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S U M M A R Y 

This study focuses on improving the seafloor compliance noise removal method, which relies 
on estimates of the compliance transfer function frequency response (the deformation of 
the seafloor under long-period pressure waves). We first propose a new multiscale deviation 

analysis of broad-band ocean–bottom seismometer data to e v aluate stationarity properties 
that are key to the subsequent analysis. We then propose a new approach to removing the 
compliance noise from the vertical channel data, by stacking daily estimated transfer function 

frequenc y responses ov er a period of time. We also propose an automated transient event 
detection and data selection method based on a cross-correlation criterion. As an example, 
we apply the method to data from the Cascadia Initiative (network 7D2011). We find that the 
spectral extent of long-period forcing waves varies significantly over time so that standard 

daily transfer function calculation techniques poorly estimate the transfer function frequency 

response at the lowest frequencies, resulting in poor denoising performance. The proposed 

method more accurately removes noise at these lower frequencies, especially where coherence 
is low, reducing the mean deviation of the signal in our test case by 27 per cent or more. We 
also show that our calculated transfer functions can be transferred across time periods. The 
method should allow better estimates of seafloor compliance and help to remove compliance 
noise at stations with low pressure-acceleration coherence. Our results can be reproduced 

using the BRUIT-FM Python toolbo x, availab le at https://gitlab.ifr emer .f r/anr-br uitf m/br uit- 
fm-toolbox . 

Key words: Fourier analysis; Seismic noise; Surface waves and free oscillations. 
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1  I N T RO D U C T I O N  

The vertical component of broad-band ocean-bottom seismometers 
(BBOBS) record a seafloor compliance signal at frequencies below 

approximately 100 mHz (Crawford et al. 1998 ). The compliance 
signal results from the vertical motion of the seabed in response 
to pressure variations of long-period ocean waves. These pressure 
v ariations decay quasi-exponentiall y with depth, with a decay con- 
stant that depends on the wavelength, which itself depends on the 
frequency (Webb et al. 1991 ; Aucan & Ardhuin 2013 ). Thus, the 
maximum frequency of the compliance signal decreases from 120 
mHz at a water depth of 100 m to 20 mHz at a water depth of 
4000 m (Bell et al. 2015 ). The compliance signal can be inverted to 
assess the sub-seabed structure as a function of depth and has been 
used to study melt in the oceanic crust and uppermost mantle, gas 
386 
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hydrates and sub-basalt sediments (Crawford 1994 , 2004 ; 
Willoughby et al. 2008 ). However, the compliance signal also masks 
long-period earthquake signals, and needs to be removed for better 
analysis of these signals (Crawford & Webb 2000 ). 

The removal of compliance noise has been facilitated by public- 
domain code packages such as ATaCR (Janiszewski et al. 2019 ) 
and TisKit . 1 The standard technique to remove compliance noise, 
first proposed by Webb & Crawford ( 1999 ) and Crawford & Webb 
( 2000 ), is based on estimating the seafloor compliance transfer 
function frequency response (scTFFR) following the methodol- 
ogy of Bendat & Piersol ( 2011 ). This approach uses power spec- 
tral and cross-power spectral density (PSD and CPSD) estimates 
1 https://github .com/WayneCra wford/tiskitpy 

ress on behalf of The Royal Astronomical Society. This is an Open Access 
s Attribution License ( https://creati vecommons.org/licenses/b y/4.0/ ), which 
 any medium, provided the original work is properly cited. 

http://orcid.org/0000-0002-2568-4993
http://orcid.org/0000-0002-4393-3965
mailto:simon.rebeyrol@murena.io
mailto:stephan.ker@ifremer.fr
https://gitlab.ifremer.fr/anr-bruitfm/bruit-fm-toolbox
https://github.com/WayneCrawford/tiskitpy
https://github.com/WayneCrawford/tiskitpy
https://creativecommons.org/licenses/by/4.0/


