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Lipid droplets (LDs) are organelles composed of a hydrophobic core (mostly triacylglycerols and steryl
esters) delineated by a lipid monolayer and found throughout the tree of life. LDs were seen for a long
time as simple energy storage organelles but recent works highlighted their versatile roles in several
fundamental cellular processes, particularly during stress response. LDs biogenesis occurs in the ER and
their number and size can be dynamically regulated depending on their function, e.g. during develop-
ment or stress. Understanding their biogenesis and degradation mechanisms is thus essential to better
apprehend their roles. LDs degradation can occur in the cytosol by lipolysis or after their internalization
into lytic compartments (e.g. vacuoles or lysosomes) using diverse mechanisms that depend on the
considered organism, tissue, developmental stage or environmental condition. In this review, we sum-
marize our current knowledge on the different LDs degradation pathways in several main phyla of model
organisms, unicellular or pluricellular, photosynthetic or not (budding yeast, mammals, land plants and
microalgae). We highlight the conservation of the main degradation pathways throughout evolution, but
also the differences between organisms, or inside an organism between different organs. Finally, we
discuss how this comparison can help to shed light on relationships between LDs degradation pathways
and LDs functions.
© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Lipid droplets (LDs) are found throughout the tree of life [1e3].
They contain a hydrophobic core, mostly composed of tri-
acylglycerols (TAG) and steryl esters (SE), surrounded by a mono-
layer of membrane glycerolipids. Many proteins are found at their
surface, either embedded in the lipid monolayer or associated
through protein-lipid or protein-protein interactions [4,5]. For a
long time, LDs were seen as simple storage organelles, used to
absorb the excess of energy uptake (e.g. adipose tissues) or to
provide energy to sustain developmental programs (e.g. plant seeds
germination) [6,7]. This view has been progressively expanded to
account for their central role in lipid metabolism and actual
knowledge highlights the wide diversity of LD functions. In
particular, LDs appear as essential in response to a multiple variety
of stresses, of both abiotic and biotic origin, in algae and plants as
well as inmammals and yeast [8e11]. However, these functions can
vary greatly depending on the considered organism, tissue, envi-
ronmental condition or even between LDs within the same cell.

In order to better understand LDs functions it is essential to
apprehend their life cycle, from biogenesis to degradation. LDs
biogenesis starts with the accumulation of neutral lipids between
the two leaflets of the endoplasmic reticulum (ER) membrane;
when their concentration increases, these neutral lipids coalesce
into lenses and eventually bud from the ER, a process that can occur
spontaneously but is promoted by proteins, in particular Seipin
(reviewed in Refs. [12,13]). The Seipin protein functions, controlling
the ER-LD junction and the TAG flux from ER to LDs, appear
conserved in all eukaryotic cells (reviewed in Ref. [14]). Yet in-
teractions of Seipin with other proteins emerge as potential
important factors to modulate its activity and the composition of
newly formed LDs [14,15].

Following their biogenesis, LDs fate can vary greatly. In oleagi-
nous dry seeds, and to a lesser extent in adipocytes, which serve as
storage, LDs are relatively stable organelles. By contrast, in unicel-
lular organisms, and in most tissues from plants and animals, LDs
can be very dynamic, and their number and size can quickly vary to
respond to environmental cues (e.g. stress) or to developmental
programs that trigger their formation or responsive remobilization.
To answer these rapid LDs turnovers and their specific functions,
two main degradation pathways have evolved in all eukaryotic
groups: lipolysis and lipophagy [8,16e19]. The relative contribu-
tions of these pathways are difficult to estimate as they can vary
depending on organism, tissue and condition considered. More-
over, while lipolysis has been studied for a long time, lipophagy
studies are more recent, which may skew our understanding of LDs
degradation.Wewill aim in the present review not to be exhaustive
but to describe the different degradation pathways, highlighting
their conservation throughout evolution, but also the differences
between organisms, or inside an organism between different or-
gans. Finally we will reflect on how LDs degradation relates to the
functions of LDs. To this aim, we will focus on very different model
2

organisms: the budding yeast Saccharomyces cerevisiae, mammals
for animal models, angiosperms with the major model Arabidopsis
thaliana and finally microalgae with two very different groups,
green algae, in particular Chlamydomonas reinhardtii, and strame-
nopiles, with a focus on diatoms, in particular Phaeodactylum
tricornutum.

2. LD degradation through lipolysis

The first way to degrade LDs is to degrade their hydrophobic
core, mainly composed of TAG and SE, through lipolysis [17]. Three
main steps can be distinguished (Fig. 1): 1) removal or remodeling
of the LDs protein coat, 2) lipid degradation (lipolysis sensu stricto)
and 3) subsequent degradation of released fatty acids (FA) in the
peroxisome and/or mitochondria. In this section, we will focus on
the central step, that is SE and TAG hydrolysis, while the other steps
will be discussed in section 3.

2.1. Steryl esters degradation

Several enzymes involved in SE degradation have been identi-
fied in yeast, namely Tgl1, Yeh1, and Yeh2, but their study suggests
that SE degradation is mainly important for sterol homeostasis
with little impact on the global dynamics of LDs ([20e23], reviewed
in Ref. [24]). Enzymes involved in the breakdown of plant SE are
still unknown, although the LD-ASSOCIATED LIPASE (LIDL) 1 and 2,
identified by quantitative proteomic analysis of LD-enriched frac-
tions derived from A. thaliana seedlings, are homologs of Tgl1 and
have been hypothesized to function as sterol esterases [25]. In
mammals, SE exist as cholesteryl-esters (CE) and specific enzymes
involved in their breakdown have been identified. Ghosh et al. [26]
described a neutral cholesteryl ester hydrolase (CEH) in human
macrophages named CES1, that is located at the surface of LDs and
mobilizes LD-contained CE [27]. CES1 overexpression results in an
increased rate of cholesterol efflux to ApoA1, HDL (high density
lipoproteins) and serum [28], suggesting that CES1 can regulate
both the CE content of LDs and the cholesterol efflux. KIAA1363/
NCEH1/AADACL1 has also been identified as a CE hydrolase as its
knock-out (KO) in mice results in a decreased CE activity [29], while
its overexpression in macrophages markedly decreases the CE
content [30]. However, its implication in macrophage CE meta-
bolism is debated, and other yet unidentified CEHmay exist [31]. In
general, the importance of CE hydrolases in LDs degradation re-
mains controversial (reviewed in Ref. [17]).

2.2. TAG degradation

2.2.1. Canonical TAG degradation
Three main lipolysis steps are required for TAG degradation: to

diacylglycerol (DAG), monoacylglycerol (MAG) and finally glycerol,
with fatty acids (FA) released at each step (Fig. 1).

