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Identifiability and Whittle Estimation
of Periodic ARMA Models

Alessandro J. Q. Sarnaglia, Valdério A. Reisen, Pascal Bondon, Carlo C.
Solci, and Márton Ispány

Abstract The Periodic Autoregressive Moving Average (PARMA) models
are generally assumed to be identifiable. However, this assumption becomes
not true if some model conditions are not specified. This paper fills this gap
by providing verifiable conditions for the identifiability of PARMA models
and, in addition, the Whittle likelihood estimator (WLE) is proposed to
estimate the model parameters. This estimator is strongly consistent and
asymptotically normal. The Monte Carlo simulation investigation shows that
the WLE is a very attractive alternative to the Gaussian maximum likelihood
estimator (MLE) for large data sets. Although the estimators have similar
accuracy, the computational cost of the MLE is much higher. The methods
are applied to fit a PARMA model to the sulfur dioxide (SO2) daily average
pollutant concentrations measured in the city of Vitória (ES), Brazil.

Key words: Periodic stationarity; PARMA models; Identifiability; Whittle
estimation; Sulfur Dioxide.
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1 Introduction

Seasonal phenomena are frequently observed in many fields such as hydrol-
ogy, climatology, air pollution, radio astronomy, econometrics, communica-
tions, signal processing, among others. A standard approach in the literature
is to fit a stationary seasonal model after removing any trend. As pointed
out by Tiao and Grupe (1980), standard time series tools may indicate sta-
tionary models even if the true covariance structure has a periodic (or cyclic)
nonstationary behavior. The model mispecification usually deteriorates the
forecast performance even if the standard residual diagnostic checking does
not reveal any anomaly.

Processes with periodically varying covariances are introduced in the sem-
inal paper of Gladyshev (1961) and are denominated periodically correlated
(PC), periodically stationary or cyclostationary. The occurrence of periodic
correlation is corroborated by real applications in many areas. For example,
Gardner and Franks (1975) investigate cyclostationarity in electrical engi-
neering and Bloomfield et al. (1994) study stratospheric ozone data. For
recent reviews on PC processes, see e.g. Gardner et al. (2006) and Hurd and
Miamee (2007).

The simplest way to build models for PC processes is to allow the param-
eters of stationary models to vary periodically with time. In this context, the
periodic autoregressive model emerges as an extension of the well-known au-
toregressive framework. Parameter estimation of a PAR model is already well
documented in the literature, see e.g. Sarnaglia et al. (2010) and references
therein. However, some data sets require large periodic autoregressive orders
to provide an adequate fit. Thus, a more parsimonious model can be built by
jointly considering periodic AR and MA coefficients, which leads naturally
to the PARMA model. However, this model has not yet been used widely in
real applications, perhaps, due to the difficulty and high computational cost
of the implementation of standard estimation methods.

The exact Gaussian PARMA likelihood is derived by Li and Hui (1988),
and the method requires the Choleski decomposition of a matrix whose di-
mension is the number of data. Using the innovation algorithm, Lund and
Basawa (2000) have proposed a recursive method to calculate this Choleski
decomposition which does not require any matrix inversion.

It is well known that the PARMA model has the vector ARMA (VARMA)
representation, see e.g. Vecchia (1985). However the VARMA model needs
to satisfy the conditions given by Dunsmuir and Hannan (1976) to be iden-
tifiable. These conditions are tacitly assumed in the literature on PARMA
models, see e.g. Basawa and Lund (2001). Here, we show that the identifia-
bility conditions of Dunsmuir and Hannan (1976) do not transpose trivially
to the PARMA model, and one contribution of this paper is to provide iden-
tifiability conditions for the PARMA model.

To our knowledge, only time domain estimation methods have been pro-
posed for PARMA models in the literature. In the frequency domain, the
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well-known Whittle approximation can be used to circumvent the inversion
of the covariance matrix, see e.g. Whittle (1953), Dunsmuir and Hannan
(1976), Deistler et al. (1978) and Fox and Taqqu (1986). Here, we propose to
apply the Whittle’s methodology for estimating the parameters of a PARMA
model and we establish the strong consistency and the asymptotic normality
of the WLE.

The rest of the paper is organized as follows. In Section 2, PC processes and
PARMA models are described and the identifiability results are presented.
In Section 3, the WLE of a PARMA model is introduced and its asymptotics
properties are derived. In Section 4, we compare via Monte Carlo simulations
the MLE and the WLE. The two estimation methods are applied to fit a
PARMA model to air pollution data in Section 5. Proofs are deferred to
Section 6.

2 Identifiability of the PARMA model

Let Z be the set of integer numbers and (Xt), t ∈ Z, be a real-valued stochas-
tic process satisfying E(X2

t ) < ∞ for all t ∈ Z. Denote the mean and autoco-
variance functions of (Xt) by µt = E(Xt) and γt(τ) = Cov(Xt, Xt−τ ), respec-
tively. (Xt) is said to be PC with period S > 0 if, for every pair (t, τ) ∈ Z2,

µt+S = µt and γt+S(τ) = γt(τ), (2.1)

and there are no smaller values of S for which (2.1) is satisfied. This definition
implies that µt and γt(τ) are periodic functions in t and need to be known
only for t = 1, . . . , S. If S = 1, (Xt) is weakly stationary in the usual sense.

The natural extension for PC processes of the well-known ARMA model
is the PARMA model. (Xt) is said to be a PARMA series with period S > 0
if it is a solution to the difference equation

(XnS+ν −µν)+

pν∑
k=1

ϕν,k(XnS+ν−k−µν−k) = εnS+ν +

qν∑
k=1

θν,kεnS+ν−k, (2.2)

where XnS+ν is the series during the νth season, ν = 1, . . . , S, of cycle n ∈ Z,
and (εnS+ν) is a sequence of zero mean uncorrelated random variables with
E(ε2nS+ν) = σ2

nS+ν = σ2
ν . The period S is taken to be the smallest posi-

tive integer satisfying (2.2). When S = 1, (2.2) corresponds to the standard
ARMA model. During season ν, pν ≥ 0 and qν ≥ 0 are the AR and MA
orders, respectively, ϕν = (ϕν,1, . . . , ϕν,pν )

′ and θν = (θν,1, . . . , θν,qν )
′ are the

AR and MA parameters, respectively, where A′ denotes the transpose of ma-
trix A. The parameter vector of model (2.2) is then φ = (φ′

ϕ, φ
′
θ, φ

′
σ)

′ where

φϕ = (ϕ′
1, . . . , ϕ

′
S)

′, φθ = (θ′1, . . . , θ
′
S)

′ and φσ = (σ2
1 , . . . , σ

2
S)

′.
In the following, we set
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p = max
1≤ν≤S

pν , ϕν,k = 0 when pν < k ≤ p,

q = max
1≤ν≤S

qν , θν,k = 0 when qν < k ≤ q,

for every ν = 1, . . . , S, and we refer to (2.2) as the PARMA(p, q)S model. For
the sake of simplicity, we assume that µν = 0 for ν = 1, . . . , S. Note that, in
practical situations, the sample periodic means are, in general, removed from
the series before model fitting.

Let (Xn)n∈Z be the S-variate process defined byXn = (XnS+1, . . . , XnS+S)
′.

