
HAL Id: hal-04731794
https://hal.science/hal-04731794v1

Submitted on 11 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Impact of Compiler Optimizations on the Reliability of a
RISC-V-based Core

Romaric Pegdwende Nikiema, Marcello Traiola, Angeliki Kritikakou

To cite this version:
Romaric Pegdwende Nikiema, Marcello Traiola, Angeliki Kritikakou. Impact of Compiler Optimiza-
tions on the Reliability of a RISC-V-based Core. DFT 2024 - 37th IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, Oct 2024, Oxfordshire, United
Kingdom. pp.1-1. �hal-04731794�

https://hal.science/hal-04731794v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


(Special Session)

Impact of Compiler Optimizations on the Reliability
of a RISC-V-based Core

Pegdwende Romaric Nikiema, Marcello Traiola, Angeliki Kritikakou
Univ Rennes, CNRS, Inria, IRISA - UMR 6074, F-35000 and Institut Universitaire de France (IUF)

{pegdwende.nikiema, marcello.traiola, angeliki.kritikakou}@inria.fr

Abstract—The RISC-V Instruction Set Architecture (ISA) has
gained popularity among systems designers thanks to its open-
source nature. Its high flexibility has allowed it to be preferred
in various domains and used to target multiple use cases,
from embedded systems as co-processor to high-performance
computers. Embedded systems, in general, and safety-critical
ones, in particular, have strict requirements in terms of reliability
and availability. The hardware is becoming less robust with the
adoption of smaller technology nodes. The smaller transistor
size, low operating voltage, and high switching frequency make
transistors susceptible to Single-Event Upsets (SEU) faults, which
can propagate to the application output and possibly cause
catastrophic consequences. During the software design phase of
the system, compilation optimizations can be made to improve the
performance. Compilers have various flags that modify the source
code to produce the binary. Although these flags can be crucial
in assuring good performance, they can significantly impact the
resilience to SEU. This work provides comprehensive insights into
the impact of compiler optimizations on the reliability of safety-
critical embedded systems. Specifically, a probabilistic fault
injection campaign is conducted on various benchmarks running
on a RISC-V core to evaluate the effect of several optimizations
on reliability. The results are classified into functional and timing
errors, offering a detailed understanding of the implications of
these optimizations on reliability.

Index Terms—Reliability, Compiler optimizations, fault injec-
tion

I. INTRODUCTION

Modern electronic systems have adopted newer technologies
that aim to improve efficiency and performance. Nowadays,
transistors use a small node. Moreover, combined with their
high switching frequencies and lower operating voltages [1],
they become more powerful for almost equal power compared
to a bigger counterpart. This scale-down has consequences
on reliability. For example, the reduced critical charge makes
the transistor more vulnerable to single-event upsets (SEU)
caused by radiation [2]. In addition, the aging and wear-off
of transistors also contribute to transient or permanent faults,
which cause functional and timing errors on the system [3].
The radiation threat used to be a matter for space applications
where the level of radiation is higher. Nowadays, even at
sea level, we experience radiation issues, making regular
consumer electronics vulnerable [4]. Different studies exist
on vulnerability analysis on various architectures and systems
from application level to hardware level, as well as techniques
to reduce the impact of the SEU on the systems.

Nowadays, the RISC-V instruction Set Architecture (ISA)
has gained popularity and is used in various application do-

mains for various computation demands due to its open source,
versatility, and extendability. To perform system deployment,
the application is compiled for the specific processor ISA.
During compilation, optimizations are applied to modify the
application binary in order to improve performance and reduce
resource utilization. Optimizations may imply instructions re-
ordering, skipping redundant operations, etc. On one hand,
such optimizations can negatively affect the system’s vul-
nerability. On the other hand, it’s worth noting that these
optimizations can even reduce the exposure to fault due to their
execution time reduction. The unpredictability of the impact
of compiler optimizations in terms of reliability makes their
application, without prior study, dangerous. Existing studies on
showing the impact of compiler optimizations either focus on
more fine-grained flags and try to find a good flag combination
or target different processor architecture and functionalities
such as ARM, Out of Order (OoO) processors, GPU [5]–
[9]. Moreover, the fault injection campaigns conducted have a
lower coverage due to the uniqueness of their input values.