In mammals, the primary step of TAG hydrolysis to DAG is



Fig. 1. Schematic representation of lipolysis mechanism. 1) Remodeling of the protein coat surrounding the LD that can include removal of proteins (e.g. oleosins in seeds, Perilipin2
and 3 in mammals) or post-translational modifications (e.g. Perilipin1 and 5 in mammals). This remodeling can induce recruitment of additional factors to the LDs; 2) Degradation of
triacylglycerol (TAG) into diacylglycerol (DAG) and then monoacylglycerol (MAG) by membrane-localized enzymes, eventually leads to the release of glycerol and fatty acids (FA). A
minor contribution is given by the degradation of steryl esters (SE). 3) FA can subsequently be degraded by b-oxidation, which can occur in the peroxisome, mitochondria or both
depending on the considered organism.
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catalyzed by the adipose triglyceride lipase (ATGL) [32], encoded by
the PNPLA2 (patatin-like phospholipase domain-containing protein 2)
gene in humans (Table 1). KO of ATGL in mice results in a drastic
decrease of lipolysis both in whole-body and specific adipocytes
[33]. Accordingly, human mutations that disrupt ATGL activity are
associated with decreased rates of glycerol and FA formation in
response to lipolytic agents as well as with neutral lipid storage
disease and myopathy [34]. Homologs of ATGL in other organisms
have beenwidely identified and their function as major TAG lipases
has also been demonstrated (Table 1). TGL4 is identified as the yeast
ATGL homolog [35], but other patatin domain containing lipases
have been identified. The major TAG lipase activity is ensured by
TGL3, which shows unspecific activity towards TAG or even DAG
[36]. TGL4 on the other hand shows a preference for TAG containing
C14 and C16 acyl-chains, while a third enzyme, TGL5, is involved in
the breakdown of TAG containing very long chain fatty acids C26
[35]. Both TGL3 and TGL5 also exhibit acyl-transferase activities,
respectively towards lyso-phosphatidylethanolamine (LPE) and
lyso-phosphatidic acid (LPA) [37]. In plants, the patatin-like lipase
SUGAR DEPENDENT1 (SDP1) was identified in Arabidopsis thaliana
3

as the major lipase involved in TAG mobilization during seed
germination [38], and a second homolog named SDP1-LIKE (SDP1L)
was later identified [39,40]. Together, SDP1 and SDP1L contribute to
over 95 % of TAG hydrolysis activity during seed germination [39],
and SDP1 also appears to be important for LD turnover in vegetative
tissues, in particular roots and stems [41]. Identification of lipases in
microalgae is more recent. LiSDP1 was identified in the LD prote-
ome of the green alga Lobosphera incisa [42]. More recently, LIP4
was identified in the green alga Chlamydomonas reinhardtii as a
homolog of SDP1, with which it shares 44 % amino acid identity;
LIP4 is involved in TAG remobilization during nitrogen starvation
recovery as well as in TAG global homeostasis [43]. Similarly, SDP1
homologs have been identified in secondary endosymbionts, but
appear to have different importance in TAG breakdown. Indeed,
while in the diatom Phaeodactylum tricornutum, TGL1 seems to play
amajor role, similar to ATGL or SDP1 [44], its role seemsmuchmore
limited in Fistulifera solaris [45]; additionally, study of NoTGL1 and
NoTGL2 in Nannochloropsis oceanica shows that these ER-localized
enzymes modulate TAG synthesis at the ER by degrading de novo
synthesized TAG [46].



Table 1
Summary of the proteins shown to play a role in lipid droplet degradation by lipolysis in Homo sapiens, Saccharomyces cerevisiae, Arabidopsis thaliana, Chlamydomonas
reinhardtii and Phaeodactylum tricornutum.

Name Function References

Lipases
H. sapiens ATGL TAG lipase [32]

HSL Hormone-sensitive lipase recruited at LDs surface upon cAMP stimulation, degrades preferentially DAG and
cholesterol esters

[47]

PNLPA3 TAG and DAG lipase [48]
MGL MAG lipase [49]
CES1 TAG lipase and cholesteryl-esterase activities [26,27]

S. cerevisiae TGL4 TAG lipase [35]
TGL3 TAG and MAG lipase þ acyltransferase (LPE) [36]
TGL5 TAG lipase þ acyltransferase (LPA) [35]
Ldh1 TAG lipase, global lipid homeostasis [50,51]
Ayr1 TAG lipase [52]
Yju3 MAG lipase [53]
Yeh1 and 2 Sterol-esters hydrolases [20]
Tgl1 Sterol-esters hydrolases [20,54]

A. thaliana SDP1 TAG lipase, essential for seed germination [41]
SDP1-LIKE (SDP1L) TAG lipase; overlapping function with SDP1 during seed germination, specific in the roots and leaves of mature

plants
[39]

AtOBL1 TAG, DAG and MAG lipase located at LDs surface; important for pollen tube growth [55]
MAGL8 MAG lipase associated with LDs in germinating seeds and in leaves [56]
At4g18550/ATDSEL DAG and MAG lipase; involved in the regulation of storage oil mobilization and the establishment of early seedlings [57]
LIDL1 and LIDL2 Putative sterol-esters hydrolases; located at LDs [25]

C. reinhardtii LIP4 TAG lipase [43]
LIP1 DAG lipase [58]

P. tricornutum TGL1 TAG lipase [44]

Coat proteins and coat proteins remodeling
H. sapiens PLIN1 LD coat protein removed through phosphorylation upon induction of LDs degradation [59]

PLIN2-3 LD coat proteins degraded through chaperone-mediated autophagy upon induction of LDs degradation [60]

A. thaliana OLE1-5 Oleosins, need to be removed for TAG degradation [61,62]
MIEL1, PUX10 and
CDC48A

Oleosins degradation [63e65]

C. reinhardtii MLDP LD coat protein, possible role in control of lypolysis [66]

P. tricornutum StLDP LD coat protein, possible role in control of lypolysis [67]

Lipolysis regulators
H. Sapiens CGI-58 ATGL activator [68]

S. cerevisiae Lct1 CGI-58 homolog [69]
Tld1 Negative regulator of Tgl3 [70]

A. thaliana VPS29, PEX11e and
FREE1

Regulate the translocation of SDP1 from peroxisomes to LDs through peroxisomal tubular extensions [71,72]

CGI-58 Regulates TAG breakdown; interacts with PXA1 at peroxisome surface [73]

C. reinhardtii CHT7 Major regulator of TAG remobilization during quiescence exit upon nitrogen resupply [74]
DTH1 regulator of TAG degradation, located at the LD [75]
LACS3 regulator of TAG degradation, located at the peroxisome [76]

P. tricornutum CGI-58 Located to mitochondria and promotes de novo fatty acid synthesis and TAG degradation through mitochondrial b-
oxidation

