuPAC
-CE . The posterior distributions constructed through SuPAC -CE obtained an
average empirical risk of 0.102 ± 0.003, similar to the 0.101 value reported in
Picard-Weibel et al. [2024]. The resulting PAC-Bayes bound proved also similar
(0.121± 0.004 vs. 0.122). Thus SuPAC -CE constructed as good a posterior as
Picard-Weibel et al. [2024], but twenty times faster.

Further assessments of SuPAC -CE ’s performance for other hyperparameters
values and comparison to Nesterov accelerated GD were also conducted. SuPAC
-CE proved to have a stable behaviour for a wide range of hyperparameters value
(0.25 ≤ αmax ≤ 0.75, 0.5 ≤ klmax ≤ 2), with instabilities starting to appear for
klmax > 5, and speed decrease for klmax < 0.1. Nesterov acceleration, requiring
some iterations to build up momentum, proved unable to compete with SuPAC
-CE ’s almost instantaneous optimisation. Results for these experiments can be
found in the appendix B.

Preliminary experiments were also performed for the meta-learning objective
described in section 5. To facilitate the evaluation of the learnt meta priors,
wholly synthetic risk functions were used in this case, and PAC-Bayes objective
minimised on Gaussian distributions. The risk functions considered were bounded,
smooth functions of R8, achieving their global minima at x0 ∼ N(x̃0,Σ0). x̃0

was chosen so that ∥x̃0∥ = 2, and Σ0 such that only two of its eigenvalues are
higher than 0.052 (drawn at random between exp(−1) and exp(1)). Such choices
ensure that the original prior distribution, N (0, Ik), can be improved upon both
by shifting its mass centre and adjusting its covariance. The performance of
the meta-learning algorithm was assessed for two temperatures, λ = 0.1 and
λ = 0.01. Meta training was performed using stochastic gradient descent. The
sequence of prior thus constructed was evaluated on a further 40 test tasks, each
time restarting the optimisation procedure from scratch, and evaluating the final
score on 104 draws from the posterior.

The meta-learning algorithm was able to satisfactorily reduce the objective,
from an initial average generalisation bound of 0.61 (resp. 0.14) to 0.24 (resp.
0.050) after 150 gradient steps for λ = 0.1 (resp. λ = 0.01). Most of the
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meta-objective reduction takes place during the early phase of training, with
the first 15 steps amounting to more than 80 % of the objective decrease. For
both temperatures tested, the average performance on the test tasks followed
the objective decrease throughout training, even though the number of queries
per optimisation was minimal after the first meta step (less than 40), supporting
both our meta-learning objective and the use of SuPAC -CE .

Full implementation details on the experiments can be found in appendix B
and in the source code

7 Discussions
The present work shows that it is possible to locally decouple the complexity
related to querying the empirical risk and the minimisation of a PAC-Bayes
bound. A main motivation for such decoupling is that the approximated risk
function define non linear surrogate objectives which might be valid for a wider
range of probabilities than the linear approximations offered by the gradients.
As a consequence, the surrogate bound solution can be reasonably allowed to be
much further away from the current posterior estimation than is the case for GD.
A key implementation difficulty remains picking the range of validity, i.e. how far
away from the current posterior the surrogate solver can be allowed to choose a
distribution. Such a choice, formalised in the selection of an adequate surrogate
solving algorithm, is analogue to the choice of a step size in gradient descent
procedures, and balances the stability and speed of the procedure. Automating
the selection of the surrogate validity range offers an exciting prospect for the
framework.

The Voronoi cell weighing approach used to solve the approximation problem
is equivalent to replacing the empirical risk function by a 1-nearest neighbour
trained predictor, and approximating this predictor. Variants following this
two step approximation approach could be worth investigating. Notably, an
interesting perspective would be to approximate the empirical risk through
Gaussian processes, taking inspiration from Gaussian Optimisation. This would
notably track the uncertainty on the approximate risk on extrapolated values,
which could drive the choice of new predictors to evaluate and improve on the
current random draws.