In this paper, we exploit the impact of compiler optimization
levels on RISC-V-based processors on reliability, considering
both functional and timing effects. The impact of different
optimizations on the system is obtained through a vulnerability
analysis on a RISC-V-based processor core [10] using a Cycle
Accurate Bit Accurate (CABA) simulator [11]. More precisely,
we perform a probabilistic architectural-level single-fault in-
jection on the whole processor. To have a high confident level
of coverage, we consider different input values for the pro-
gram, which are randomly selected. We perform experiments
with various benchmarks to obtain the vulnerability metrics,
to characterize the fault probability, fault propagation and
the criticality of several compiler optimizations. The obtained
results show that trends exist in the execution speed and the
exposure to faults due to different optimizations. Such analysis
is helpful during system deployment, driving the selection of
an optimization level depending on the application’s needs.

The remainder of this paper is structured as follows: Sec-
tion II discusses compiler optimizations and how they affect
reliability, along with the related work on the topic. Section III
presents the proposed methodology and fault injection model
in depth. Section IV presents the results, and section V
concludes this study.



II. BACKGROUND AND RELATED WORK

A. Compiler optimizations

Compiler optimization is a process of improving the com-
piled code. These improvements are performed by the com-
piler on demand using compilation flags. Such optimizations
are helpful as they take advantage of the hardware depending
on the needs, such as increasing execution speed, reducing
binary size and memory usage, power consumption, etc. These
optimizations are numerous. We can cite some examples,
for instance, 1) loop optimizations, which apply techniques,
such as unrolling, which increase the instructions in the loop
body with the goal of reducing the loop condition tests, 2)
loop tiling, which re-orders the iterations to improve cache
efficiency, 3) function inlining, which reduces the function
calls overhead by copying over the function instructions where
the function has been called, 4) dead code elimination, which
can reduce the binary size, 5) register renaming to deal with
data hazards and dependencies, etc [12].

These optimizations have mainly explored regarding their
impact on the binary code and its execution regarding timing.
However, few works have been conducted to understand and
quantify the impact of compiler optimizations on system
reliability.

B. Related Work

The majority of existing works study the impact of compiler
optimizations on reliability either target different processor ar-
chitectures and functionalities, such as ARM, OoO processors
etc, or focus on approaches that explore more fine-grained
flags in order to find a more reliable flag combination. The
main reliability threat discussed is single event upsets (SEU),
which modify the control flow or some memory-related data
and lead to errors.

Regarding the first category, approaches estimate the archi-
tectural vulnerability factor (AVF) of specific x86 processor
structures such as Load/Store Queue and the Reorder buffer us-
ing zesto [13] simulator, and show the impact of optimization
on these processor structures [6]. The AVF of the structures
was estimated using equations. A similar study has been
conducted for ARM-based OoO processors [5], through an
AVF analysis through microarchitectural-level fault injection
considering the effects of optimization on eight structures of
the processor, such as the Reorder-buffer, Load/Store buffers,
processor caches, etc. The vulnerability factor of register files
of an ARM cortex-A9 core is studied in [7] considering
various optimizations and correlating the register file usage
with reliability. The fault injection is carried on the user-
accessible registers using interrupts and a heavy-ion radia-
tion. The impact of optimizations on a High-Performance
Computing (HPC) AMD Opteron application and the trade-
off between performance and reliability are analyzed in [14].
Fault injection is conducted at the software level, showing
that more optimization yields poor reliability. Early reliability
analysis through fault injection with -O2 optimization level is
performed in [15]. Last, a study on compiler optimizations for
GPU and vulnerability assessment through beam experiments
has been conducted [16].