[77]
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Subsequent steps including DAG hydrolysis to MAG and MAG
hydrolysis to glycerol and FA have been less well characterized. In
mammals, the hormone-sensitive lipase (HSL, encoded by the LIPE
gene) is the major DAG lipase but it also has a high activity in the
hydrolysis of CE, and a lower one towards TAG, MAG, retinyl esters
and short-chain acyl esters ([78], reviewed in Ref. [79]). Consis-
tently, whole-body deficiency in HSL leads to DAG accumulation in
the adipose tissue as well as decreased lipolysis in mice [80] and
human [81]. Monoglyceride lipase (MGL) then catalyzes the hy-
drolysis of MAG, and can use both sn-1 MAG and sn-2 MAG, in
which FA are esterified to the terminal or middle hydroxyl group of
the glycerol backbone, respectively, as substrates [82,83]. In yeast,
Yju3 has been identified as the functional ortholog of MGL [53]. In
higher plants, several enzymes with DAG/MAG lipase activities
have been identified, with different specificities [55e57,84]. In
4

particular, in A. thaliana, a cytosolic member of the DAD1-like acyl-
hydrolase family encoded by At4g18550 demonstrates a specific
ability to hydrolyze DAG andMAG at the sn-1 position and is crucial
in the establishment of early seedlings [57]. The MAG lipase
AtMAGL8 plays an important role in seeds and exhibits a notable
substrate preference for MAG containing C20:1 fatty acids [56].
Finally inmicroalgae, few reports of DAG orMAG lipases exist, apart
from the non-selective DAG lipase CrLIP1 in C. reinhardtii [58]. The
development of bioinformatics tools has however allowed the
identification of many new potential lipases that remain to be
investigated [85,86].
2.2.2. Alternative enzymes and tissue specificities
In multicellular organisms, the role of lipases can vary from one

tissue to another. In land plants, studies on LDs were primarily



C. Amari, M. Carletti, S. Yan et al. Biochimie xxx (xxxx) xxx
focused on seeds germination but such interest has since expanded
to other tissues, in particular the pollen tube, where LDs are
essential, and leaves, where LDs play roles in response to various
abiotic and biotic stresses (for review: [9,87]). Oil body lipase 1
(AtOBL1 in A. thaliana) has been identified as a TAG lipase, but can
also degrade DAG and MAG with no obvious substrate specificity.
Its role in seeds is very minor, but it is essential in pollen tubes [55].
Alternatively to lipases, a LD-specific lipoxygenase (LOX)-depen-
dent pathway for lipid mobilization during the early stages of seed
germination has been proposed in various plant species, such as
Arabidopsis, watermelon, cucumber, wheat, barley, potato, tomato,
sunflower and tobacco. This pathway allows direct oxygenation of
linoleate residues directly on TAG and the coupling of TAG degra-
dation with the generation of oxylipins, involved in signaling, or
phytoalexins [88,89]. In mammals, the canonical pathway through
ATGL and HSL accounts for over 90 % of TAG degradation in adi-
pocytes [90,90]. Many other lipases have been identified, but their
importance even in other tissues remains poorly evaluated
(reviewed in Ref. [17]). For instance, PNLPA3, a close relative of
ATGL that can hydrolyze TAG and DAG [48], is expressed in both
white and brown adipose tissue in mice, is highly abundant in
human hepatocytes and is associated with liver diseases; however,
PNLPA3 KO has little impact and deleterious effects are observed as
results of dominant negative mutations that increase its association
with comparative gene identification 58 (CGI-58) to the detriment
of ATGL association and activation [91e93] (cf. sections 3.1 and
3.2.2).

3. Lipolysis control mechanisms

Lipolysis requires tight control to ensure that LDs breakdown
answers to the cell/organism needs at a given time and/or in
response to external or internal cues. As shown on Fig. 1, lipolysis
involves three main steps, all of which are regulated through
different mechanisms.

3.1. Removal or remodeling of the lipid coat

In plant seeds, LDs are very important to ensure proper germi-
nation and the establishment of the developing seedling, thus
regulating the precise timing and sequence of LDs degradation is of
high importance. Plant seed LDs are covered by specific proteins
called Oleosins [7,94], which can protect stored TAG from lipolytic
enzymes [61,62] and are absent from LDs in vegetative tissues. The
removal of Oleosins is tightly regulated through initial ubiquitina-
tion and subsequent proteasome degradation [95,96]. It involves
the sequential recruitment of MYB30-interacting E3 ligase 1
(MIEL1), plant ubiquitin regulatory X (UBX) domain-containing
protein10 (PUX10) and cell division cycle 48A (CDC48A) ATPase
[63e65] (Table 1). However, protection of TAG by Oleosins is not
tight-proofed [97] and additional mechanisms are required to
regulate lipolysis.

Similarly to Oleosins, Perilipins (PLIN), the major proteins found
at the surface of LDs [98] in mammals, participate in lipolysis
regulation ([99], reviewed in Ref. [100]). PLIN2 and 3 are degraded
by another mechanism called chaperone-mediated autophagy
(CMA): in vivo studies revealed that CMA degradation of both
proteins is increased during starvation, and that their degradation
enhances LDs degradation through lipolysis, but also through
macroautophagy (see section 4) [60] (Table 1).

Yet, protein coat removal is not a general rule. PLIN1, the major
coat protein in white adipocytes, can be phosphorylated by protein
kinase A (PKA), which is activated by cyclic Adenosyl Mono-
Phosphate (cAMP) signaling in response to b-adrenergic stimula-
tion (reviewed in Ref. [59]). This phosphorylation triggers the
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dissociation of PLIN1 and the major ATGL activator CGI-58 ([68]
reviewed in Ref. [101]). A similar mechanism has been shown for
PLIN5, which is important in oxidative tissues (heart, skeletal
muscle, liver, brown adipose tissue) ([102e104], reviewed in
Ref. [100]). In land plants, Lipid droplet associated protein (LDAP)
and LDAP-interacting protein (LDIP) are the major LDs proteins in
vegetative tissues, where they play important roles for LDs ho-
meostasis [105e107] but their potential involvement in LDs
degradation remains to investigate. Finally, in the diatom Phaeo-
dactylum tricornutum, Stramenopile Lipid Droplet (StLDP) protein,
which is the main coat protein [108e110], seems required for
proper LDs degradation [67], although the mechanism remains
unknown.

3.2. Regulation of lipolytic enzymes activity

3.2.1. In unicellular organisms
In unicellular organisms, cell cycle appears as a major regulator

of metabolism and particularly of lipolysis. Indeed, in budding
yeast, the TAG synthesis enzyme Pah1 is inhibited [111,112] while
the TAG lipase TGL4 is activated [113] by Cdk1/Cdc28 during log
phase. This regulation is consistent with the central role of TAG in
lipid metabolism, as a source of building blocks for membrane
lipids [114]. In photosynthetic microorganisms, light is another
essential growth factor and circadian rhythms play important roles
in the regulation of the cell cycle and of energy metabolism. This
has beenwell shown in the diatom P. tricornutum [115e118], where
LDs form during the day and are degraded during the night, when
cell division occurs. Yet this coordination does not imply direct
regulation of TAG degradation by cell-cycle dependent mecha-
nisms. Such regulation has only been shown so far in the green alga
Chlamydomonas reinhardtii, in which the regulatory protein
COMPROMISED IN TAG HYDROLYSIS7 (CHT7) [74], involved in the
exit of quiescence following nitrogen resupply, appears as a major
regulator of TAG remobilization, linking the resumption of cell cycle
and TAG hydrolysis.