It is well known that (Xt) satisfies (2.2) if and only if (Xn) is a solution to
the vector ARMA (VARMA) difference equation

P∑
k=0

ϕkXn−k =

Q∑
k=0

θkεn−k, (2.3)

where εn = (εnS+1, . . . , εnS+S)
′, the sequence (εn) is uncorrelated and

E(εnε
′
n) = Σ where Σ is diagonal with element (Σ)l,l = σ2

l for l = 1, . . . , S.
The VARMA orders are P = ⌈p/S⌉ and Q = ⌈q/S⌉, wherein ⌈x⌉ stands for
the smallest integer greater than or equal to x. For every k = 0, . . . , P , the
S× S matrix ϕk has (l,m)th entries

(ϕ0)l,m =


0 l < m,

1 l = m,

ϕl,l−m l > m,

(ϕk)l,m = ϕl,kS+l−m, 1 ≤ k ≤ P, (2.4)

and the entries of θk, for k = 0, . . . , Q, are similarly obtained by replacing
ϕl,m by θl,m in (2.4). It follows from (2.4) that, for every ν = 1, . . . , S,

ϕν,k =


(ϕ0)ν,ν−k if 1 ≤ k < ν,

(ϕ1)ν,S+ν−k if ν ≤ k < ν + S,
...

(ϕP )ν,PS+ν−k if ν + (P − 1)S ≤ k ≤ p,

(2.5)

and θν,k is similarly obtained by replacing ϕk by θk in (2.5). Moreover, σ2
ν =

(Σ)ν,ν . Therefore, φ is uniquely obtained from the S× (P +Q+ 3)S matrix
defined by η = (ϕ0, . . . ,ϕP ,θ0, . . . ,θQ, Σ).

Since ϕ0 and θ0 are both lower triangular matrices, (2.3) is referred to a
“triangular” VARMA representation of (Xn). Note that this representation
does not follow the standard VARMA framework, since ϕ0 and θ0 in (2.4)
are not the S× S identity matrix I. However, since ϕ0 and θ0 are invertible,
(2.3) is equivalent to the standard VARMA representation
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Xn +

P∑
k=1

ϕ∗
kXn−k = ξn +

Q∑
k=1

θ∗
kξn−k, (2.6)

where
ϕ∗

k = ϕ−1
0 ϕk, θ

∗
k = ϕ−1

0 θkθ
−1
0 ϕ0, (2.7)

and ξn = ϕ−1
0 θ0εn. We have E(ξnξ

′
n) = Σ∗ where

Σ∗ = ϕ−1
0 θ0Σθ′

0ϕ
′−1
0 . (2.8)

Let η∗ be the S×(P+Q+1)Smatrix defined by η∗ = (ϕ∗
1, . . . ,ϕ

∗
P ,θ

∗
1, . . . ,θ

∗
Q, Σ

∗).
The parameters η∗ are uniquely defined from the parameters φ, say η∗ =
f(φ). However, map f is not necessarily one-to-one as illustrated by the two
following examples.

Example 2.1. Consider a PARMA(1, 1)2 process (Xt) with ϕ1,1 = θ1,1 = 0.
The nonzero parameters in its triangular VARMA representation (2.3) are

ϕ0 =

[
1 0

ϕ2,1 1

]
, θ0 =

[
1 0

θ2,1 1

]
, Σ =

[
σ2
1 0
0 σ2

2

]
.

The corresponding standard representation (2.6) reduces to Xn = ξn, where
the covariance matrix of the bivariate white noise (ξn) is

Σ∗ =

[
σ2
1 (θ2,1 − ϕ2,1)σ

2
1

(θ2,1 − ϕ2,1)σ
2
1 (θ2,1 − ϕ2,1)

2σ2
1 + σ2

2

]
. (2.9)

It is easy to see that, for any a ∈ R, the PARMA(1, 1)2 process (X▲
t ) with

parameters ϕ▲
1,1 = θ▲1,1 = 0, ϕ▲

2,1 = ϕ2,1 + a, θ▲2,1 = θ2,1 + a and with white
noise variances σ2▲

1 = σ2
1 and σ2▲

2 = σ2
2 has the same representation (2.6) as

Xn, i.e. X
▲
n = ξ▲n where Σ▲∗ = Σ∗.

Example 2.2. Consider a PARMA(1, 2)2 process (Xt) with ϕ1,1 = θ1,2 = 0.
Its triangular VARMA representation (2.3) has the nonzero parameters

ϕ0 =

[
1 0

ϕ2,1 1

]
, θ0 =

[
1 0

θ2,1 1

]
, θ1 =

[
0 θ1,1
0 θ2,2

]
, Σ =

[
σ2
1 0
0 σ2

2

]
.

Its standard VARMA representation (2.6) is Xn = ξn + θ∗
1ξn−1 where

θ∗
1 =

[
θ1,1(ϕ2,1 − θ2,1) θ1,1

(θ2,2 − θ1,1ϕ2,1)(ϕ2,1 − θ2,1) θ2,2 − θ1,1ϕ2,1

]
and Σ∗ is given by (2.9). One can see that, for any a ∈ R, the PARMA(1, 2)2
process (X▲

t ) with parameters ϕ▲
1,1 = θ▲1,2 = 0, ϕ▲

2,1 = ϕ2,1+a, θ▲2,1 = θ2,1+a,
θ▲1,1 = θ1,1, θ▲2,2 = θ2,2 + θ1,1a and with white noise variances σ2▲

1 = σ2
1

and σ2▲
2 = σ2

2 has the same VARMA representation (2.6) as Xn, i.e. X
▲
n =

ξ▲n + θ∗
1ξ

▲
n−1 where Σ▲∗ = Σ∗.
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The fact that different PARMA models, with the same orders, may have
the same standard VARMA representation induces identifiability problems of
PARMA models based on representation (2.6). Therefore, finding conditions
to ensure that map f be one-to-one is an important issue. In this context,
the following assumptions are introduced:

(A1) The AR orders pν ’s of the PARMA process (Xt) are the same for every
ν = 1, . . . , S in (2.2).

(A2) The MA orders qν ’s of the PARMA process (Xt) are the same for every
ν = 1, . . . , S in (2.2).

Lemma 2.1. If (A1) and/or (A2) hold, then φ is uniquely obtained from
η∗.

Assumptions (A1) and (A2) are easy to verify and give sufficient con-
ditions to guarantee that map f be one-to-one. (A1) and (A2) are not
necessary conditions as shown by the following example.

Example 2.3. Consider the class of PARMA(1, 1)2 processes (Xt) satisfying
ϕ2,1 = θ1,1 = 0. The corresponding triangular VARMA representation (2.3)
is Xn + ϕ1Xn−1 = θ0εn, where

ϕ1 =

[
0 ϕ1,1

0 0

]
, θ0 =

[
1 0

θ2,1 1

]
,

and the standard representation (2.6) is Xn + ϕ1Xn−1 = ξn, where

Σ∗ =

[
σ2
1 θ2,1σ

2
1

θ2,1σ
2
1 θ22,1σ

2
1 + σ2

2

]
.

It is readily seen that the parameter vector (ϕ1,1, θ2,1, σ
2
1 , σ

2
2) is uniquely de-

termined from ϕ1 and Σ∗, while (A1) and (A2) are not satisfied.

For all z ∈ C, let

Φ(z) =

P∑
k=0

ϕkz
k, Φ∗(z) = I+

P∑
k=1

ϕ∗
kz

k,

Θ(z) =

Q∑
k=0

θkz
k, Θ∗(z) = I+

Q∑
k=1

θ∗
kz

k.