Regarding the second category, studies are tailored into
finding suitable flags for reliability using LLVM (Low-Level
Virtual Machine) in [8], [9]. In [8], meta-heuristic methods are
applied to optimize the reliability. In [9], a machine learning-
based algorithm is used to derive the best set of flags in
the context of real-time where the wcet is evaluated. Though
the achieved results are better than the regular -Ox levels
flags, it’s worth noting that we are targeting only the regular
optimizations due to increasing complexity with the required
amount of fault injections.

This work belongs to the first category. Compared to ex-
isting approaches, it presents a vulnerability analysis through
intensive microarchitectural-level fault injection on a RISC-V
processor to characterize the criticality of optimizations and
the fault probability. Furthermore, it studies the application
execution profile, showing the impact of compiler optimization
on the reliability.

III. PROPOSED METHODOLOGY

Figure 1 describes the overview of the reliability analysis
methodology.

The inputs to the methodology are the different compilation
flags that lead to different versions of the benchmarks, the
benchmarks, and their inputs. The compiler optimizations are
based on the processor ISA. Typical compiler optimizations
under study consist of a set of individual optimizations applied
in a specific order: -O0, -O1, -O2, -O3, -Ofast, -
O, -Og, -Os, -Oz. Note that the level of optimizations
is nested from one flag to another. For example, the -O2
flag enhances optimizations from -O1 with other optimization
flags, -O3 enhances -O2 flag etc. We generate several input
values for each selected benchmark to be analyzed for higher
statistical confidence in the obtained results.

We consider, as a baseline, the execution of the benchmark
binary without any optimization. For each compilation flag
we run a set of experiments considering fault-free and faulty
executions with different benchmark inputs. Regarding the
faulty execution, fault injections are performed during execu-
tion using bit flip as the fault model. The injection is done
on the processor registers, such as the pipeline registers and
the register file. The process of generating the fault injection is
as follows: we randomly select an area of the processor with
respect to its size, as bigger elements are more likely to be
targeted by radiation than smaller ones. Then, we randomly
select a bit for a given area and then apply a logical xor with
a random bit mask to flip it.

The comparison of these results provides insight into the
processor’s reliability and how it is affected by the compiler
optimization flag. The reliability metrics are categorized into
functional and timing errors. These errors include Silent Data
Corruption (SDC), where the corrupted data is only detected at
the end of a run, and Detectable Unrecoverable Errors (DUE),
such as Hangs and Crashes. More precisely:
● Execution Cycles Mismatch (ECM): The execution cycles

of the application are different than those of the golden
reference.

● Hang: The execution time of the application has exceeded
a threshold, and thus, it is assumed that it has entered



Fig. 1: Methodology

an infinite loop. A cycle counter is used to stop the
current execution when the counted cycles exceed a given
threshold.

● Crash: The execution of the application has terminated
unexpectedly, and an exception has been thrown (out-
of-bound memory access, misaligned PC, hardware trap,
etc.)

● Application Output Mismatch (AOM): The application
output is different than the golden reference.

In order to characterize the criticality of a given optimiza-
tion on the system, we compute the aforementioned metrics
considering the average impact of the compiler optimization
on a given program. The bigger a metric, the more vulnerable
an application is under a given compiler optimizations on the
average case. In this scenario, the execution time duration
is not taken into account. Furthermore, to characterize the
fault probability, i.e., the probability of a fault impacting the
system when it executes the optimized code, the execution
time is taken into account. In this scenario, the longer the
execution, the more the application is exposed to faults.
Note that when optimizations reduce the execution time, the
fault probability decreases as the application finishes earlier.
As a result, resilience may be increased, depending on the
optimization flags and the reliability metrics. Last, we perform
application profiling in order to obtain the number of execution
clock cycles and the number of different instructions.

Fig. 2: RISC-V core with 5-stage pipeline [10].