Revisiting OBS compliance signal removal 387 

(  

c  

a  

t  

t  

i  

w  

T
 

t  

e  

d  

r  

i  

b  

o  

W  

a  

e  

r
 

a  

b  

2  

s  

t  

i
 

e  

q  

d  

a  

f  

p  

p  

i  

f  

a

2
T

2

F  

h  

i  

g  

m  

l  

u  

a  

r  

t  

p
 

s  

o  

a  

c  

n  

o  

c  

i  

f  

t  

p  

o  

s

w  

 

o  

c  

l  

b  

t  

m  

p  

s
 

m  

S  

t  

a  

 

a  

p  

d  

B  

c  

p  

w

C

i  

u

2

A  

a  

t  

d  

m  

r  

C  

a  

a  

a  

a  

o  

v
 

r  

a  

l  

u  

a

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/239/1/386/7727814 by guest on 14 O

ctober 2024
Welch 1967 ) of pressure and vertical component signals, which are
onsidered as stationary random processes. Several key parameters
nd methods are used when calculating the compliance, including:
he size of the time windows used to compute the PSDs, techniques
o avoid transient signals, rejecting biased or noisy PSDs and defin-
ng a coherence threshold to determine the frequency range over
hich the removal is realized. The key parameters are defined in
able A1 and further explained in Section 2 . 
To ‘assure’ the signal stationarity assumed by the transfer func-

ion frequency response calculation, most studies limit the overall
stimation window to one day and the length of individual time win-
ows to between 17 min and 3 hr (1000–10 000 s). This methodology
equires careful removal of transient events, which have a signif-
cant influence on signal stationarity. Another approach, proposed
y McNamara & Buland ( 2004 ) and Yang et al. ( 2012 ) reduces the
verall estimate window to 1 hr, sliced into 13 overlapping segments.
hile the resulting frequency resolution does not cover the compli-

nce frequency band, this parametrization allows many more PSD
stimations, reducing further the noise and allowing easy PSD-level
ejection of transient events. 

The values of key parameters, like the length of the time windows,
re generally defined by users based on their experience, need and
ias and vary significantly (Bell et al. 2015 ; Janiszewski et al. 2019 ,
022 ; Crawford & Webb 2000 ). The choice of these parameters may
trongly influence the calculated compliance transfer function and
he efficiency of compliance noise removal, but no study of this
nfluence exists. 

We study here the robustness of the compliance transfer function
stimation and the efficiency of compliance noise removal. After a
uick overview of the theory of transfer functions (Section 2 ), we
escribe data selection and conditioning (Section 3 ), then propose
 multiscale deviation analysis to determine the parameter values
or which the stationarity assumption is valid (Section 4 ). Section 5
resents an improved compliance noise removal method, using the
arameters calculated in the previous section and presenting the
mportant automated steps of transient event detection and transfer
unction stacking. The results are shown in Section 6 , followed by
 discussion and conclusion. 

 R E M I N D E R  O F  B A C KG RO U N D  

H E O RY  A N D  A P P L I C AT I O N  

.1 Seafloor compliance signal r emov al 

or more than two decades, highl y sensiti ve BBOBSs (Webb 1998 )
ave been used to record subtle seismological signals below 0.2 Hz,
ncluding microseism and infra-gravity (IG) waves. IG waves are
enerated by nonlinear interactions between ocean surface waves,
ostly near coastlines, and propagate into the deep ocean with

ittle attenuation (Webb et al. 1991 ). The seafloor deforms by
p to 10 μm vertically under the pressure fluctuations gener-
ted by IG waves (Crawford et al. 1998 ), which is enough to be
ecorded by the BBOBS. Seafloor compliance is defined as the ra-
io of the differential seafloor vertical displacement to the seafloor
ressure. 

We summarize below the procedure to estimate and remove
eafloor compliance from the data. To simplify comparison with
ther methods, we use data with little to no current-induced noise
nd we do not apply noise correction. The most commonly used
urrent-noise reduction process is analogous to the compliance
oise removal: our comparison is more direct if we focus only
n compliance. In the frequency range of the IG waves, the seafloor
ompliance relation is considered linear and characterized by its
mpulse response h ( t) . This relation links the clean (compliance-
ree) vertical acceleration z( t) , the recorded acceleration z c ( t) and
he pressure p( t) signals. An optimal estimate of the seafloor com-
liance frequency response H ( f ) (hereafter noted scTFFR ) can be
btained following the procedure of Bendat & Piersol ( 2011 ) which
tates that: 