(2.10)

It results from (2.7) that

Φ∗(z) = ϕ−1
0 Φ(z) and Θ∗(z) = ϕ−1

0 Θ(z)θ−1
0 ϕ0. (2.11)

Since (Xt) in (2.2) is PC with period S, the vector process (Xn) in (2.3) is
weakly stationary. The autocovariance matrix function of (Xn) is Γ (τ) =
Cov(Xn,Xn−τ ) and is related to γt(τ) by Γl,m(τ) = γl(τS+ l−m) for every
l,m = 1, . . . , S. The causality and invertibility of (Xt) are equivalent to the
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causality and invertibility of (Xn), respectively. For more details, we refer to
Gladyshev (1961) and Hurd and Miamee (2007). Therefore, (Xt) is a causal
solution of (2.2) if and only if (Xn) is a stationary causal solution of (2.6),
and this is the case according to (Brockwell and Davis, 2006, Theorem 11.3.1)
whenever detΦ∗(z) ̸= 0 for |z| ≤ 1. Similar arguments jointly with (Brockwell
and Davis, 2006, Theorem 11.3.2) show that (Xt) is a PC invertible solution
of (2.2) when detΘ∗(z) ̸= 0 for |z| ≤ 1.

The standard VARMA representation (2.6) is said to be identifiable if
Σ∗, Φ∗(z) and Θ∗(z) are uniquely determined by the autocovariance matrix
function of (Xn), or equivalently by the spectral density matrix of (Xn).
When the model is non identifiable, the Gaussian likelihood may have more
than one maximum. Causality and invertibility properties do not ensure the
identifiability of model (2.6), see e.g. (Brockwell and Davis, 2006, page 431)
and (Reinsel, 1997, section 2.3). Further restrictions have to be imposed in
order to obtain an identifiable model.

Following Dunsmuir and Hannan (1976), two S×S matrices of polynomials
g(z) and h(z) are said to be left prime when they have no common left factors
other than unimodular ones, that is, if g(z) = e(z)g1(z) and h(z) = e(z)h1(z)
where e(z), g1(z), h1(z) are matrices of polynomials, then e(z) has constant
determinant. It is known (Heymann, 1975) that g(z) and h(z) are left prime
if and only if the S× 2S matrix [g(z), h(z)] has rank S for all z ∈ C.

Now, following Deistler et al. (1978), for every i = 1, . . . , S, let gi(z) and
hi(z) be the ith column of g(z) and h(z), pi and qi be the maximum degrees
of gi(z) and hi(z), gi(j) and hi(j) be the vectors of coefficients of zj in gi(z)
and hi(z), respectively. We define the S× 2S matrix

G(g(z), h(z)) = [g1(p1), . . . , gS(pS), h1(q1), . . . , hS(qS)].

Deistler et al. (1978) show that the standard VARMA representation (2.6) is
identifiable if the following three assumptions are satisfied:

(A3∗) detΦ∗(z) ̸= 0 and detΘ∗(z) ̸= 0 for |z| ≤ 1,
(A4∗) Φ∗(z) and Θ∗(z) are left prime,
(A5∗) rankG(Φ∗(z), Θ∗(z)) = S.

Remark 2.1. It is easy to verify that the PARMA models in Examples 2.1
and 2.2 satisfy (A4∗) and (A5∗). Moreover, (A3∗) is always satisfied in
Example 2.1 and is satisfied in Example 2.2 when |θ1,1θ2,1 − θ2,2| < 1 since
detΘ∗(z) = det(ϕ−1

0 Θ(z)θ−1
0 ϕ0) = detΘ(z) = 1 + (θ2,2 − θ1,1θ2,1)z. Then,

under this restriction, the standard VARMA representations (2.6) in Exam-
ples 2.1 and 2.2 are identifiable whereas, as shown above, the corresponding
PARMA models (2.2) are not.

The following assumptions are introduced:

(A3) detΦ(z) ̸= 0 and detΘ(z) ̸= 0 for |z| ≤ 1,
(A4) Φ(z) and Θ(z) are left prime,
(A5) rankG(Φ(z), Θ(z)θ−1

0 ϕ0) = S.
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Lemma 2.2. Assumptions (A3), (A4) and (A5) are equivalent to (A3∗),
(A4∗) and (A5∗), respectively.

The following theorem gives sufficient conditions of identifiability for model
in (2.2).

Theorem 2.1. If either (A1) or (A2) and (A5) hold, and in addition (A3)
and (A4) are satisfied, then the parameter vector φ of model (2.2) is uniquely
determined by the autocovariance matrix function or by the spectral density
matrix of (Xn).

Remark 2.2. If p = 0 in (2.2), ϕ0 = I in (2.4) and it follows from (2.7) and
(2.8) that ϕk = ϕ∗

k, θk = θ∗
kθ0 and θ0Σθ′

0 is the Cholesky decomposition of
Σ∗. Therefore, Σ and θ0 are uniquely obtained from Σ∗. Then φ is uniquely
determined from η∗ and the PARMA model (2.2) is identifiable when the
standard VARMA model (2.6) is. In the same way, when q = 0 in (2.2), θ0 =
I, ϕk = ϕ0ϕ

∗
k, θk = ϕ0θ

∗
kϕ

−1
0 and ϕ−1

0 Σϕ′−1
0 is the Cholesky decomposition

of Σ∗. Therefore, Σ and ϕ0 are uniquely obtained from Σ∗ and φ is uniquely
determined from η∗. Again, the PARMA model (2.2) is identifiable when the
standard VARMA model (2.6) is.

3 Whittle estimation

To simplify the notation, we denote by the same symbol P the set of points
(φ′

ϕ, φ
′
θ)

′ ⊂ R(p+q)S which satisfy either (A1), (A3) and (A4), or (A2),
(A3), (A4) and (A5). We denote the true parameter vector of model (2.2)
by φ0 = (φ′

ϕ0
, φ′

θ0
, φ′

σ0
)′ and we assume that (φ′

ϕ0
, φ′

θ0
)′ ∈ P. We suppose

also that the sample contains N full periods of data which are indexed from
0 to N − 1 and we set X = (X1, . . . , XNS)

′ = (X′
0, . . . ,X

′
N−1)

′.

We denote by R>0 the set of positive real numbers. For any φ ∈ P×RS
>0,

let ΓN (φ) be the NS×NS matrix with Γ (m− l) in the (l,m)th block of S×S

elements. Then, ΓN (φ0) = Cov(X,X). Let

L̂N (φ) = N−1 log detΓN (φ) +N−1X′Γ−1
N (φ)X,

be the Gaussian log likelihood with the scaling factor −2N−1. The Gaussian
MLE of φ0 is

φ̂N = argmin
φ∈P×RS

>0

L̂N (φ).

In most cases the minimization of L̂N (φ) is performed through optimiza-
tion algorithms, which can demand high computational effort, since a priori it
is necessary to invert ΓN (φ). One alternative is to resort to the recursive likeli-
hood evaluation technique proposed by Lund and Basawa (2000). However, as
illustrated in Section 4, the computational cost of this method may be impor-
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tant for large sample sizes. To circumvent this difficulty, we use the multivari-
ate version of Whittle’s methodology to approximate L̂N (φ). The multivari-
ate periodogram of X at frequency ω ∈ [−π, π] is I(ω) = W (e−iω)W ′(eiω),
where

W (eiω) = (2πN)−1/2
N−1∑
n=0

Xne
inω.