IV. EXPERIMENTAL RESULTS

Our case study is a RISC-V processor and the RISC-V
GCC compiler. The Device Under Test (DUT) is Comet [10],
an open-source 32-bit RISC-V processor, which supports the
RV32I base ISA1. It’s written in High-Level Synthesis (HLS),
which offers a unique high-level synthesis and simulation. A
C++ model is used to design the processor. The model gener-
ates the hardware target design through High-Level Synthesis
and a Cycle-Accurate Bit-Accurate (CABA) simulator. The
processor consists of a standard 5-stage pipeline, including a
forwarding mechanism and a register file with 32 registers in
the write-back stage, as illustrated in Figure 2.

The studied benchmarks are taken from TacleBench [17]:
Bitonic, Binary search, Bsort, CountNeg-
ative, Factorial, InsertSort, Matmul,
QuickSort. For each benchmark, we generate several
input values, i.e., 650 different inputs based on [18] for
higher statistical confidence in the obtained results. For each
of the benchmarks, with one optimization flag, 385 faults
are injected per binary, resulting in a margin error e=5%
and a confidence level of 95% [19]. We repeat this for the
650 different inputs for higher statistical confidence, totaling
250’250 intensive faults injection per binary. In total, we
inject 2,002,000 faults per binary. We first present the
benchmarks’ profiling regarding the different computations
occurring during execution, followed by the criticality and
fault probability of the obtained results.

A. Benchmarks profile

During profiling, we used Hardware Performance Counters
to obtain the execution clock cycles and the instruction counts
during a binary execution. Table III depicts the average clock
cycles required to execute each benchmark, considering 650
different inputs. Tables I and II show the computation profile
of the benchmarks, i.e., data related to the instruction
count for each type of instructions for each benchmark. Each
instruction count is divided each time by the corresponding ex-
ecution clock cycles in order to obtain the computation profile.
Note that the DUT doesn’t support multi-cycle stages, which
are used to implement multiplication and division instructions,

1https://gitlab.inria.fr/srokicki/Comet/-/tree/master

https://gitlab.inria.fr/srokicki/Comet/-/tree/master


Instructions LUI LD ST OP_SLL OP_ADD OP_AND OPI_SLLI OPI_ANDI OPI_ADDI AUIPC
Bitonic 1.53 (-2.6) 20.6 (-20.7) 16.43 (+2.8) 0.02 (0.0) 8.12 (+0.9) 0.02 (0.0) 3.95 (+0.3) 0.07 (-0.9) 25.37 (+6.4) 0.1 (+0.1)

Binary Search 2.66 (-1.0) 19.05 (-10.9) 14.41 (+1.0) 0.27 (0.0) 3.86 (+0.6) 0.27 (0.0) 2.46 (+0.4) 1.6 (+0.9) 26.0 (+1.9) 1.87 (+0.8)
Bubble Sort 0.02 (0.0) 25.87 (-30.5) 17.26 (+11.5) 0.0 (0.0) 0.01 (-7.6) 0.0 (0.0) 0.01 (-8.6) 0.01 (0.0) 22.0 (+10.2) 0.01 (0.0)

Count Negative 0.27 (-7.7) 21.31 (+2.5) 1.98 (-3.8) 0.02 (0.0) 15.39 (-2.9) 0.02 (0.0) 0.15 (-15.5) 0.15 (+0.1) 32.91 (+7.0) 0.17 (+0.1)
Factorial 1.15 (+0.2) 13.75 (-6.0) 10.59 (-1.7) 0.13 (0.0) 5.15 (+1.9) 0.13 (0.0) 4.32 (+1.7) 4.32 (+1.7) 26.21 (-5.8) 0.89 (+0.4)