This last examples also shows the importance of lipolysis
following nutrient replenishment in microalgae. Another protein,
Delayed in Triacylglycerol Hydrolysis (DTH1), which has only been
identified in Chlorophyceae, localizes to the LDs and is a major
player in lipolysis following nitrogen resupply in C. reinhardtii;
however, although it is associated with the early steps of LDs
degradation, upstream of b-oxidation, its exact function remains
elusive [75].

Finally, finer regulation can also occur in unicellular organisms,
for example to degrade specific LD subtypes. In budding yeast, it
has recently been shown that the TG-associated LD protein 1 (Tld1)
protein localizes specifically to LDs containing TAG but not SE and
can specifically inhibit their degradation by TGL3 [70].

3.2.2. In multicellular organisms
In mammals, hormonal signals control LDs lipolysis through

different mechanisms (reviewed in Ref. [17]). Both ATGL and HSL
are regulated at the transcriptional level and can be upregulated in
response to endocrine, paracrine or autocrine factors including
hormones, cytokines and neurotransmitters. Peroxisome
proliferator-activated receptor g (PPARg) in particular can promote
lipase expression in response to starvation [119,120]. HSL expres-
sion can also be activated by sterol regulatory element binding
proteins (SREBPs) [121]. In addition to this transcriptional regula-
tion, the activity of lipases is regulated post-translationally, both
directly and indirectly through cyclic Adenosyl MonoPhosphate
(cAMP) signaling. Indeed, protein kinase A (PKA), which is activated
by cAMP in response to b-adrenergic stimulation, can phosphory-
late HSL in addition to PLIN1 (cf. section 3.1). This phosphorylation
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triggers the relocation of HSL to LDs as well as activation of ATGL by
CGI-58, that follows CGI-58 and PLIN1 dissociation ([68] reviewed
in Ref. [101]). But ATGL can also be regulated by intracellular
glucose levels through polyubiquitination, as glucose depletion
leads to decreased assembly of the Golgi-located E3-ligase complex
CUL7FBXW8, reducing ATGL polyubiquitination, which increases its
stability and enhances lipolysis [122].

In plant seeds, the main lipase SDP1 is initially localized on
peroxisomes. Its relocalization to LDs requires the formation of
peroxisomal tubulations called peroxules [71,123]. Recent advances
have shown involvement of the endosomal sorting complex
required for transport (ESCRT) machinery and PEROXIN 11e
(PEX11e) in the formation of these tubules [72] but the triggering
mechanisms remain elusive. Germination defects in SDP1 mutants
can be rescued by providing sugar, hence the protein's name [38],
but, like in mammals, sugar levels can modulate SDP1 activity,
although the mechanism is very different. Indeed, sucrose sup-
plementation inhibits the interactions between peroxisome and
LDs, and thus the lipolytic activity of SDP1 [123].

3.3. Interactions with mitochondria and/or peroxisome and
subsequent fate of FA

The peroxisomal localization of SDP1 in higher plants provides a
direct link between lipolysis sensu stricto and further degradation of
FA by b-oxidation, which occurs in the peroxisome in most or-
ganisms, but also in mitochondria in animals and diatoms (Fig. 1).
Direct interactions between LDs and FA degradation organelles
appear as an important way to regulate the fate of FA released
through lipolysis.

In mammals, mitochondrial b-oxidation appears as the major
pathway, feeding ATP-synthesis [124], while the peroxisome is
responsible for the degradation of very-long chain fatty acids
(VLCFA) and participate in cellular thermogenesis [125]. Many
proteins participating in contact sites between LDs and these 2
organelles have been described (for review: [126]). In particular,
both PLIN 2 [127] and PLIN5 [128] have recently been shown to
participate in the tethering of LDs and mitochondria to promote FA
b-oxidation following energy deprivation. Another LD protein,
Spastin, participates in the tethering of LDs and peroxisome; as for
SDP1 relocalization, this association involves ESCRT components
[129]. A direct link between lipolysis and peroxisome is also pro-
vided by the role of PEX5 in recruiting ATGL to LDs upon fasting
[130]. As these different systems have been investigated and shown
in different cell types, it remains to investigatewhether they can act
in synergy or reflect different strategies allowing to fulfill specific
needs of cells.

Proteins tethering LDs and b-oxidation organelles are not
known in microalgae. Yet, some proteins linking lipolysis and b-
oxidation have been identified. We have previously mentioned the
importance of CGI-58 in regulating ATGL in mammals (see sections
3.1 and 3.2.2). CGI-58 homologs have been identified in A. thaliana
[131], yeast [69] and microalgae [77,132] but their localizations and
functions differ. Ict1, the yeast homolog of CGI-58, was originally
described as an Acyl-CoA-dependent lysophosphatidic acid acyl-
transferase [133]. In A. thaliana, CGI-58 function in TAG breakdown
is conserved [39,131] but unlike its mammalian counterparts, it
localizes to peroxisome and interacts with the peroxisomal ABC
transporter (PXA1) [73]. Plant CGI-58 seems to play only a minor
role in seeds LDs breakdown, but its loss causes a major effect in
plant leaves [131]. In diatoms, CGI-58 functions seem to diverge.
Indeed, while reduction of CGI-58 homolog levels in the diatom
Thalassiosira pseudonana has the expected effect of reducing TAG
hydrolysis [132], the overexpression of the P. tricornutum homolog
also leads to an overaccumulation of TAG; moreover, CGI-58 is
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reported to be localized to mitochondria and the authors suggest
that it plays a role in promoting de novo fatty acids synthesis as well
as TAG degradation through mitochondrial b-oxidation [77]. The
localization and function of CGI-58 homologs in plants and diatoms
suggests that these proteins could participate in tethering LDs and
respectively peroxisome and mitochondria, though such role re-
mains to be investigated.

Finally, in the green alga C. reinhardtii, the long chain acyl-coA
synthetase 3 (LACS3), which is located in the peroxisome and
links TAG degradation and peroxisomal FA b-oxidation could be an
interesting candidate for tethering of LDs and peroxisome [76].