The spectral density matrix of (Xn) is f(ω, φ0), where

f(ω, φ) =
1

2π
Φ∗−1(e−iω)Θ∗(e−iω)Σ∗Θ∗′(eiω)Φ∗′−1(eiω). (3.1)

Following Dunsmuir and Hannan (1976), we approximate L̂N (φ) by

L̃N (φ) = log detΣ∗ +N−1
N−1∑
j=0

tr[f−1(ωj , φ)I(ωj)], (3.2)

where ωj = 2πj/N and trA is the trace of matrix A. This approximation
is particularly interesting from a computational point of view. According to
(2.8),

log detΣ∗ = log detΣ =

S∑
l=1

log σ2
l , (3.3)

and it follows from (2.8), (2.11) and (3.1) that

f(ω, φ) =
1

2π
Φ−1(e−iω)Θ(e−iω)ΣΘ′(eiω)Φ′−1(eiω). (3.4)

Then

tr[f−1(ωj , φ)I(ωj)] = W ′(eiωj )f−1(ωj , φ)W (e−iωj ) =

2π

S∑
l=1

σ−2
l

∣∣(Θ−1(e−iωj )Φ(e−iωj )W (e−iωj )
)
l

∣∣2 , (3.5)

and replacing (3.3) and (3.5) in (3.2), we get that

L̃N (φ) =

S∑
l=1

log σ2
l +

2π

Nσ2
l

N−1∑
j=0

∣∣(Θ−1(e−iωj )Φ(e−iωj )W (e−iωj )
)
l

∣∣2 .

(3.6)
The WLE of φ0 is

φ̃N = argmin
φ∈P×RS

>0

L̃N (φ).

For every l = 1, . . . , S, the minimum of (3.6) with respect to σ2
l is
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σ̃2
l,N (φϕ, φθ) =

2π

N

N−1∑
j=0

∣∣(Θ−1(e−iωj )Φ(e−iωj )W (e−iωj )
)
l

∣∣2 . (3.7)

Replacing (3.7) in (3.6), we get that the WLE of (φ′
ϕ0
, φ′

θ0
)′ is

(φ̃′
ϕN

, φ̃′
θN )′ = argmin

(φ′
ϕ,φ

′
θ)

′∈P

S∑
l=1

log σ̃2
l,N (φϕ, φθ).

Therefore, φ̃N = (φ̃′
ϕN

, φ̃′
θN

, φ̃′
σN

)′, where (φ̃σN
)l = σ̃2

l,N (φ̃ϕN
, φ̃θN ). Ob-

serve that φ̃N is easier to calculate than φ̂N since L̂N (φ) involves (p+q+1)S
parameters while σ̃2

l,N (φϕ, φθ) is a function of (p+ q)S parameters.

Theorem 3.1. For any φ0 ∈ P×RS
>0, φ̃N converges almost surely (a.s.) to

φ0 as N tends to infinity.

To establish asymptotic normality, we now introduce the following addi-
tional assumption:

(A6) For all t ∈ Z, t = nS + ν where n ∈ Z and ν = 1, . . . , S, E(ε4t ) < ∞
and

a. E(εt|Ft−1) = 0,
b. E(ε2t |Ft−1) = σ2

ν ,
c. E(ε3t |Ft−1) = βν ,
d. E(ε4t ) = γν ,

where σ2
ν , βν and γν are constants and Ft is the σ-algebra generated by

{εs; s ≤ t}.

In the following, it is convenient to let φk denote the kth component of φ

for k = 1, . . . , (p+ q + 1)S, and f0(ω),
∂f0(ω)
∂φk

denote respectively f(ω, φ) and
∂f(ω,φ)
∂φk

evaluated at φ = φ0. Let Ω be the (p+ q+ 1)S× (p+ q+ 1)S matrix

with (k, l) entries

Ωk,l =
1

2π

∫ 2π

0

tr

[
f−1
0 (ω)

∂f0(ω)

∂φk
f−1
0 (ω)

∂f0(ω)

∂φl

]
dω,

and Π be the diagonal (p+ q + 1)S× (p+ q + 1)S matrix with (k, k) entries

Πk,k =

{
0 if k = 1, . . . , (p+ q)S,

κν/σ
8
ν if k = (p+ q)S+ ν and ν = 1, . . . , S,

(3.8)

where κν = γν − 3σ4
ν is the fourth order cumulant of εnS+ν . These matrices

coincide with the matrices Ω and Π introduced in (Dunsmuir, 1979, Theo-
rem 2.2), and (3.8) is obtained from (Dunsmuir, 1979, Remark 3). It follows
from (3.4) that Ωk,l = 0 when k, l = (p+q)S+1, . . . , (p+q)S+S and k ̸= l. We
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deduce from (Dunsmuir, 1979, Remark 4) that the matrix Ω−1(2Ω+Π)Ω−1

reduces to [
2Ω(1)−1

0

0 Ω(2)−1

(2Ω(2) +Π(2))Ω(2)−1

]
, (3.9)

where Ω(1) = (Ωk,l)k,l=1,...,(p+q)S and Ω(2)−1

(2Ω(2) + Π(2))Ω(2)−1

is the
diagonal S × S matrix with diagonal elements (2Ωk,k + Πk,k)/Ω

2
k,k for

k = (p+ q)S+ 1, . . . , (p+ q)S+ S.

Theorem 3.2. For any φ0 ∈ P×RS
>0, under assumption (A6), N1/2(φ̃N −

φ0) converges in law to a normal distribution with zero mean vector and
covariance matrix (3.9), as N tends to infinity.

4 Monte Carlo study

We compare by Monte Carlo simulations the finite sample properties of the
WLE and the exact MLE obtained with the algorithm in Lund and Basawa
(2000). For this purpose, we simulate PARMA models with S = 2, N =
50, 100, 150 and 200 and the series has complete periods. The empirical bias,
root mean squared error (RMSE) and the computation time of the WLE and
MLE are based on the mean of M = 1000 replications.

Consider a PARMA(1, 1)2 model. The non-zero parameters in its triangu-
lar VARMA representation (2.3) are

ϕ0 =

[
1 0

ϕ2,1 1

]
, ϕ1 =

[
0 ϕ1,1

0 0

]
, θ0 =

[
1 0

θ2,1 1

]
, θ1 =

[
0 θ1,1
0 0

]
and

Σ =

[
σ2
1 0
0 σ2

2

]
.

Then, for all z ∈ C,

Φ(z) =

[
1 ϕ1,1z

ϕ2,1 1

]
and Θ(z) =

[
1 θ1,1z

θ2,1 1

]
.

Condition (A1), respectively (A2), is equivalent to ϕ1,1ϕ2,1 ̸= 0, respectively,
θ1,1θ2,1 ̸= 0. Condition (A3) writes |ϕ1,1ϕ2,1| < 1 and |θ1,1θ2,1| < 1. When
ϕ1,1 ̸= θ1,1 or ϕ2,1 ̸= θ2,1, (A4) holds since [Φ(z), Θ(z)] has rank 2 for all
z ∈ C. In order to

G(Φ(z), Θ(z)θ−1
0 ϕ0) =

[
1 ϕ1,1 θ1,1(ϕ2,1 − θ2,1) θ1,1

ϕ2,1 0 0 0

]
be full rank, it is sufficient that (A1) holds. If (A1) does not hold but (A2)
holds, it is additionally required that ϕ2,1 ̸= 0.
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Monte Carlo experiments are carried out with four PARMA(1, 1)2 mod-
els whose parameters are provided in Table 1 and the innovation processes
(εt) are Gaussian. These models satisfy (A1), (A2), (A3), (A4), (A5),
(A6), and are chosen to evaluate the effect caused by the proximity of the
parameters to the regions of noncausality and noninvertibility.

Model 1 is far from both the noncausality and noninvertibility regions.
Models 2 and 3 are close to noncausality and noninvertibility regions, respec-
tively. Model 4 is close from both noncausality and noninvertibility regions.
The numerical optimization procedures are initialized with the true values of
the parameters.