A key restriction of the present work is that our surrogate PAC-Bayes
framework is only practicable when the dimension of the predictor space and
of the probability family are small (i.e. less than a few hundreds). This is due
to two factors; first of all, the larger the dimension of the probability family,
the larger becomes the approximation space, and hence the more empirical risk
evaluations are required. Notably, at least d + 1 evaluations of the empirical
risk are required for probability families of dimension d. The second factor is
that the "generation agnostic" weighing approach described in section 4.2.1 is
unlikely to give adequate performances if H is high dimensional. This effectively
rules out deep learning settings, which have been recently the main focus of
the PAC-Bayes community. Still, we believe that PAC-Bayes learning offers
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meaningful prospects for a wide range of physics, biology or medical inspired
problems which involve few parameters and expensive model computations,
and therefore can be efficiently trained using our framework. Concrete fields
of application of SuPAC -CE include, but are not limited to, fluid dynamics
simulations with dimension reduction [Callaham et al., 2021], metabolic models
for microbial communities [Cerk et al., 2024] and greenhouse gas emission inverse
problems [Nalini et al., 2022].

8 Conclusion
We introduced a generic framework for minimising PAC-Bayes bounds designed to
tackle computationally intensive empirical risks for low to moderate dimensional
problems such as naturally arise in physical models. We established that our
optimisation strategy was theoretically well supported. We instantiated this
framework for the optimisation of bounds on exponential family, and considered
how this implementation could interact with meta-learning. Preliminary experiments
showed that our framework could significantly reduce the number of empirical
risks queries when calibrating a biochemical model, thus opening exciting new
fields of applications for PAC-Bayes.
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A Technical proofs

A.1 Proof of Corollary 1
As assumptions (A1) to (A5) hold, Theorem 3 can be used. It implies that
replacing R by fR,θ does not change the gradient of PB. Hence, starting from
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θ = θ∗, since ∂1PB(θ∗, R, πp, γ) = ∂1PB(θ∗, fR,θ∗
, πp, γ) = 0, the update step

in the solving strategy satisfies Updt(θ∗) = θ∗ −M(π, θ, f, γ)× 0 = θ∗. Hence,
by recursion, it follows that Solve(πp, πθ∗ , fR,θ∗

) = πθ∗ . Since we assume that
F(πθ, R) = fR,θ, this implies that πθ∗

is a fixed step of π → Solve(πp, π,F(π,R))),
and hence that the posterior is a fixed point of SuPAC for the specified F and
Solve strategies, concluding the proof.

A.2 Proof of Lemma 1
We consider the broader problem where the prior πp might not belong to the
exponential family, but any probability satisfying the following assumptions:

Assumptions. (A6) πp is absolutely continuous with respect to πref;

(A7) ∀θ ∈ Θ, h := log
(

dπp
dπref

)
∈ L2(πθ).

Note that when πp ∈ Π, one can use πref = πp for which assumptions (A6)
and (A7) are automatically fulfilled. The generalisation of the approximation
space becomes

F = {fη,C := θ · T + C + λh},
which fits into the framework described in Theorem 1. For any fη ∈ F , the
solver of Catoni’s bound on all distributions is given by θ̃ = −λ−1η, provided
this defines a probability distribution (else Catoni’s bound does not reach its
minima on Π or P). Note that the choice of θ̃ is coherent with the formula given
in Lemma 1 when the prior belongs to Π, since in that case h = θp · T , leading
to a change of coordinate in the definition of F .

Under the assumptions, Catoni’s bound is differentiable and its gradient with
respect to θ can be computed under the integral. Thus, for score fη,

∇PBCat = πθ[fη(T −∇g(θ))] + λπθ[(θ · T − g(θ)− h)(T −∇g(θ))]
= πθ[(fη + λθ · T − g(θ)− λh)(T −∇g)]
= πθ[(fη + λθ · T − λh)(T − πθ[T ])]

= πθ[(η · T + C)(T − πθ[T ])] + λVπθ
[T ]θ

= Vπθ
[T ](η + λθ)

where we use the well known identity πθ[T ] = ∇g (see Brown [1986]). For
exponential families, the variance Vπθ

[T ] coincides with Fisher’s information,
and hence the previous equality reads ∇PBCat = λI(θ)(θ − θ̃(η)), which implies
Lemma 1.

