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Abstract— Data processing is a key for the spreading of the 

THZ-TDS systems to more analytical fields. However, till today 

no standard methods exist to extract error bar from standard 

measurements in TDS besides the transmission. We propose 

here a methodology to reply to this challenge. 
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I. INTRODUCTION  

THz time domain spectroscopy (THz-TDS) is now in its third 
decade, having transformed from bulky and very expensive 
setups using rare femtosecond laser facilities of this time to 
compact, commercially available and financially accessible 
instruments. This progress mirrors the advancements in 
femtosecond laser technology, which are now readily 
available through fiber optics and are as small as an external 
drive. The logical consequence of these improvements is a 
spreading of the techniques across diverse fields, extending 
far beyond the initial research community. 
Pioneering investigations focused on engineering [e.g.,  [1], 
physics [2], and physical chemistry [3]. Today, THz-TDS 
finds use in food science and agro-industry [[4]], 
pharmaceuticals [5], and industrial applications. 
However, accurate quantification hinges on a rigorous 
understanding of uncertainties in the measurements. While 
early research focused on demonstrating capabilities, new 
quantitative applications necessitate a more rigorous and 
standardized approach to expressing signal-to-noise ratio and 
uncertainties [6]. Notably, seminal work by Duvillaret et al. 
explored noise and uncertainty analysis two decades ago [7, 
8]. However, the maturity of modern systems necessitates a 
renewed focus on standardization. 
In this presentation, we will detail our efforts to leverage the 
signal-to-noise ratio, as determined in our research, to 
quantify uncertainties associated with transmittance, 
complex refractive index, and ultimately, the parameters 
derived from a full spectroscopic fit of the recorded data [9]. 

II. METHODOLOGY 

We propose to use a step-by-step methodology propagating 
the uncertainties from the one recorded on the time traces 
during the experiments, to the first spectral quantities as the 
transmission, to the losses and refractive indices to end with 
the physical parameters describing the samples. 
To get the uncertainties on our accumulated time traces we 
estimated the covariance matrix from our time traces 
following [10] and the standard deviation from our 
corresponding spectrum.  
The standard deviation on the transmission is calculated as in 
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Where �� is the transmission in the frequency space, �	
 the 

spectrum of the sample and ��
  the one of the reference. From 
there, one can derive the metric losses, and by neglecting the 
interfaces terms, and a very rough evaluation estimation of 

the imaginary part of the refractive index ��.�. by dividing it 
by the thickness of the sample. The corresponding 
uncertainty writes: 
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Where c is the speed of light � the thickness of the sample and 
f the frequency. 
In most of the cases, a more meticulous estimate of the 
refractive index needed, requiring to go through an 
optimization algorithm.  In this case, the way to estimate the 
uncertainties is to perform the second derivative (or Hessian 
matrix) of the objective function when it itself is normalized 
by the uncertainty on the recorded signal. We implemented 
this in our software fit@tds allowing to retrieve now not only 
the refractive index but its uncertainties. 



III. RESULTS 

To test our methodology, we performed experiments on a 
1 mm thick Z-cut quartz waver. We set it in the collimated 
beam of a Terasmart TDS from Menlo system and recorded 
100, 36 ps long, time traces for the references and for the 
samples. Figure 1 depicts the rough estimation of the 
imaginary part of the refractive index superimposed with the 
retrieve one from the optimization, together with their 
uncertainties. Figure 2 show the real part of the refractive 
index. 
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Figure 1 Imaginary part of the refractive index. Rough estimation 

and estimation of the uncertainties on it compared to retrieved value 

thanks to an optimization algorithm and corresponding 

uncertainties. 
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Figure 2 Real part of the refractive index retrieved value thanks to 

an optimization algorithm and corresponding uncertainties. 

One can see on these figures that the uncertainties (plotted 
as 3 sigma) are very low compare to a visible oscillation in 
every spectrum. In fact, this oscillation corresponds to the 
Fabry Pérot oscillations giving two echoes in the time traces. 
This oscillation is taken into count in the retrieval algorithm 
as the two (an only two) echoes it gives, but this is not enough 
to remove the oscillation. In fact, the collimated beam probes 
the wafer on a surface with a diameter of about 38 mm, 
therefore the thickness of the sample is far from constant at 

this precision and causses modification in the Fabry Perot 
leading to this oscillation. 

IV. CONCLUSION 

In the conference we will show how this effect is different 
while performing the experiments with a focus beam and how 
uncertainties on the thickness can be manage by a proper 
modelling of the system and fit the time traces 
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