Table 1: PARMA(1, 1)2 models.

Parameters
ν = 1 ν = 2

Model ϕ1,1 θ1,1 σ2
1 ϕ2,1 θ2,1 σ2

2

1 -0.7 0.4 1.0 -0.5 0.8 1.0
2 -1.0 0.4 1.0 -0.7 0.8 1.0

3 -0.7 0.6 1.0 -0.5 1.1 1.0

4 -1.0 0.6 1.0 -0.7 1.1 1.0

4.1 Bias

Let φ̂N,k and φ̃N,k be respectively the MLE and the WLE of φ0 obtained in
the kth experiment, k = 1, . . . ,M . The empirical bias of the MLE and the
WLE are respectively,

M−1
M∑
k=1

φ̂N,k − φ0 and M−1
M∑
k=1

φ̃N,k − φ0.

Tables 2, 3, 4 and 5 display the empirical bias of the MLE and WLE, for Mod-
els 1, 2, 3 and 4, respectively. The results show that the bias decreases as the
sample size increases for both estimators, which is an expected result based on
the asymptotic theories previously discussed. Furthermore, both estimation
methods overestimate the AR parameters. However, the estimators behave
differently in the estimation of the MA parameters and the white noise vari-
ances. The MA parameters are overestimated and underestimated by MLE
and WLE approaches, respectively. On the other hand, the white noise vari-
ances are underestimated and overestimated by the MLE and WLE methods,
respectively. The empirical phenomena of underestimation and overestima-
tion are expected results, since the variance of (Xt) (Eq. 2.2) is defined as
a balanced relation between the white noise variance and the parameters of
the process. The proximity of noncausality or noninvertibility regions does
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not seem to have a significant effect on the bias of the MLE. However, this
empirical property does not hold for the WLE method. In this case, the bias
of the MA parameter and the variance increase substantially (compare Ta-
bles 4 and 5). In general, for models with parameters in a very stable region,
both methods perform similarly for time series with size N ≥ 200 which is a
sample size quite common in many areas of applications.

Table 2: Empirical bias of the MLE and the WLE for Model 1.

Bias

ν = 1 ν = 2
N ϕ1,1 θ1,1 σ2

1 ϕ2,1 θ2,1 σ2
2

MLE

50 0.014 0.027 -0.023 0.017 0.036 -0.051

100 0.007 0.011 -0.025 0.009 0.016 -0.024
150 0.005 0.011 -0.010 0.006 0.009 -0.012

200 0.001 0.001 -0.007 0.003 0.008 -0.010

WLE

50 0.026 -0.003 0.067 0.014 -0.034 0.004
100 0.015 -0.004 0.025 0.009 -0.022 0.006

150 0.010 -0.002 0.025 0.005 -0.019 0.010

200 0.005 -0.006 0.018 0.003 -0.011 0.006

Table 3: Empirical bias of the MLE and the WLE for Model 2.

Bias
ν = 1 ν = 2

N ϕ1,1 θ1,1 σ2
1 ϕ2,1 θ2,1 σ2

2

MLE

50 0.015 0.031 -0.036 0.015 0.035 -0.057
100 0.007 0.014 -0.016 0.010 0.013 -0.021

150 0.004 0.008 -0.011 0.003 0.010 -0.017

200 0.004 0.005 -0.008 0.004 0.009 -0.013

WLE

50 0.035 -0.023 0.266 0.014 -0.126 0.069

100 0.017 -0.021 0.166 0.010 -0.089 0.059

150 0.011 -0.015 0.104 0.003 -0.062 0.038
200 0.009 -0.015 0.082 0.004 -0.051 0.035

4.2 Root mean squared error

The empirical RMSE of the MLE and the WLE are, respectively,

(
M−1

M∑
k=1

(φ̂N,k − φ0)
2
)1/2

and
(
M−1

M∑
k=1

(φ̃N,k − φ0)
2
)1/2

.
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Table 4: Empirical bias of the MLE and the WLE for Model 3.

Bias

ν = 1 ν = 2
N ϕ1,1 θ1,1 σ2

1 ϕ2,1 θ2,1 σ2
2

MLE

50 0.012 0.030 -0.038 0.019 0.040 -0.062

100 0.002 0.011 -0.020 0.003 0.017 -0.023
150 0.004 0.008 -0.017 0.005 0.008 -0.014

200 0.003 0.006 -0.011 0.005 0.007 -0.020

WLE

50 0.025 -0.063 0.118 0.018 -0.105 0.092

100 0.010 -0.044 0.077 0.003 -0.077 0.077
150 0.008 -0.031 0.043 0.005 -0.051 0.049

200 0.007 -0.026 0.039 0.005 -0.043 0.035

Table 5: Empirical bias of the MLE and the WLE for Model 4.

Bias
ν = 1 ν = 2

N ϕ1,1 θ1,1 σ2
1 ϕ2,1 θ2,1 σ2

2

MLE

50 0.012 0.040 -0.037 0.015 0.049 -0.056

100 0.007 0.015 -0.025 0.009 0.016 -0.028

150 0.003 0.010 -0.012 0.003 0.010 -0.010
200 0.000 0.007 -0.008 0.000 0.006 -0.015

WLE

50 0.034 -0.118 0.471 0.017 -0.263 0.273

100 0.018 -0.087 0.246 0.009 -0.182 0.183
150 0.010 -0.071 0.174 0.004 -0.140 0.154

200 0.006 -0.062 0.142 0.001 -0.120 0.121

Tables 6, 7, 8 and 9 display the empirical RMSE of the MLE and WLE
methods, for models 1, 2, 3 and 4, respectively. Tables show that the RMSE
decreases as the sample size increases for both estimators, which corroborates
the asymptotic theory discussed earlier. In general, the approximation of
the parameters to noncausality or noninvertibility regions seems to have no
significant effect in the RMSE of the MLE, which is an expected result based
on the bias performance. We observe that the RMSE are smaller (especially
for the estimation of the AR parameters) for Models 2, 3 and 4 than for
Model 1. The same phenomenon appears with the WLE for the estimation
of the AR parameters. The proximity of noncausality and noninvertibility
regions increases significantly the RMSE of the WLE of the MA parameters
and white noise variances, and the worse results are obtained for Model 4.

4.3 Computation time

For each estimator, the mean computation time is the average of the compu-
tation times obtained in each Monte Carlo experiment. For each simulation,
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Table 6: Empirical RMSE of the MLE and the WLE for Model 1.

RMSE

ν = 1 ν = 2
N ϕ1,1 θ1,1 σ2

1 ϕ2,1 θ2,1 σ2
2

MLE

50 0.098 0.156 0.210 0.120 0.178 0.200

100 0.067 0.099 0.140 0.083 0.128 0.144
150 0.055 0.080 0.116 0.069 0.100 0.114

200 0.046 0.070 0.100 0.058 0.085 0.097

WLE

50 0.104 0.161 0.258 0.124 0.195 0.216

100 0.071 0.104 0.162 0.084 0.137 0.153
150 0.057 0.082 0.131 0.069 0.105 0.119

200 0.047 0.072 0.110 0.059 0.090 0.101

Table 7: Empirical RMSE of the MLE and the WLE for Model 2.