4. Lipophagy

Autophagy is a general process to target the degradation of
specific organelles or compounds (for review: [134,135]). Initially
described in yeast and mammals, autophagy core components are
well conserved in plants (for reviews, see Refs. [136e138]) and
algae (for review [139]). In plants, autophagy plays an important
role in response to biotic and abiotic stresses. In agreement, plants
having a decrease in autophagy flux usually present a higher
sensitivity to many stresses including heat, drought and nutrient
stresses, likely due to the role of this process in cell compounds
recycling and damaged or unwanted organelles removal under
harsh environments (for reviews, see Refs. [137,140]). The link be-
tween autophagy and LDs is complex as autophagy can be involved
in both LDs biogenesis and degradation and LDs can also play a role
in autophagy by providing lipids for autophagosome biogenesis (for
review: [141]). Here we will focus on the role of autophagy in LDs
degradation.

Regulation of lipid metabolism through autophagy, also known
as lipophagy, has only been shown quite recently [142,143]. Several
autophagy, and subsequently lipophagy, pathways can be distin-
guished. Macro- and micro-autophagy were initially described
based on electronic microscopy observations (for review: [144]).
Macroautophagy has been known for a long time [145]. It involves
membrane elongation and the formation of an autophagosome,
that will engulf the targeted organelle, and fuse with lysosomes in
mammals, or vacuoles in other organisms, to direct their degra-
dation. By contrast, microautophagy involves direct contact of the
targeted organelle with lysosomes or lytic vacuoles and their sub-
sequent engulfment in these lytic compartments. The use of these
two pathways for LDs degradation differs between organisms.
While macrolipophagy seems to be a major process in mammalian
cells, LDs degradation by different microlipophagy processes has
been described in yeast, plants and microalgae. It should be how-
ever noted that lipophagy processes only start to be studied in
some organisms and that the current view is probably still very
partial.

4.1. Macrolipophagy in mammals

In mammals, macrolipophagy, also known as lysosome-
mediated acid lipolysis, has been well described in the liver,
where it is important to control intracellular lipid storage, free
lipids and energy homeostasis (Fig. 2A) (for review: [146]). It in-
volves the Lysosomal acid lipase (LAL) [147], encoded by the Lipa
gene. While LAL is ubiquitously expressed, its highest expression is
in macrophages and hepatocytes. LAL can degrade most compo-
nents of LDs, including TAG and DAG but also steryl and retinyl
esters ([148e150] reviewed in Ref. [17]). LDs degradation by LAL
follows targeting of LDs to lysosomes through the classical mac-
roautophagy route, that relies on the evolutionarily conserved
autophagy-related genes Atg [151]. It is triggered in response to
starvation via several signaling pathways, including repression of
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the mTOR (mechanistic target of rapamycin kinase) complex 1
(MTORC1) [152,153], and activation of protein kinase AMP-
activated catalytic subunit (PRKA)/adenosine monophosphate-
activated protein kinase (AMPK) [154,155]. These in turn activate
the ULK1/Atg1 (unc-51 like autophagy activating kinase 1) kinase
complex [156,157], leading to the formation of a phagophore, which
will evolve in forming the nascent autophagosome [158]. Specif-
ically, the ULK1 complex phosphorylates and activates the class III
phosphatidylinositol 3-kinase (PtdIns3K) complex, composed of
Beclin-1/Vps30/Atg6, PIK3R4/VPS15, Atg14, PIK3C3/VPS34,
AMBRA1 and NRBF2 [159]. Recruitment of this complex and pro-
duction of a pool of phosphatidylinositol 3-phosphate (PtdIns(3)P)
at ER extensions called omegasomes promotes the recruitment of
PtdIns3P-binding proteins, such as ZFYVE1/DFCP1 (zinc finger
FYVE-type containing 1/double FYVE domain e containing protein
1) [160] and WIPI2 (WD repeat domain, phosphoinositide inter-
acting) protein [161]. WIPI2/Atg18 will then recruit and promote
the assembly of the Atgl12-5-16L1 complex [162] which acts as an
E3-like ligase and recruits the E2-like protein Atg3 for the conju-
gation of the members of the MAP1LC3/LC3 (microtubule associ-
ated protein 1 light chain 3), also called Atg8, protein family to
phosphatidylethanolamine (PE) [163]. LC3 proteins are important
for autophagic cargo selection, phagophore elongation and closure.
Last, autophagosomes appear to traffic along microtubules in
higher eukaryotes, eventually targeting and fusing with lysosomes
following a SNARE mechanism [164].

Several proteins involved in the recognition of LDs for macro-
lipophagy degradation have been identified (Table 2) but most of
them are known as selective autophagy receptors, not specific of
lipophagy. This is the case of the adaptator SQSTM1/p62 [165], as
well as NBR1 and Optineurin [166]. In addition to these, some
lipophagy-specific cargo recognition proteins have been identified
in different tissues and conditions. The LD protein ancient ubiqui-
tous protein 1 (AUP1) associates with a E2-ubiquitin ligase and can
trigger LDs aggregation [167,168], potentially forming aggresomes
to promote lipophagy [166] Moreover, AUP1 acts as a lipophagy
cargo recognition protein following viral infection [169] and has
been suggested as a potential target for therapeutic treatment of
COVID-19 [170]. ORP8, which is involved in LDs biogenesis at
mitochondria-associated ER membrane subdomains [171], can be
phosphorylated by AMPK, promoting its role as a lipophagy cargo
protein [172]. Finally, two proteins, whose mutants cause heredi-
tary spastic paraplegia diseases, have been shown to act as cargo
recognition proteins in lipophagy in the brain: DDH2 [173] and
Spartin [174]. The identification of specific lipophagy cargo recog-
nition proteins is of particular interest to understand the regulation
of LDs degradation by lipophagy, and in particular the targeting of
specific LD populations.

As in lipolysis, PLIN proteins are modified and or degraded to
allow lipophagy. PLIN 2 protects LDs from lipophagy [175] and the
degradation of PLIN2 and 3 by chaperone mediated autophagy can
promote both association of ATGL (as described in section 3) and
LC3 proteins at the surface of LDs [60,176]. Moreover, in addition to
its above mentioned role, Spartin acts as an adaptator for PLIN2
ubiquitination [177]. PLIN1 colocalizes with p62 [165] and its
phosphorylation is necessary to allow Rab7 docking [178], that
participates in autophagosome maturation [179], together with
other members of the Rab GTPase family like Rab10, 25 and 32
(reviewed in Ref. [146]) (Table 2).

4.2. Microlipophagy in mammals and yeast

The prevalence of macrolipophagy appears specific to mammals
as in all other organisms, lipophagy mainly occurs through path-
ways related to microautophagy.
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Microlipophagy was thought to be absent from mammalian
cells, but some recent evidence have shown that this pathway plays
a significant role in LDs degradation in mammal liver hepatocytes
[180]. Indeed, in those cells LDs and lysosomes can form transient
contacts that usually last 30e60 s and that do not depend on the
canonical macroautophagic machinery pathway, both in presence
or absence of nutrients.