Insert Sort 1.21 (+0.7) 22.4 (-21.2) 20.9 (+8.8) 0.11 (+0.1) 3.29 (-4.6) 0.11 (+0.1) 3.07 (-4.8) 0.66 (+0.4) 24.64 (+4.7) 0.77 (+0.5)
Matrix mult. 0.06 (-0.6) 1.14 (-5.5) 1.02 (-0.6) 0.01 (0.0) 11.45 (+0.1) 0.01 (0.0) 11.15 (-0.2) 11.15 (+1.5) 13.25 (-0.8) 0.03 (0.0)
Quick Sort 1.71 (-5.3) 21.18 (-17.8) 12.82 (+0.5) 0.13 (+0.1) 7.19 (+1.7) 0.13 (+0.1) 8.06 (+2.6) 0.75 (+0.5) 25.1 (+4.7) 0.88 (+0.5)

TABLE I: Benchmark’s computation profile on -O3 compared to -O0

Instructions OPI_SRLI OPI_SRAI BR_BLT BR_BNE BR_BEQ BR_BLTU BR_BGE BR_BGEU JALR JAL
Bitonic 2.04 (+1.2) 1.66 (+0.8) 0.43 (-1.1) 6.68 (+5.7) 2.08 (+2.0) 0.08 (+0.1) 3.59 (+2.7) 0.02 (0.0) 1.78 (-0.0) 1.83 (-0.6)

Binary Search N/A 1.66 (+0.3) 0.53 (+0.1) 2.66 (-0.3) 6.19 (+2.0) 1.33 (0.0) 2.04 (+0.6) 0.53 (+0.3) 5.62 (+1.9) 4.31 (+0.3)
Bubble Sort N/A 0.01 (0.0) 0.0 (-1.9) 17.35 (+17.3) 8.62 (+8.6) 0.01 (0.0) 8.59 (+4.7) 0.0 (0.0) 0.18 (+0.2) 0.02 (-2.0)

Count Negative N/A 0.07 (+0.1) 0.05 (-2.6) 10.35 (+10.3) 5.36 (+5.2) 0.15 (+0.1) 10.03 (+7.2) 0.05 (0.0) 0.49 (+0.4) 0.83 (-0.7)
Factorial 5.15 (+1.8) 0.38 (+0.1) 0.38 (+0.2) 8.7 (+3.8) 6.68 (+2.4) 0.64 (0.0) 0.0 (-0.5) 0.25 (+0.1) 6.42 (+1.0) 3.88 (-1.6)

Insert Sort N/A 0.33 (+0.2) 0.33 (+0.3) 2.74 (+2.2) 2.41 (+1.7) 1.1 (-0.7) 2.52 (+1.2) 5.56 (+5.0) 3.72 (+2.8) 3.06 (+1.9)
Matrix mult. 16.49 (+2.2) 0.02 (0.0) 0.01 (0.0) 11.2 (+1.5) 11.23 (+1.5) 0.05 (0.0) 0.0 (-0.5) 0.01 (0.0) 11.24 (+1.5) 0.44 (-0.0)
Quick Sort N/A 0.38 (+0.2) 0.81 (-0.7) 1.26 (+0.8) 2.51 (+1.6) 0.63 (+0.4) 8.78 (+6.7) 0.25 (+0.2) 3.17 (+1.4) 3.0 (+1.2)

TABLE II: Benchmark’s computation profile on -O3 compared to -O0 (cont.)

(a) Bitonic Sort (b) Binary Search (c) Bubble Sort (d) Count Negative

(e) Factorial (f) Insert Sort (g) Matrix multiplication (h) Quick Sort

Fig. 3: Vulnerability results: Fault criticality

Benchmark Average Clock Cycles
Bitonic 26,669

Binary Search 455
Bubble Sort 264,048

Count Negative 15,379
Factorial 1,969

Insert Sort 2,686
Matrix mult. 20,573
Quick Sort 2,134

TABLE III: Fault-free average execution cycles (-O0)

etc. Considering an implementation with a multiplication
(mult) unit, the mult instruction will be split into smaller sub-
stages, and the pipeline stalled – fetch and decode stages –
until the multi-cycle operation instruction reaches the memory
stage. Therefore, the benchmark profiling will be modified
in order to take into account the stall caused by the multi-
cycle additional cycles.. In order to determine the reliability
of the system under different executions and different compiler

optimizations, Tables I and II show the increase and decrease
in terms of number of different types of instructions. More
precisely, the percentage indicates how much is decreased
or increased each of the instructions executed with a given
optimization, e.g., -O3, compared to -O0 version.