A.3 Probability families with constant approximation space
Theorem 1 considers projections of the risk on a local vector space of functions
Fθ. A special case of interest concerns families of distributions such that the
approximation set is constant. Exponential families offer such a characteristic.
We show here that exponential families (and its restrictions) are the only smoothly
parameterised distributions with this characteristic:
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Theorem 3. For family of distributions satisfying the first three hypotheses of
Section 3 such that, moreover:

• Θ is a connected,

• θ → ℓ(θ, x) is twice continuously differentiable for all x.

If there exists a vector space of finite dimension F such that Fθ ⊂ F for all
θ ∈ Θ, then there exists an exponential family ΠT defined on Θ̃ and a connected,
open set ΘΠ such that Π = {πθ | θ ∈ ΘΠ}.

Proof. For F of dimension d̃ + 1, choose T1, . . . , Td̃, Td̃+1 = 1 a basis of F .
Then, for all θ, there exists a unique matrix A(θ) ∈ Rd,d̃, and a unique vector
c ∈ Rd̃,1 such that

∂θℓ =
(
A(θ) c(θ)

) T1

· · ·
Td̃+1


Assume that A(θ) and c(θ) are differentiable (this is proved afterwards).

Since ℓ is twice continuously differentiable, it follows ∂θi∂θj ℓ = ∂θj∂θiℓ, and
therefore that ∂θiAj,k = ∂θjAi,k and that ∂θjci = ∂θicj . This, in conjunction
with the hypothesis that Θ is connected, implies that A(θ) is a gradient of some
β : Rd 7→ Rd̃ while c is the gradient of some −g : Rd 7→ R (see Lang [1999]).
Hence, ℓ(θ) = β(θ) · T (x) − g(θ) + h for h a solution of ∂θh = 0. Since Θ
is connected, this implies that h can not be a function of θ. Hence Π is the
restriction of an exponential family on Θ.

It remains to show that A(θ) and c(θ) are differentiable. First of all, we
remark that for all finite collection of linearly independent real valued functions
(f1, . . . , fn), there exists d points (x1, . . . , xn such that (fi(xj))i,j≤n is inversible.
Indeed, this result holds for a single function, since f1 must be non zero. Then
if the result holds for x1, . . . , xk, i.e. D = det((fi(xj))i,j≤k) ̸= 0 then consider
the matrix m(z) = (fi(x̃j)i,j≤k+1 with x̃j = xj if j ≤ k, x̃k+1 = z. Then
the determinant of matrix m is Dfk+1(z) +

∑
i≤k Cifi(z). Since f1, . . . , fk+1

are linearly independent and since D is not zero, there must exist z such that
det(m(z)) ̸= 0, which we can pick as xk+1. This proves the result by recursion.

Since T1, . . . Td̃+1 are linearly independent, we can therefore pick such x1, . . . , xd̃+1.
By definition of A(θ) and c(θ), it follows that for all θ,

(
A(θ) c(θ)

)
=


∂θ1ℓ(θ, x1) . . . ∂θ1ℓ(θ, xd̃+1)

...
...

∂θkℓ(θ, x1) . . . ∂θkℓ(θ, xd̃+1)


 T1(x1) . . . T1(xd̃+1)

...
...

Td̃+1(x1) . . . Td̃+1(xd̃+1)


−1

This implies that A and c are smooth functions of the differentiable (∂ℓ(·, xi))i∈[1,d̃+1],
and hence that they are differentiable.
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A.4 Regularisation and convergence for Catoni’s bound
If R = fη ∈ F , the uncorrected step direction results in one step convergence,
implying that the update direction at θ is θ̂ − θ. This implies that all successive
estimation θi belongs to the segment [θ0, θ̂]. Note ∆θ = θ̂ − θ0. Since the
normalisation function g is strictly convex, it follows that the function t →
∆θ · ∇g(θ0 + t∆θ) is non decreasing, and hence, for all t,

∆θ · ∇g(θ0) ≤ ∆θ · ∇g(θ0 + t∆θ) ≤ ∆θ · ∇g(θ̂).

Using the convexity of g, this implies that for t1 < t2, g(θ0 + t1∆θ)− g(θ0 +

t2∆θ) ≤ (t1−t2)∆θ ·∇g(θ0) while (t2−t1)∆θ ·∇g(θ+t2∆θ) ≤ (t2−t1)∆θ ·∇g(θ̂).
It follows that for all t1 < t2,

KL(θ0 + t2∆θ, θ0 + t1∆θ) ≤ (t2 − t1)∆θ · (∇g(θ̂)−∇g(θ0)).