RMSE
ν = 1 ν = 2

N ϕ1,1 θ1,1 σ2
1 ϕ2,1 θ2,1 σ2

2

MLE

50 0.058 0.139 0.205 0.064 0.151 0.202

100 0.044 0.089 0.145 0.050 0.108 0.145

150 0.035 0.070 0.113 0.037 0.083 0.118
200 0.029 0.059 0.106 0.031 0.069 0.102

WLE

50 0.077 0.151 0.559 0.066 0.240 0.267

100 0.050 0.102 0.351 0.050 0.177 0.185
150 0.038 0.078 0.229 0.038 0.130 0.146

200 0.032 0.066 0.190 0.031 0.109 0.123

Table 8: Empirical RMSE of the MLE and the WLE for Model 3.

RMSE
ν = 1 ν = 2

N ϕ1,1 θ1,1 σ2
1 ϕ2,1 θ2,1 σ2

2

MLE

50 0.080 0.129 0.205 0.111 0.169 0.208
100 0.055 0.080 0.143 0.075 0.109 0.138

150 0.045 0.061 0.115 0.060 0.084 0.116

200 0.039 0.055 0.102 0.053 0.081 0.103

WLE

50 0.090 0.165 0.319 0.116 0.239 0.284

100 0.059 0.111 0.215 0.077 0.166 0.201

150 0.047 0.079 0.148 0.061 0.121 0.145
200 0.041 0.072 0.129 0.054 0.108 0.130

the computation time is defined as the time required by the optimization
algorithm to converge. Each optimization is performed by the function con-
strOptim.nl of the package “alabama” of the free software environment R.

Figures 1a and 1b display, as a function of N , the mean computation
time of each estimator and their ratio, respectively. For both estimators, the
computation time is nearly the same for each model, the longest computation
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Table 9: Empirical RMSE of the MLE and the WLE for Model 4.

RMSE

ν = 1 ν = 2
N ϕ1,1 θ1,1 σ2

1 ϕ2,1 θ2,1 σ2
2

MLE

50 0.056 0.112 0.210 0.065 0.140 0.202

100 0.038 0.067 0.142 0.044 0.085 0.144
150 0.030 0.053 0.118 0.033 0.068 0.115

200 0.026 0.044 0.100 0.030 0.059 0.101

WLE

50 0.075 0.197 0.840 0.069 0.377 0.459

100 0.045 0.138 0.456 0.046 0.272 0.317
150 0.034 0.116 0.323 0.034 0.213 0.257

200 0.028 0.100 0.259 0.030 0.185 0.220

time being obtained for Model 4. The computation time is longer for the MLE
than the WLE. This is certainly because the MLE of the white noise variances
σ2
ν for ν = 1, . . . , S are obtained by minimizing L̂N (φ), while their WLE are

obtained by calculation and do not require any numerical optimization. As
expected, the computation time increases monotonously with N , but the
slope is much more important for the MLE than the WLE. For instance for
Model 1, the ratio of the mean computation times of the MLE and the WLE
is 239 when N = 50 whereas it is 374 when N = 200. Therefore, the larger the
sample size is, the greater the benefit of the WLE is. Now, for small sample
sizes where the computation time of the MLE is reasonable, this is preferable
to use the MLE, especially for models with parameters close to noncausality
or noninvertibility regions. Hauser (1999) comes to the same conclusion for
the estimation of ARMA models.

In this Monte Carlo study we have taken S = 2 to limit the number
of parameters to estimate. However, it is worth noting that the difference
between the computation time of the MLE and the WLE increases with S,
and in practice, the calculation of the MLE may become impracticable. For
example, this may be the case in the context of automatic model selection
through information criteria like Akaike and Schwarz criteria.

5 Application

We analyze the daily mean concentrations of sulfur dioxide (SO2) observed
from January 1, 2005 to December 31, 2009 at the monitoring station of
environment and water resources state institute located in Vitória, Esṕırito
Santo, Brazil. Figure 2 displays the data.

Since the data was measured daily, a PARMA model, with period S = 7,
seems to be appropriated. We fit a PARMAmodel to the mean-corrected data
obtained by subtracting the sample periodic mean from the original data. The
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Fig. 1: (a) Mean computation time in seconds of the MLE and the WLE as
a function of N . (b) Ratio of the mean computation times of the MLE and
the WLE as a function of N .
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Fig. 2: Daily mean concentrations of SO2 in Vitória, ES, Brazil.

sample periodic autocorrelation and partial autocorrelation functions suggest
the ARMA orders pν = 1, 1, 1, 1, 1, 1, 1 and qν = 1, 1, 1, 1, 0, 0, 1 (observe that
this model satisfies (A1)). We set the initial AR and MA parameters as zero.
The initial values for the white noise variances (σ2

1 , . . . , σ
2
S) has an impact on

the computation time of the MLE, while this is not the case for the WLE.
We consider the initial values (1, . . . , 1), (σ̂2

X , . . . , σ̂2
X) and (σ̂2

X,1, . . . , σ̂
2
X,S)

where σ̂2
X is the empirical variance of the data (Xt) for t = 1, . . . , NS and

σ̂2
X,ν is the empirical variance of the data (XnS+ν) for n = 0, . . . , N−1. Then,

for the MLE, the computation time is 381.9 seconds, 261.1 seconds and 148.9
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seconds, respectively, while for the WLE, the computation time is 2.9 seconds
for all initial values. These different initial values do not have influence on
the values of the MLE, even for the estimate of σ2

ν . Therefore, the WLE is at
least 50 times faster than the MLE. This huge difference discourages the use
of the MLE in a repetitive context such as automatic model selection through
information criteria like Akaike and Schwarz criteria. The estimates obtained
by both methods are presented in Table 10 and their values are very similar.
The sample autocorrelation functions of the residuals for each season plotted
in Figure 3 confirm that these residuals are uncorrelated.

Table 10: Fitted PARMA model to SO2 data.

MLE WLE
ν ϕν,1 θν,1 σ2

ν ϕν,1 θν,1 σ2
ν

1 -0.72 -0.49 28.97 -0.72 -0.48 28.95

2 -1.14 -0.75 28.38 -1.13 -0.74 28.41
3 -0.80 -0.54 23.49 -0.80 -0.54 23.49

4 -0.89 -0.50 19.56 -0.89 -0.50 19.57

5 -0.58 — 25.93 -0.58 — 25.94
6 -0.61 — 32.85 -0.61 — 32.85

7 -0.69 -0.36 32.40 -0.70 -0.36 32.40
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Fig. 3: Sample autocorrelation functions of the residuals for each season.

6 Proofs

Proof of Lemma 2.1. Since φ is uniquely obtained from η, it is sufficient to
prove that η is uniquely defined by η∗ under (A1) or (A2). Since the prod-
uct ϕ−1

0 θ0 is unit lower triangular and Σ is diagonal, (2.8) is the Cholesky
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decomposition of Σ∗. Therefore, Σ and the product ϕ−1
0 θ0 are uniquely ob-

tained from the Cholesky decomposition of Σ∗. We shall prove that ϕ−1
0

can be uniquely determined from (ϕ∗
1, . . . ,ϕ

∗
P ) when (A1) holds. Then θ0 is

obtained from ϕ−1
0 θ0 and it follows from (2.7) that for every positive inte-

ger k, ϕk and θk are uniquely determined from ϕ∗
k and θ∗

k by the relations
ϕk = ϕ0ϕ

∗
k and θk = ϕ0θ

∗
kϕ

−1
0 θ0. In the proof we distinguish the cases

where p = S, p > S and p < S. In a similar way, when (A2) holds, it can be
shown by distinguishing the cases q = S, q > S and q < S that θ−1

0 can be
uniquely determined from (θ−1

0 ϕ0θ
∗
1ϕ

−1
0 θ0, . . . ,θ

−1
0 ϕ0θ

∗
Qϕ

−1
0 θ0) (this proof

is omitted). Then ϕ0 is obtained from ϕ−1
0 θ0 and the matrices ϕk and θk

are uniquely determined from ϕ∗
k and θ∗

k as above.
Case p = S. Then the AR order P = ⌈p/S⌉ of the VARMA representation

is equal to 1, and it follows from (2.4) that

ϕ0 =


1 0 · · · 0

ϕ2,1 1 · · · 0
...