B. Reliability analysis
The average impact of a compiler optimization on the

functional and timing behavior of the program is shown in
Fig. 3 (fault criticality) and Fig. 4 (fault probability). The x-
axis corresponds to the compiler flag. The right-side y-axis is
the execution time ratio (%) between the benchmark, compiled
with an optimization flag, and its baseline -O0. For instance,
a value of 100 for a compiler flag means that the optimized
version has the same execution time as the baseline, and a
value of 50 means that the optimized version finished in half
of the time compared to the baseline -O0. The left-side y-axis
is on a logarithmic scale and shows the effect that a flag has
on a reliability metric. It shows the variation in the number



(a) Bitonic Sort (b) Binary Search (c) Bubble Sort (d) Count Negative

(e) Factorial (f) Insert Sort (g) Matrix multiplication (h) Quick Sort

Fig. 4: Vulnerability results: Fault probability

of faults observed between the benchmark, compiled with an
optimization flag, and its baseline -O0.

1) Instructions and error correlations: Combining the com-
putation profile and the vulnerability metrics information al-
lows us to observe several correlations between the benchmark
instructions and the observed errors.

The number of Crashes of a benchmark correlates with the
number of load instructions (LD) during its execution. Overall,
we observe that the more loads there are, the more crashes are
reduced. This is expected since the more frequent loads occur,
the more frequently the content of registers is overwritten with
new data. For instance, with Matmul, the -O3 flag reduces
the number of loads, which leads to an increase in the number
of crashes (Fig. 3g).

We observe a correlation between the Branching instructions
(BR) and the number of hang occurrences. The more branch
instructions exist, the more susceptible the benchmark is to
Hangs. The benchmarks, such as Bitonic 3a and count
negative 3d, have an increased number of branch instructions
when compiled with the -O3, and result in a higher number
of Hangs. On the contrary, Bsearch 3b and Matmul 3g,
benchmarks, have a lower number of branch instructions on
average and show a lower number of Hangs.

For the AOM, we notice that the more the LUI instructions
are reduced, the more the AOM. AOM is also correlated to
the number of arithmetic operations (OP) that occurred during
the execution. On average, Matmul has the highest number
of operations, which exposes it to wrong computations and,
thus, to AOM. The less operation-intensive benchmarks, such
as Bubble Sort and Insert Sort, result in a lower AOM counts
under -O3.

Last, but not least, the ECM is correlated to the branching
and operation instructions.When a fault hits a branch instruc-
tion, either conditional or unconditional, aside from functional
error, it also produces timing errors. For example, a loop
index may be altered, leading to skipping or re-execution of
iterations. This behavior can also appear when we alter the

condition test in conditional jumps. For instance, JALR for
subroutines shows increased ECM for Bsearch, Matmul,
etc.

2) Impact of compiler optimizations: The key findings from
Fig. 3 and Fig. 4 indicate that applying compiler optimizations
to the program consistently impacts the reliability.

In the overall trend regarding fault criticality (Fig. 3),
we observe a significant increase in AOMs for most of the
benchmarks and optimization flags. However, we observe the
opposite trend for the Crash, with an overall average decrease,
except the Matmul benchmark. The Hangs and the ECM vary
depending on the benchmark, but the overall observed trend
is an increase.