This implies that for θi = θ0 + ti∆θ, θi+1 = θ0 + ti+1∆θ, if the condition
KL(θi+1, θi) ≤ klmax is active, then ti+1 − ti ≥ klmax

∆θ·(∇g(θ̂)−∇g(θ0))
. Since ti+1 −

ti ≥ 0 and for all i, ti ≤ 1, this implies that the condition is active a finite
number of time at most. In the case of αmax = 1, this implies convergence in
a finite number of steps. For 0 ≤ αmax < 1, this implies that after some K,
ti+K = (1− αmax)

i(1− tK), and hence exponential convergence of (θi) to θ̂.

B Implementation details
The code described in this section can be found in the publication repo: https://tinyurl.com/surpbayes.

B.1 Further notes on SuPAC -CE
SuPAC -CE can be summarised in the following pseudo-code:

Algorithm 2 Surrogate Catoni solver for exponential families (SuPAC -CE )

Require: λ > 0, θ0 ∈ Θ, θp ∈ Θ, R ∈M(H), Ev = (xi, R(xi))
n
i=1, 0 < αmax ≤

1, 0 < klmax

θ ← θ0
while not converged do

Draw i.i.d. xn+1, . . . , xn+k ∼ πθ

Ev, n← Ev ∪ ((xn+1, R(xn+1)), . . . , (xn+k, R(xn+k))), n+ k
ωi ← π[xi] ▷ Solving nearest neighbour problems
η∗, C = arg infη,C

∑
i≤n ωi(T (xi)−R(xi)− C)2

δθ = θ0 − λ−1η∗ − θ
α̃← sup{α | α < αmax,KL(θ + αδθ, θ) ≤ klmax}
θ ← θ + α̃δθ

end while
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Our implementation is based on the pre-existing code source provided by
Picard-Weibel et al. [2024]. Part of the original code was reworked to fit our new
setting. New classes for exponential families of distributions were introduced, and
implementation of the Gaussian family classes modified accordingly. A modular
and generic solver class for the minimisation of Catoni’s PAC-Bayes bound on
exponential families was introduced, as well as more specific implementations for
probability families outputting Gaussian distributions, using the Mahalanobis
distance when approximating the weights. These solvers rely on closed form
expressions for the Kullback–Leibler divergence and its derivative, inferred from
the normalisation function and its derivatives.

The default weighing approach for the score approximation uses exact 1-NN
for a user specified number of samples ("n_estim_weights" argument), performed
using Faiss library [Douze et al., 2024]. Another weight approximation method,
relying on approximate k-NN solving, is also provided.

The corrected update rule parameter α̃ is estimated by dichotomy, using the
fact that for all θ, δθ, the function α→ KL(θ + αδθ, θ) is not decreasing. The
resulting α̃ is guaranteed to result in a Kullback–Leibler step of less than klmax.

B.2 Experiments
B.2.1 Catoni’s bound minimisation

The implementation of ADM1 from Picard-Weibel et al. [2024] was used to
perform the experiments, and slightly modified to benefit from just-in-time
compilation. The dataset used was the training part of dataset "LF". The
probability family (Gaussian with block diagonal covariance with fixed blocks)
and prior distribution considered in the original paper was used. For SuPAC
-CE , the regularisation hyperparameters were set to klmax = 1 and αmax = 0.5,
while the number of samples generated to evaluate the weights was set to 40 000.
The optimisation algorithm was trained on 296 steps; for the initial step, 160
risk queries were performed, while for all the remaining steps, 32 risk queries
were performed. This larger number of queries for the initial step is due to the
necessity of having a least more evaluations than the dimension of the family of
probability.