In budding yeast, actors and mechanisms involved depend on
the condition or stress promoting microlipophagy (Table 2).
Microlipophagywas observed in response 1) to nutrients starvation
triggered by cell entry into stationary phase or by acute nitrogen or
glucose depletion [181e185]; 2) to ER stress mediated by lipid
imbalance in a strain with a deficiency in phosphatidylcholine (PC)
synthesis, or by the addition of dithiothreitol (DTT) or tunicamycin
(TUN), an inhibitor of ER protein glycosylation [186e188] or 3) to
diauxic shift triggered by yeast transfer from a fermentative to a
respiratory media [189].

Microlipophagy requires the targeting of LDs and attachment to
the vacuole membrane, followed by the engulfment of the LDs by
an inward invagination of the vacuolar membrane in the lumen
(Figs. 2Be1). After scission of the vacuole membrane, the LD is
released in the vacuole lumen surrounded by the vacuolar mem-
brane and is then degraded [190,191].

During microlipophagy induced by nutrient starvation, LDs
were shown to be recruited at specific microdomains formed in the
vacuolar membrane, the liquid-ordered (Lo) microdomains, before
their inward budding to promote LD internalization. Lo domain
formation is essential for efficient internalization of LDs into vac-
uoles under nutrient stress and lipid imbalance (Figs. 2Be3)
[185,187]. Many proteins required for the formation of these
microdomains were identified and their deletion negatively im-
pacts microlipophagy (Table 2) [181,185,192,193]. Lo microdomains
are enriched in sterols, contain sphingolipids, that are important for
their formation [185,187,193e195] and also PtdIns(3)P and phos-
phatidylinositol-4-phosphate (PtdIns(4)P) located in the cytosolic
leaflet [183,196]. Vacuolar membrane are usually poorly enriched in
sterols and sphingolipids implying that these lipids have to be
transported to the vacuole membrane when required to form Lo
microdomains [194,197]. Several lipid sources and transport
mechanisms were proposed: 1) transport from the lumen of sterols
coming from the degradation of intraluminal vesicles (ILV) origi-
nating from the fusion of sterol-enriched multivesicular bodies
(MVB) or from the degradation of LDs after their internalization by
two vacuolar sterol transporters, Npc2 and Ncr1 [183,187,198]; 2)
transport through non-vesicular pathway, as exemplified by Lam6,
a sterol transporter located at the nucleo-vacuolar junction and
involved in Lo microdomains formation [192]; 3) transport to the
vacuole by autophagy, as autophagosomes that fuse with the vac-
uole membrane could be a source of sphingolipids and sterols
[182,184,185,197]. The involved mechanisms depend on the con-
dition used to induce microlipophagy. Recently, the LD surface
proteins Ldo16 and Ldo45, also named LDOs for LD organization,
were shown to interact with the vacuolar protein Vac8 and to
promote vacuole-LD contact site (vCLIP) formation [199,200]. LDOs
are also involved in LD biogenesis as they are associated to the
Seipin complex during logarithmic phase [201] and their progres-
sive dephosphorylation when yeasts enter the stationary phase
promotes vCLIP formation and lipophagy induction [200]. There-
fore, LDOs localization and function could be regulated by phos-
phorylation dependent on the metabolic status of the cells,
connecting LD synthesis to LD degradation.

The mechanisms involved in microlipophagy during ER stress
under induction by DTT or TUN present significant differences
compared to the ones occurring under nutrient stress. First of all,
neither the core autophagy components nor the formation of Lo



Fig. 2. Overview of lipophagy mechanisms in differents organisms. A) Macrolipophagy has been described in mammals: after the formation of the phagophore, the autophagosome
completely surrounds the LDs and eventually fuses with lysosomes. B) Microlipophagy has been observed in several eukaryotic organisms, however several mechanisms have been
described 1) Specific proteins bind to the LD coat proteins and direct it to the lytic compartment where it is recognized by specific receptors. This broad and simple description
matches what has been described in A. thaliana, where the coat protein CLO1 appears to regulate addressing to the vacuole, possibly interacting with Atg8, and in yeast, where the
LD proteins Ldo16 and Ldo45 can directly bind to the vacuolar protein Vac8 to trigger microlipophagy. 2) In yeast, in response to endoplasmic reticulum (ER) stress, the vacuole
fragments into smaller vesicles that organize around the LDs, envelope them and form invagination which release the LDs into the vacuolar lumen following membrane scission; 3)
In yeast, during nutrient starvation, LDs can be recruited to the vacuole thanks to specific microdomains (LO microdomains) for efficient internalization. 4) In Fistulifera solaris, a
direct fusion of vacuoles and LDs have been observed without the complete absorption of the LD, suggesting a novel type of microlipophagy.
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Table 2
Summary of the proteins shown to play a role in lipid droplet degradation by lipophagy in Homo sapiens, Saccharomyces cerevisiae, Arabidopsis thaliana, Chlamydomonas
reinhardtii and Phaeodactylum tricornutum.

Name Function References

S. cerevisiae Ncr1 and Npc2 Formation and expansion of Lo microdomains in vacuole membrane by transferring sterols from the vacuole
lumen to the vacuolar membrane

[183,188]

Pik4 and Stt4 PtdIns(4) kinases required for local synthesis of PtdIns(4)P into vacuolar Lo microdomains and lipophagy under
nitrogen starvation

[196]

Lam6 Sterol transporter located at nucleo-vacuolar junction andpromoting Lo microdomain formation [192]
Fab1 Phopshatidylinositides biosynthesis, required for Lo microdomains formation [185,193]
Nem Phospholipid biosynthesis, required for Lo microdomains formation [185,193]
Vps4 AAA-ATPase, component of ESCRT complex involved in MVB synthesis, required for Lo microdomains formation [181,185,188,193]
Sec18 Involved in vesicular trafficking, required for Lo microdomains formation [193]
Pep4 Vacuolar protease, required for Lo microdomains formation [181,185,188]
Are1/2 Synthesis of ergosteryl esters, required for Lo domain formation [185]
ATG15 Vacuolar TAG lipase, degradation of LD TAG in the vacuole after internalization, required for Lo microdomains

formation
[166,181]

Snf1/4 Subunits of the AMP-activated protein kinase complex, activate lipophagy during accute glucose reduction by
assisting the relocalization of Atg14 to the vacuolar membrane

[182]

Atg6/14 Part of the phosphatidyl-inositol 3-kinase complex I that produces PtdIns(3)P. Could play a role in production or
tageting of PtdIns(3)P to the vacuole for the formation of Lo microdomains

[181,182,202]

ESCRT complex Might assist LDs internalization by promoting vacuole membrane invagination and membrane scission in
lipophagy induced by diauxic shift from glcolysis to respiration or ER stress.