These observations reveal a trade-off between performance
and vulnerability, enabled by the different compilation flags.
While some flags have significantly reduced execution time,
specific functional errors have worsened. For instance, on one
side, with the Matmul benchmark, all selected flags increase
the percentage of faults, considering the criticality. Conversely,
most flags have increased the tolerance to Crashes and de-
creased the ECMs, especially for Insertsort, Cntneg-
ativebenchmarks. This suggests that no universal flag can
optimize for performance while maintaining robustness to
faults. This is particularly evident in the Matmul benchmark,
where the most optimized version in terms of execution cycles
remains high at 86%, and the optimizations have not been
achieved to reduce the observed errors.

Looking at a more fine-grained comparison, i.e., the impact
between different optimization flags, we observe that specific
errors are reduced depending on the flag. For instance, on the
Count Negative benchmark, the less optimized version in terms
of clock cycles (-Og) gives better results for hangs compared to
more optimized versions, such as -O2. It’s worth highlighting
that, regarding the execution time reduction, -O3 is not always
the best option.

These results suggest that the more the application is
optimized, the more likely it is to produce wrong results,



hangs, and timing errors.
To get the intrinsic reliability of an application, we have to

analyze its exposure to faults. To achieve that, we present the
fault probability, which takes into account the execution time
of the application for the different optimization flags (Fig. 4).
When applying optimization flags, the result usually yields
a faster execution of the benchmark regarding clock cycles.
Considering the time required to execute the benchmarks, the
number of faults is reduced, on average, when the benchmark
runs faster. When faults occur after the benchmark finishes,
then they have no impact on the execution of the benchmark.

From the obtained results, we observe that Bsearch and
Matmul give the least improvements in terms of functional
and timing errors for the different optimization flags, as only a
part of Hangs and Crashes is reduced with the different flags.
Note that, this is also a consequence of the nature of these
benchmarks, which are less optimized, and thus, more likely
to have faults.

V. CONCLUSION

This work presented a study on compiler optimizations’
impact and safety-critical systems’ reliability. A vulnerability
analysis was done by running probabilistic fault injections
on the processor registers file and the pipeline registers. In
order to have statistically sound results, we apply techniques
in order to take into account the worst-case inputs in the fault
injections by using different inputs. Our experiment, run on
a RISC-V processor core with no hardware multiplier and
disabled caches, shows that the optimization can be beneficial
for some use cases. If, on one side, the goal of the design is to
reduce the probability of faults, then using optimization that
reduces the execution time is beneficial as it will reduce the
exposure to fault. This can increase the Mean Work To Fault,
for example. On the other hand, to reduce the fault criticality,
a prior study is recommended as the impact changes with
respect to the application computation profile. Some flags that
optimize the application less show better resilience than others.
In safety-critical real-time systems, where the system tasks
have been scheduled with the unoptimized version, applying
optimizations and maintaining the same schedule can lead
to better reliability. It would be interesting to further assess
the impact on the wcet estimation for real-time systems.
In addition, a mean to estimate the reliability of a given
benchmark by only studying it’s application profile could be
beneficial for system development.

ACKNOWLEDGMENTS

This work has been funded by the French National Research
Agency (ANR) through the FASY research project (ANR-21-
CE25-0008).

Experiments presented in this paper were carried out using
the Grid’5000 testbed, supported by a scientific interest group
hosted by Inria and including CNRS, RENATER and several
Universities as well as other organizations (see https://www.
grid5000.fr).

REFERENCES

[1] A. Dixit et al., “The impact of new technology on soft error rates,” in
Int. Reliability Physics Symp., Apr. 2011, pp. 5B.4.1–5B.4.7.

[2] S. Rehman et al., Reliable Software for Unreliable Hardware: A Cross
Layer Perspective. Springer Publishing, 2016.

[3] A. Kritikakou et al., “Functional and timing implications of transient
faults in critical systems,” in IEEE Int. Symp. On-Line Testing and
Robust System Design (IOLTS), 2022, pp. 1–10.