...
. . .

...
ϕS,S−1 ϕS,S−2 · · · 1

 ,ϕ1 =


ϕ1,S ϕ1,S−1 · · · ϕ1,1

0 ϕ2,S · · · ϕ2,2

...
...

. . .
...

0 0 · · · ϕS,S

 . (6.1)

Setting L = ϕ−1
0 andU = ϕ1, we have ϕ

∗
1 = LU which is a LU decomposition

of ϕ∗
1 since L is lower triangular with unit diagonal and U is upper triangular.

It follows from (A1) that the diagonal elements of U are nonzero. Then ϕ∗
1 is

nonsingular and the LU decomposition is unique, see e.g. Golub and Van Loan
(2013, Theorem 3.2.1). This implies that ϕ−1

0 is uniquely determined from
ϕ∗

1.
Case p > S. Then P > 1. If p/S is an integer, we have p = PS and

ϕP =


ϕ1,p ϕ1,p−1 · · · ϕ1,p−S+1

0 ϕ2,p · · · ϕ2,p−S+2

...
...

. . .
...

0 0 · · · ϕS,p

 . (6.2)

In this case, we define U by U = ϕP . If p/S is not an integer, we have
P − 1 < p/S < P . Setting κ = (P − 1)S, we have

ϕP =



0 · · · ϕ1,p ϕ1,p−1 · · · ϕ1,κ+1

0 · · · 0 ϕ2,p · · · ϕ2,κ+2

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · ϕp−κ,p

0 · · · 0 0 · · · 0
...
. . .

...
...

. . .
...

0 · · · 0 0 · · · 0


(6.3)

and
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ϕP−1 =



ϕ1,κ · · · ϕ1,p−S+1 · · · ϕ1,κ−S+1

ϕ2,κ+1 · · · ϕ2,p−S+2 · · · ϕ2,κ−S+2

...
. . .

...
. . .

...
ϕp−κ,p−1 · · · ϕp−κ,2p−PS · · · ϕp−κ,p−S

ϕp−κ+1,p · · · ϕp−κ+1,2p−PS+1 · · · ϕp−κ+1,p−S+1

...
. . .

...
. . .

...
0 · · · ϕS,p · · · ϕS,κ


. (6.4)

We define U as the S × S matrix formed by the concatenation of the last
p − κ columns of ϕP and the first κ − p + S columns of ϕP−1. We see that
U coincides with the right hand side of (6.2). Therefore, the expression of
U is the same for all p > S and U is upper triangular. Now, we define
U∗ exactly as U by replacing ϕP and ϕP−1 by ϕ∗

P and ϕ∗
P−1, respectively.

Since ϕ∗
P = ϕ−1

0 ϕP and ϕ∗
P−1 = ϕ−1

0 ϕP−1, we have U∗ = ϕ−1
0 U. Setting

L = ϕ−1
0 , we see that U∗ = LU is a LU decomposition of U∗. According to

(A1), the diagonal elements of U are nonzero. Then U∗ is nonsingular, the
LU decomposition is unique and ϕ−1

0 is uniquely determined from U∗.
Case p < S. Then P = 1. To simplify the notations, let L = ϕ−1

0 , U = ϕ1

and M = ϕ∗
1 = LU. If p = 0, ϕ0 = I. We assume that p > 0 and we partition

the matrices as follows,

L =

[
L11 0p×S−p

L21 L22

]
, U =

[
0p×S−p U12

0S−p×S−p 0S−p×p

]
and

M =

[
0p×S−p M12

0S−p×S−p M22

]
,

where the unit lower triangular matrices L11 and L22 have dimensions p× p
and S− p× S− p, respectively, and the p× p matrix U12 is

U12 =


ϕ1,p ϕ1,p−1 · · · ϕ1,1

0 ϕ2,p · · · ϕ2,2

...
...

. . .
...

0 0 · · · ϕp,p

 .

We have M12 = L11U12 where U12 is upper triangular and all diagonal
elements of U12 are nonzero according to (A1). Then L11U12 is the unique
LU decomposition of M12. Since M22 = L21U12, L21 = M22U

−1
12 . Thus L11

and L21 are uniquely determined from ϕ∗
1. To identify ϕ−1

0 , it remains to
determine L22. For this, we shall distinguish the cases where p = S/2, S/2 <
p < S and 0 < p < S/2. We set F = ϕ0.

Assume that p = S/2. Then we can rewrite
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F =

[
F11 0p×p

F21 F22

]
,

where all blocks are p × p matrices, F11 and F22 are unit lower triangular
and

F21 =


ϕp+1,p ϕp+1,p−1 · · · ϕp+1,1

0 ϕp+2,p · · · ϕp+2,2

...
...

. . .
...

0 0 · · · ϕ2p,p

 .

Since LF = I, we have F11 = L−1
11 and −L21F11 = L22F21. Since F21 is upper

triangular and invertible by (A1), L22F21 is the unique LU decomposition
of −L21L

−1
11 , and thus L22 is uniquely determined from ϕ∗

1.
Consider now the case where S/2 < p < S. We rewrite

I =

[
I11 I12 0p×S−p

0S−p×S−p 0S−p×2p−S I23

]
and F =

[
F11 F12 0p×S−p

F21 F22 F23

]
,

where [I11, I12] and I23 are the p × p and S − p × S − p identity matrices,
respectively, [F11,F12] and F23 are unit lower triangular matrices with di-
mensions p× p and S− p× S− p, respectively, and the S− p× S− p matrix
F21 is

F21 =


ϕp+1,p ϕp+1,p−1 · · · ϕp+1,2p−S+1

0 ϕp+2,p · · · ϕp+2,2p−S+2

...
...

. . .
...

0 0 · · · ϕS,p

 .

Since LF = I, [F11,F12] = L−1
11 and −L21F11 = L22F21 where L22 is unit

lower triangular and F21 is invertible by (A1). Then L22F21 is the unique
LU decomposition of −L21F11, and thus L22 is uniquely determined from ϕ∗

1.
Suppose that 0 < p < S/2. Remember that the first p columns of L are

uniquely determined from ϕ∗
1 and partition the matrices as follows,

I =

 I11 0p×S−2p 0p×p

0p×p I22 I23
0S−2p×p I32 I33

 ,L =

L11 0p×p 0p×S−2p

L21 L22 0p×S−2p

L31 L32 L33

 ,

and

F =

 F11 0p×S−2p 0p×p

F21 F22 F23

0S−2p×p F32 F33

 ,

where L11, L22, L33 and F11 are unit lower triangular matrices with di-
mensions p × p, p × p, S − 2p × S − 2p and p × p, respectively, the p × p
matrix F21 and the S−2p×S−2p matrix F32 are upper triangular and their
diagonal elements are nonzero according to (A1). Since LF = I, we have
F11 = L−1

11 , −L21F11 = L22F21 is the unique LU decomposition of −L21F11
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so that L22 and F21 are uniquely determined from ϕ∗
1, L32 = −L31F11F

−1
21 ,

F22 = L−1
22 I22, I32 − L32F22 = L33F32 is the unique LU decomposition of

I32 − L32F22 so that L33 is uniquely determined from ϕ∗
1. Therefore, all the

elements of L are identified in a unique way from ϕ∗
1.