[186,188,189]

Ldo16, Ldo45 and
Vac8

Triggers LDs attachment to vacuole via interaction of the LD protein Ldo45 and Ldo16 with the vacuolar
membrane protein Vac8

[199,200]

Core autophagy
proteins

Important for LDs internalization into vacuole and for vacuole microdomain maintenance under nutrient
starvation

[181e185]

ATG39/ESM1 Involved in lipophagy under ER-stress triggers by PC imbalance [188]
Vam3, Ypt7 and
Vps33

Proteins involved in vacuolar membrane fusion and playing a role in lipophagy during ER-stress induced by DTT [186]

A. thaliana ATG2/ATG5/ATG7 Involved in microautophagy to promote TAG degradation under starvation induced by extended darkness [203]
Regulation of lipid homeostasis in dark-induced senescence [204]
TAG degradation under carbon starvation in etiolated seedlings [205]

CLO1 LD coat protein interacting with ATG8f to promote LDs internalization into vacuole during lipophagy in
germinating seeds

[206]

H. sapiens SQSTM1/p62, NBR1,
optineurin

General selective autophagy receptors, involved in lipophagy [165,166] þ

Rab7, Rab10, Rab25
and Rab32

LDs targeting to autophagosomes [146,179]

Spartin LDs ubiquitination and recognition for macroautophagy [174,177]
AUP1 LDs aggregation and recognition for macrolipophagy following viral infection [167,169]
DDH2 LDs recognition for macrolipophagy in the brain [173]
ORP8 LDs recognition for macrolipophagy [172]
Core autophagy
components

Target LDs into vacuole by macrolipophagy [151]

LC3 Autophagic cargo selection, phagophore elongation and closure [207]
mTOR Regulator of autophagy, is activated in presence of nutrients [153]
PRKA/AMPK Regulator of autophagy [146]
Atg1 Initiator of the phagophore formation [157]
LAL/Lipa Lysozomal lipase involved in LD lipids degradation after internalization by lipophagy [148e150]

C. reinhardtii. Core autophagy
components

Promote TAG accumulation or LDs formation upon nitrogen or phosphate starvation [208]

ATG8 LDs degradation by microautophagy during nitrogen resupply [209]

P. tricornutum. StLDP Putative interaction with Atg8 [67,108]
ACBP Regulation of Atg5? [210]
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microdomains are required [187,188]. In addition, both stresses
trigger vacuolar membrane fragmentation; LD internalization is
then mediated by the remodeling of membrane vacuoles that
organize around LDs, envelop them and form invaginations that
release LDs in the vacuolar lumen after membrane scission
(Fig. 2Be) [186]. The formation of invaginations and the release of
LDs in this situation was proposed to be facilitated respectively by
the action of the ESCRTcomplex and of proteins involved in vacuole
fusion rather than by the property of the Lo microdomains as
demonstrated under nutrient stress [185e187]. An intermediate
situation is observed during lipid imbalance as both the ESCRT
complex and the Lo microdomains formation mediated by Npc2
and Ncr1 are required [187], demonstrating the co-existence of
different pathways mediating LD microlipophagy.

Once in the vacuoles, degradation of LD proteins and lipids could
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involve the Pep4 protease and the Atg15 lipase, that are located in
the vacuole lumen and play a role in microlipophagy under both
nutrient starvation and ER stress [166,182,188]. More recently, as
for PLIN2 and PLIN3 in mammals (see section 3), autophagy was
shown to be required for the removal of LD surface proteins prior to
their internalization into vacuole under nutrient stress [181],
shedding light on the poorly understood role of general autophagy
in microautophagy. However, protein removal is not a pre-requisite
for LD entry in the vacuole suggesting that LD protein removal and
LD entry in the vacuole for lipolysis are two independent processes
[181].

4.3. Microlipophagy-like processes in plants and algae

In plants, the number of studies investigating the involvement
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of autophagy core components in LD degradation is limited and
results are variable depending on the species, the developmental
stage, the tissue and/or the stress analyzed. During seed germina-
tion, TAG are mainly degraded by the cytosolic TAG lipases SDP1
and SDPL1 that are essential for seed germination in absence of
carbon source in themedia (see section 2). However, degradation of
LDs by a process similar to microlipophagy was also observed in
A. thaliana where a subset of LDs were located in the vacuoles
36e48h after germination [206,211]. In addition, autophagy inhi-
bition by concanamycin A negatively impacts seedling growth after
germination and leads to a high accumulation of LDs in cotyledons,
likely due to a lower level of degradation compared toWT seedlings
[206]. LDs accumulation into vacuoles was also observed in other
plant tissues including in tapetum cells during pollen development
in rice as well as under dark-induced starvation in A. thaliana leaves
[203,212], suggesting that microlipophagy could be an important
process involved in plant development and stress response.
Microlipophagy in plants involves core components of the auto-
phagy machinery as the absence of ATG7 in rice, or ATG2 and ATG5
in A. thaliana significantly reduces the accumulation of LDs into
vacuoles [203,212]. In addition, ATG8e and b, key autophagy pro-
teins involved in cargo selection and autophagosome biogenesis,
were co-localized with LDs in leaves under dark stress and seed-
lings during germination, respectively [203,206]. During germina-
tion, the seed specific LD coat protein of the caleosin family CLO1 is
also a key player in microlipophagy as CLO1 seems to regulate the
entry of LDs into the vacuole during germination, but the exact
mechanism remains to be investigated [206,211]. CLO1 could
regulate LD-vacuole interactions and/or promotemembrane fusion.
In other plant tissues or stress conditions, mutations of autophagy
core components can lead to a reduction of TAG and/or LD degra-
dation. This is the case in tobacco pollen and maize leaves, as well
as in A. thaliana seedlings under carbon starvation or leaves under
dark-induced senescence [203,205,213,214]. However, the
involvement of lipophagy in plants is not limited to lipids degra-
dation but seems to play a more central role in lipid metabolism
and homeostasis. Indeed, in leaves upon dark-induced senescence,
ATG proteins were also shown to be involved in TAG synthesis and
the authors propose that autophagy promotes TAG synthesis from
membrane lipid turnover in specific tissues or developmental
stages, while it is involved in TAG degradation in other tissues, such
as pollen or seedlings, or under different stresses [203,204]. A
similar view has been proposed in the green alga Chlamydomonas
reinhardtii, where inhibition of the autophagic flux prevents TAG
accumulation and LD formation upon nitrogen or phosphate star-
vation [208].