Hyperparameters for GD were selected after assessing the grid (per_step, step_size) ∈
{80, 160} × {0.025, 0.05, 0.07} on a preliminary 1600 score queries budget, with
20 repeats. The larger step size 0.07 was rejected due to its erratic behaviour
between repeats, obtaining both optimal and worse GD performance. This
erratic behaviour was also observed for step size 0.05 when estimating gradients
from 80 risk queries. On the other hand, for per_step set to 160, the step size
of 0.025 clearly under-performed compared to the step size of 0.05, although
slightly more stable. This led to the selection of the two sets of hyperparameters,
(per_step=80, step_size=0.025) and (per_step=160, step_size=0.05), which
had similar performances. Both were assessed, and the set of hyperparameters
obtaining the lowest score, (per_step=160, step_size=0.05), was kept for
comparison (see appendix B.2.1).
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Figure 2: Overview of SuPAC -CE . At each step, some new predictors are drawn
from the current posterior approximation and evaluated (top right figure). All
evaluated predictors are then weighted according to the weight of their Voronoi
cell (bottom right figure). These weighted evaluations are used to construct an
optimal approximation of the score through a linear least square task (bottom left
figure). The approximated score is used to update the posterior using a closed
form expression (top left figure). This procedure is looped until convergence
(center).

(a) η = 0.025 (b) η= 0.05 (c) η = 0.07

Figure 3: Preliminary GD optimisation procedures for different choices of
hyperparameters. The evaluations of each optimisation procedure was repeated
20 times; the median performance and 0.2 and 0.8 quantiles are represented.
The performance of SuPAC -CE is given for comparison.
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Figure 4: Comparison of the optimisation procedures as performed by SuPAC
-CE and gradient descent (GD) for the two selected sets of hyperparameters.
Each optimisation procedure was repeated 20 times; the median performance
and 0.2 and 0.8 quantiles are represented. SuPAC -CE was performed with
hyperparameters αmax = 0.5 and klmax = 1.

SuPAC -CE was further compared to Nesterov accelerated gradient descent
(implementation in the publication repo). Starting from the two sets of hyperparameters
preselected for GD, optimisation procedures using a momentum of 0.5, 0.9 and
0.95, and either the original step size or twice the step size were assessed. Each
of these 12 new optimisation procedures was repeated 8 times, and compared to
SuPAC -CE (see appendix B.2.1). For no choice of hyperparameter values did
Nesterov accelerated GD proved more efficient than SuPAC -CE (appendix B.2.1).
The increase of step size in conjunction with the moderate momentum improved
the speed of the optimisation procedure, but at the cost of a higher risk of
optimisation failure, leading to 3 out of 8 runs (resp. 2 out of 8 runs) for 160
simulations per step (resp. 80 simulations per step) with a final objective higher
than the initial objective. Higher momentum led to major instabilities, with less
than 3 runs out of 8 managing to reduce the objective below 0.2 (compared to
0.121 obtained by SuPAC -CE ) for all hyperparameter combinations. For the
original step size, momentum appeared to improve the stability of the procedures
for all setting except moderate momentum for a per step hyperparameter of
80. Higher momentum procedures led to a speed decrease, caused by the larger
number of steps necessary for momentum to build up.

The impact of SuPAC -CE ’s hyperparameters was investigated by running
further optimisation procedures with different choices of hyperparameters. A grid
was assessed, with values of klmax in {0.5, 1, 2} and αmax in {0.25, 0.5, 0.75}, with
each optimisation process repeated ten times (see appendix B.2.1). The resulting
optimisation procedures proved to all have similar performances, with only a
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Figure 5: Comparison of the optimisation procedures as performed by SuPAC
-CE and Nesterov accelerated gradient descent (x axis: number of empirical
risk queries). Each optimisation procedure was repeated 8 times; the median
performance and 0.2 and 0.8 quantiles are represented. SuPAC -CE was
performed with hyperparameters αmax = 0.5 and klmax = 1. Momentum of 0.5,
0.9 and 0.95 were assessed for Nesterov gradient descent. Both the original step
size (η) parameter as well as twice the step size parameter for gradient descent
comparisons were investigated. At twice the step size, all momentum accelerated
procedures proved unstable. At the original step size, the momentum tended
to increase the stability of the procedure at the cost of speed. All Nesterov
accelerated gradient descent procedures assessed were slower than SuPAC -CE
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Figure 6: Comparison of SuPAC -CE with Nesterov accelerated gradient descent
for a variety of hyperparameters choices. Each optimisation procedure was
repeated 8 times; the median performance and 0.2 and 0.8 quantiles are
represented. SuPAC -CE proved to be consistently more efficient for all
hyperparameters values tested. The hyperparameter for SuPAC -CE assessed in
the main part of the publication is highlighted.