[4] F. Catthoor et al., “Will chips of the future learn how to feel pain and
cure themselves?” IEEE Design & Test, vol. 34, no. 5, pp. 80–87, 2017.

[5] G. Papadimitriou et al., “Characterizing soft error vulnerability of cpus
across compiler optimizations and microarchitectures,” in 2021 IEEE
International Symposium on Workload Characterization (IISWC), 2021,
pp. 113–124.

[6] M. Demertzi et al., “Analyzing the effects of compiler optimizations
on application reliability,” in 2011 IEEE International Symposium on
Workload Characterization (IISWC), 2011, pp. 184–193.

[7] F. M. Lins et al., “Register file criticality and compiler optimization
effects on embedded microprocessor reliability,” IEEE Transactions on
Nuclear Science, vol. 64, no. 8, pp. 2179–2187, 2017.

[8] N. Narayanamurthy et al., “Finding resilience-friendly compiler opti-
mizations using meta-heuristic search techniques,” in 2016 12th Euro-
pean Dependable Computing Conference (EDCC), 2016, pp. 1–12.

[9] M. Dardaillon et al., “Reconciling compiler optimizations and
wcet estimation using iterative compilation,” in 2019 IEEE Real-
Time Systems Symposium (RTSS). Los Alamitos, CA, USA: IEEE
Computer Society, dec 2019, pp. 133–145. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/RTSS46320.2019.00022

[10] S. Rokicki et al., “What You Simulate Is What You Synthesize:
Designing a Processor Core from C++ Specifications,” in IEEE/ACM
Int. Conf. on Computer-Aided Design (ICCAD). IEEE, Nov. 2019.

[11] P. R. Nikiema et al., “Impact of transient faults on timing behavior
and mitigation with near-zero wcet overhead,” in ECRTS 2023 - 35th
Euromicro Conference on Real-Time Systems, Vienna, Austria, July
2023.

[12] B. Gough et al., “An introduction to gcc : for the gnu compilers
gcc and g++,” 2005. [Online]. Available: https://api.semanticscholar.
org/CorpusID:116776160

[13] G. H. Loh et al., “Zesto: A cycle-level simulator for highly detailed
microarchitecture exploration,” in 2009 IEEE International Symposium
on Performance Analysis of Systems and Software, 2009, pp. 53–64.

[14] R. A. Ashraf et al., “Exploring the effect of compiler optimizations on
the reliability of hpc applications,” in 2017 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), 2017, pp.
1274–1283.

[15] N. Lodéa et al., “Early soft error reliability analysis on risc-v,” IEEE
Latin America Transactions, vol. 20, no. 9, pp. 2139–2145, 2022.

[16] F. F. D. Santos et al., “Assessing the impact of compiler optimizations
on gpus reliability,” ACM Trans. Archit. Code Optim., vol. 21, no. 2,
feb 2024. [Online]. Available: https://doi.org/10.1145/3638249

[17] H. Falk et al., “Taclebench: a benchmark collection to support worst-
case execution time research,” 01 2016.

[18] L. Cucu-Grosjean et al., “Measurement-based probabilistic timing anal-
ysis for multi-path programs,” in Euromicro Conference on Real-Time
Systems (ECRTS), 2012, pp. 91–101.

[19] R. Leveugle et al., “Statistical fault injection: Quantified error and
confidence,” in 2009 Design, Automation & Test in Europe Conference
& Exhibition, 2009, pp. 502–506.

https://www.grid5000.fr
https://www.grid5000.fr
https://doi.ieeecomputersociety.org/10.1109/RTSS46320.2019.00022
https://api.semanticscholar.org/CorpusID:116776160
https://api.semanticscholar.org/CorpusID:116776160
https://doi.org/10.1145/3638249

	Introduction
	Background and Related Work
	Compiler optimizations
	Related Work

	Proposed Methodology
	Experimental results
	Benchmarks profile
	Reliability analysis
	Instructions and error correlations
	Impact of compiler optimizations


	Conclusion
	References