Proof of Lemma 2.2. According to (2.4), ϕ0 and θ0 are unit lower trian-
gular. Then it follows from (2.11) that detΦ(z) = detΦ∗(z) and detΘ(z) =
detΘ∗(z), which shows that (A3) is equivalent to (A3∗). Assume (A4) and
that Φ∗(z) = e∗(z)Φ∗

1(z) and Θ∗(z) = e∗(z)Θ∗
1(z) where e∗(z), Φ∗

1(z) and
Θ∗

1(z) are S × S matrices of polynomials. It follows from (2.11) that Φ(z) =
e(z)Φ1(z) where e(z) = ϕ0e

∗(z), Φ1(z) = Φ∗
1(z), and Θ(z) = e(z)Θ1(z) where

Θ1(z) = Θ∗
1(z)ϕ

−1
0 θ0. According to (A4), e(z) has constant determinant.

Since det e∗(z) = det e(z)/ detϕ0, det e∗(z) is constant and (A4) implies
(A4∗). The converse is shown in the same way. To show that (A5) and (A5∗)
are equivalent, it is sufficient to show that for any S×S matrix of polynomials
g(z) and any constant invertible matrix A, we have G(Ag(z)) = AG(g(z)).
For every i = 1, . . . , S, let gi(z) be the ith column of g(z), pi be the max-
imum degree of gi(z) and gi(j) be the vectors of coefficients of zj in gi(z).
The ith column of Ag(z) is Agi(z) =

∑pi

j=0 Agi(j)z
j . Since A is invertible

and gi(pi) ̸= 0, Agi(pi) ̸= 0. Then pi is the maximum degree of Agi(z) and
Agi(pi) is the ith column of G(Ag(z)). Therefore, G(Ag(z)) = AG(g(z)).

Proof of Theorem 2.1. First, we show that (A1) implies that rankG(Φ(z)) =
S. If p = 0, P = 0 and Φ(z) = ϕ0 = I. Then, G(Φ(z)) = I and
rankG(Φ(z)) = S. If p = S, P = 1 and ϕ1 is given by (6.1). According
to (A1), ϕν,S ̸= 0 for every ν = 1, . . . , S. Then G(Φ(z)) = ϕ1, and since
ϕ1 is full rank, rankG(Φ(z)) = S. If p > S and p/S is an integer, p = PS

and ϕP is given by (6.2). (A1) implies that G(Φ(z)) = ϕP , and since ϕP

is full rank, rankG(Φ(z)) = S. If p > S and p/S is not an integer, ϕP and
ϕP−1 are given by (6.3) and (6.4), respectively. (A1) implies that G(Φ(z)) is
the concatenation of the first κ− p+ S columns of ϕP−1 and the last p− κ
columns of ϕP , i.e.,

G(Φ(z)) =



ϕ1,κ · · · ϕ1,p−S+1 ϕ1,p · · · ϕ1,κ+1

ϕ2,κ+1 · · · ϕ2,p−S+2 0 · · · ϕ2,κ+2

...
. . .

...
...

. . .
...

ϕp−κ,p−1 · · · ϕp−κ,2p−PS 0 · · · ϕp−κ,p

ϕp−κ+1,p · · · ϕp−κ+1,2p−PS+1 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · ϕS,p 0 · · · 0


. (6.5)

By permutation of the first κ − p + S columns and the last p − κ columns
of G(Φ(z)), we see that rankG(Φ(z)) = S. Lastly, if 0 < p < S, P = 1,
Φ(z) = ϕ0 + ϕ1z where ϕ0 and ϕ1 are given by (6.1). We see that ϕ1 has
the same structure as (6.3) where κ = 0, and that ϕ0 has the same structure
as (6.4) where κ = 0, ϕν,0 = 1 and ϕν,k = 0 for every ν = 1, . . . , S and every



Identifiability and Whittle Estimation of Periodic ARMA Models 23

negative integer k. Therefore, (A1) implies that G(Φ(z)) is given by (6.5)
where κ = 0, and we conclude as before that rankG(Φ(z)) = S. Now, since
rankG(Φ(z)) ≤ rankG(Φ(z), Θ(z)θ−1

0 ϕ0) ≤ S, (A1) implies (A5). It follows
from Lemma 2.2 that the combination of (A1), (A3) and (A4) is equivalent
to the combination of (A1), (A3∗), (A4∗) and (A5∗), and the combina-
tion of (A2), (A3), (A4) and (A5) is equivalent to the combination of
(A2), (A3∗), (A4∗) and (A5∗). In both cases, we deduce respectively from
Lemma 2.1 and Deistler et al. (1978) that function f is one-to-one and that
the standard VARMA representation (2.6) is identifiable. Then φ is uniquely
determined by η∗ which is itself uniquely determined by the autocovariance
matrix function of (Xn). This proves Theorem 2.1.

Proof of Theorem 3.1. According to Lemma 2.1, map f defined by
η∗ = f(φ) is a bijective continuous map between P × RS

>0 and P∗ = f(P ×
RS

>0). Moreover, φ = f−1(η∗) is obtained by applying Cholesky and LU
decompositions. Therefore, f−1 is continuous and f is an homeomorphism
between P× RS

>0 and P∗. The WLE of η∗0 = f(φ0) is

η̃∗N = argmin
η∗∈P∗

L̃∗
N (η∗)

where L̃∗
N (η∗) = L̃N (f−1(η∗)). According to Lemma 2.2, the parameter space

P∗ satisfies assumptions of Deistler et al. (1978, Theorem 4’). Therefore, η̃∗N
converges a.s. to η∗0 as N → ∞. Since φ̃N = f−1(η̃∗N ), φ̃N converges a.s. to
φ0 as N → ∞.

Proof of Theorem 3.2. Let T be the set of entries of the matrices
(ϕ∗

1, . . . ,ϕ
∗
P ,θ

∗
1, . . . ,θ

∗
Q) which satisfy (A3∗), (A4∗) and (A5∗). According

to Deistler et al. (1978, Theorem 3), T is an open set in R(P+Q)S2

. Let h
be the map, h(φ′

ϕ, φ
′
θ) = (ϕ∗

1, . . . ,ϕ
∗
P ,θ

∗
1, . . . ,θ

∗
Q) defined by (2.11). Since h

is continuous, the set h−1(T ) is an open set in R(p+q)S. But it follows from
Lemma 2.2 that h−1(T ) is the set of points which satisfy (A3), (A4) and
(A5). Therefore, the set P is an open set in R(p+q)S and P×RS

>0 is an open
set in R(p+q+1)S. All the entries of the spectral matrix f(ω, φ) in (3.4) are divi-
sions of polynomials functions of the components of φ, and therefore are twice
continuously differentiable functions of φ ∈ P×RS

>0. Moreover, these second
derivatives are continuous functions of ω ∈ [−π, π]. Hence, C2.1 in Dunsmuir
(1979) is satisfied. As discussed by Dunsmuir (1979), in the VARMA case
f(ω;φ) and ∂f(ω;φ)/∂φk have elements belonging to the Lipschitz class of
degree α, Λα as defined by Zygmund (2002, page 42), for α > 1/2. Therefore,
C2.2 and C2.4 in Dunsmuir (1979) are satisfied for the PARMA model (2.2).
Finally, it is easy to show that (A6) implies C2.3 in Dunsmuir (1979). There-
fore, Theorem 3.2 follows from Corollary 2.2 of Dunsmuir (1979).
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