slight decrease in speed in the early phase between the most regularized and less
regularized hyperparameters which was below the noise level after the fourth
optimisation step (see appendix B.2.1). Two further sets of slow hyperparameters
values ((klmax, αmax) ∈ {(0.1, 0.9), (0.01, 0.9)}) and fast hyperparameters values
((klmax = 5, αmax = 0.1), (klmax = 10, αmax = 0)) were also assessed, with 8
repeats (see appendix B.2.1). The slow hyperparameters led to more stable
and reproducible optimisation procedures. For the small maximum step size of
klmax = 0.01, the average performance of the optimisation process was similar (i.e.
difference below the noise level) to the performance of the optimisation process
with standard hyperparameters after 2000 risk queries. The highest maximal
step size assessed of klmax = 10 resulted in a final average PAC-Bayes bound
of 0.147± 0.022, with a standard deviation between runs of 0.061, significantly
higher than the standard deviation for the standard hyperparameters (0.0032,
p-value of 1.95e− 09).

Computations were performed using Azure Machine Learning compute
clusters with 32 cores and Intel Xeon Platinum 8272CL processors.

B.3 Meta-Learning experiments
For the meta-learning experiments, the tasks were generated as follow. Empirical
risk functions of form

Rω,A,x0
: x 7→ tanh(h(ω∥A(x− x0)∥2)/10) (6)

with h(x) = cos(x)+x were considered. These are such that x0 is the only global
minima of Rω,A,x0

, while all xs such that ω∥A(x− x0)∥2 = π/2 + 2kπ are local
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Figure 7: Performance of SuPAC -CE with extreme hyperparameters values. Each
optimisation procedure was repeated 8 times; the median performance and 0.2
and 0.8 quantiles are represented. SuPAC -CE exhibited noticeable instabilities
and speed loss for hyperparameters leading to insufficient regularization (blue
curve). Too much regularisation lead to speed decrease in the early phase of the
optimisation procedure (purple curve)

minima. The distributions of the risk parameters are as follow: x0 ∼ N (x̃0,Σ0),
ω ∼ U( 32π,

5
2π) and Ai,j ∼ N (δi,j , σ

2 = 0.052). The mean parameter x̃0 was
initiated at random on the sphere of radius 2, while the covariance Σ0 was
initiated at random as

Σ0 = O × diag(σ2
1 , . . . , σ

2
d)×Ot,

where σ1, . . . , σd−2 = 0.05, σd−1, σd ∼ exp(U(−0.5, 0.5)) and O is drawn at
random amongst orthonormal matrices. The dimension of the predictor space d
is fixed to 8.

The meta training process was performed as follow. The initial calibration
phase for each task was performed in 15 steps, with 100 score queries for the first
five steps and 50 score queries for the remaining steps. The hyperparameters
were set to klmax = 0.5, αmax = 0.3 and 104 samples are used to estimate weights.
This initial meta step used a mini batch size of 10, a maximum meta kl step of 0.2
and step size of λ−1. After all tasks have been trained once, the hyperparameters
for SuPAC -CE were modified: the number of steps was reduced to 4, and αmax

set to 0.7. 20 risk queries are performed on the first and third step, and none on
the second and fourth. This accounts for the fact that the posterior distribution
updates are expected to be small at this stage. The mini batch size is increased
to 20. After 19 epochs, the step size is reduced to 0.5λ−1 and the maximum
meta kl step to 0.1. After 30 more epochs, the step size was reduced to 0.4λ−1,
and trained for a further 100 epochs.

The performance of sequence of priors was assessed in the following way.
40 test tasks were drawn. For each prior, a full independent calibration was
performed on each task, using 20 steps of SuPAC -CE (100 risk queries for the
first 5 steps, 50 for the remaining steps). The resulting posterior performance
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is assessed by computing the bound using 104 fresh evaluations of the risk.
The mean of these performance over the task defines the meta test score. The
dispersion of these test performance between different test task is assessed by
computing the quantiles 0.2 and 0.8 of the test performances at a given prior.
This procedure being quite computationally intensive, only the first ten priors
constructed and afterwards one prior out of five were assessed.

Computations were performed using Azure Machine Learning compute
clusters with 16 cores and Intel Xeon Platinum 8272CL processors.
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