Studies of lipophagy in microalgae are only emerging, but more
and more evidence of a role of this process in LD degradation are
reported in the literature. Inclusion of LDs in vacuoles were initially
observed in the green alga Auxenochlorella protothecoides, during
heterotrophy to autotrophy transition [215]. Similarly, LDs are
found in the vacuolar lumen of Parachlorella kessleri following salt
stress [216] and in C. reinhardtii, microphagy-like interactions of
LDs and vacuoles were observed during nitrogen resupply
following starvation [217]. Like in plants, ATG8 is involved in lip-
ophagy processes in C. reinhardtii. Indeed, LDs directly interact with
ATG8-labeled structure under nitrogen starvation [218] and TAG
degradation during nitrogen resupply is delayed in CrATG8 mu-
tants [209,219]. While most lipophagy mechanisms in green
microalgae are described as “microphagy-like”, the involvement of
ATG8, a protein involved in autophagosome formation, and the
description of autophagosome-like vesicles in both C. reinhardtii
[218] and Micrasterias denticulata [220] suggest that macro-
autophagy processes can also be involved. The articulation between
micro- and macro-autophagy processes remains unclear.
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Microphagy-like degradation of LDs and involvement of ATG8 are
also observed in Stramenopiles. In Nannochloropsis oceanica,
microphagy-like degradation of LDs during nitrogen resupply and
interactions between NoATG8 and NoLSDP, the major LD protein in
N. oceanica, have been observed [221]. An ATG8-interacting motif
has also been identified in the Stramenopile lipid droplet protein
(StLDP), the major protein at the surface of LDs in the diatom
P. tricornutum [108,110], whose mutants show an overaccumulation
of TAG and impaired LD degradation following nitrogen replen-
ishment [67]. Similarly, a recent study has highlighted the impor-
tance of an acyl-binding protein (ACBP) in LD degradation and
showed that impaired LD degradation in the ACBP KO could be
linked to autophagy defects as atg5 expression was repressed in
these mutants [210]. Yet, the exact role of ACBP remains elusive and
the role of lipophagy in LD degradation in P. tricornutum remains
hypothetical. However, lipophagy has been shown to play a role in
lipid degradation in another diatom, Fistulifera solaris [222]. Elec-
tron microscopy images suggested that in F. solaris, LD monolayer
could directly fuse with the vacuole membrane, leading to the
delivery of their lipid content directly in the vacuole lumenwithout
complete LD internalization (Figs. 2Be4), suggesting that a micro-
lipophagy pathway, different fromwhat is described in yeast, could
also exist in algae [222].

5. Conclusion

The degradation of LDs follows similar general pathways in all
organisms considered in this review, and some key core compo-
nents, involved in the initial steps of LD degradation, appear
conserved. This is the case for themain TAG lipases, that orchestrate
hydrolysis of TAG to DAG (Table 1) and for the general autophagy
machinery. However, the following steps show a great diversity,
depending on organisms but also tissue/organ within the same
organism, and subsequent fate of released fatty acids. CGI-58 is an
interesting example in the lipolysis process. Indeed, while the
protein is conserved at the sequence level and has been identified
in all considered phyla, its localization and function vary (cf. section
3.3). In plants, CGI-58 is localized at the surface at peroxisomes and
interacts with PXA1 [73], likely to regulate FA entry into b-oxida-
tion following TAG degradation (see Fig. 1) and the subsequent use
of these FA as hormone precursors of the jasmonate and auxin
biosynthetic pathways, particularly in vegetative tissues [73]. By
contrast, localization at the surface of LD in mammals allows a
wider range of fates of released FA [101], and association of CGI-58
with mitochondria in microalgae can serve to balance the fate of FA
between degradation and recycling [77].

Lipophagy, and in particular microlipophagy, shows an even
broader diversity of routes and players (Fig. 2 and Table 2), sug-
gesting that it has evolved differently in the considered phyla.
However, it is important to note that knowledge regarding lip-
ophagy is only recent and partial, as illustrated by the recent dis-
covery of microlipophagy in human [180]. Our vision may thus be
biased by research focus that differs between phyla. Indeed, in
mammals, defects in LD formation or degradation are associated
with many diseases, including metabolic diseases but also central
nervous system diseases (for review [223]). Metabolic diseases and
the associated tissues (adipose tissue and liver) have consequently
been a major focus of LD research. In plants, studies have for a long
time focused on oleaginous seeds and germination, leaving aside
other tissues or processes where LDs seem much less prominent
but play essential roles. Finally, in microalgae, a lot of research is
turned towards the increase or alteration of TAG content for
biotechnological applications. It is therefore possible that the dif-
ferences in lipophagy, and more generally LD degradation path-
ways relate to the physiology and/or functions of studied LDs in the
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considered tissue/condition of one organism. An interesting
example of lipophagy-specific function has been shown in response
to ER stress in yeast, where microlipophagy was suggested to
contribute to ER quality control promoting cell survival through the
removal of damaged proteins from the ER, as well as through the
removal of lipid excess observed during lipid imbalance [186,188].
Indeed, several cargo proteins, some being polyubiquitinated, are
associated to LDs under stress and are internalized into vacuole
with LDs for degradation, demonstrating the role of micro-
lipophagy in proteostasis under ER stress [186,188]. Investigating
similar mechanisms in other organisms would be very interesting,
especially in other unicellular organism as some very interesting
common points can be drawn.We have highlighted in part 3.2.1 the
relationship between cell cycle and LD degradation in unicellular
organisms, that relates to their life cycle. Another very interesting
feature is the close link between LD biogenesis and degradation
that seems to exist within these organisms. Indeed, while in
mammals and plants, described functions of LD coat proteins are
related to protection against LD degradation (cf. part 3), the major
LD proteins of two distant stramenopiles, N. oceanica and
P. tricornutum, are involved in LD degradation, probably through
lipophagy (cf. part 4, [67,221]). In yeast, the LDO proteins are both
involved in the Seipin complex and in LD degradation through
microlipophagy (cf. part 4, [199,200]). Thus, in these organisms,
that need to quickly respond to environmental changes, LDs seem
to be primed for degradation during their biogenesis. This could
also be the case in some tissues of pluricellular organisms. In plant
leaves, the LD coat protein LDIP also interacts with Seipin and
seems to be functionally homologous to LDO45 [224], while
mammalian ORP8 seems involved in both LD biogenesis and lip-
ophagy [171,172](cf. section 4.1).

Finally, in the present work we have presented lipolysis and
lipophagy separately, but the degradation of large LDs highlights
the integration of both main routes, and its possible conservation.
In the green microalga Auxenochlorella protothecoides, it has been
suggested that large LDs are first broken down by lipolysis to
reduce their size, which allows their subsequent degradation by
lipophagy [215]. Observations of LDs dynamics following nitrogen
replenishment in P. tricornutum suggest that a similar mechanism
could be at play, as two phases are observed: a first one during
which the number of LDs increases while their size decreases, and a
second where the number and size of LDs decrease [225]. The ex-
istence of non-essential lipophagy to degrade LDs in plant seeds
[206,211] and adipocytes [178], as well as the involvement of ATGL
[226,227] and other patatin-like lipases (reviewed in Ref. [228]) in
lipophagy in the liver and brown adipose tissue, suggest that
similar cooperation of lipolysis and lipophagy could facilitate the
degradation of large LDs in these tissues.
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