̂ H ( f ) = 

G z c p ( f ) 
G p ( f ) 

, (1) 

here G z c is the cross-spectrum for signals z c ( t) and p( t) and
G p ( f ) is the individual auto-power spectrum of p( t) . In practice,
ne often improves this estimate by splitting the pressure and ac-
eleration signals (of total length N T seconds) into K windows of
ength N w , with an overlap of N o seconds. Each signal is apodized
y a suitable taper window. These are the key parameters used in
he BRUIT-FM (Bruits des Fonds Marins) toolbox and are sum-
arized in Table A1 . We then calculate scTFFR Welch’s modified

eriodogram (Welch 1967 ), by averaging windowed cross and power
pectra. 

The length N w of each windowed segment is a critical compro-
ise. A longer N w provides higher frequency resolution and lower
ignal-to-Noise Ratio (SNR), whereas a shorter N w may be needed

o ensure that the signal is stationary within each segment. There
re also several practical condition mismatches to account for. First,

z( t) and p( t) may not be always be fully uncorrelated, for example,
 low-magnitude/frequency earthquake could be recorded by both
ressure sensors and seismometers. A selection step is usually con-
ucted to remove data contaminated by known earthquakes (e.g.
ell et al. 2015 ; An et al. 2020 ). Second, z c ( t) and p( t) may not
arry enough information to estimate ̂ H ( f ) properly. A common
rocedure is to estimate ̂ H ( f ) in a reduced spectral range in which
ith coherence, defined as: 

 pz c ( f ) = 

| G pz c ( f ) | √ 

G pp ( f ) G z c z c ( f ) 
∈ [0 , 1] (2) 

s relati vel y high. Appendix A2 describes the complete methodology
sed in the BRUIT-FM toolbox. 

.2 Signal stationarity 

s stated above, the deri v ation of scTFFR strongl y relies on station-
rity assumptions. Second-order stationarity is a strong requirement
hat must be carefully verified, especially for y ear -long or multiyear
ata sets. To mitigate this, most of the past studies processed at
ost 1 d of data at a time, imposing a reduced window length and

elati vel y low-frequency resolution (Crawford et al. 1991 , 1998 ;
rawford 2004 ; Bell et al. 2015 ; Crawford & Webb 2000 ). For ex-
mple, Crawford ( 2004 ) estimated the scTFFR using 29 hr of data
nd 1024-s data windows. More recently, An et al. ( 2020 ) used an
 10 000-s data windows (and an unspecified overall time period),
nd Janiszewski et al. ( 2022 ) used 7200-s windows and one day
f data, averaging the resulting PSDs over 25 d. These parameter
alues are summarized in Table 1 . 

To our knowledge, no stationarity checks were conducted prior to
emoving seafloor compliance noise in the above studies. A station-
rity check assesses variations in the signal deviation over different
ength-scales. We use this assessment to determine the range of val-
es of the key parameters N w and N T that respect the stationarity
ssumption. 
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Table 1. Key parameter values of the PSDs estimation used in past studies. 
N w is the window length and N T is the length of the signal to be analysed. 

Studies N w (s) N T 

Webb & Crawford ( 1999 ) 1024 24 hr 
Crawford ( 2004 ) 1024 29 hr 
Yang et al. ( 2012 ) 100 1 hr 
Bell et al. ( 2015 ) 2000 11 hr 7 min 
Doran & Laske ( 2019 ) 3600 Not specified 
An et al. ( 2020 ) 10 000 Not specified 
Janiszewski et al. ( 2022 ) 7200 25 × 24 hr 

Table 2. Selected station information. We estimated the tilt angles using 
the TisKit library. The stations are ABALONES-4x4 , the seismometers are 
Trillium Compact and the pressure sensors are differential pressure gauges. 

Station Depth (m) Start date End date Tilt angle ( o ) 

J09B 252 2012-09-02 2013-06-21 0.23 
M11B 1109 2012-09-02 2013-06-18 −0.74 
G02B 1920 2012-09-03 2013-06-19 −0.17 
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3  DATA  S E L E C T I O N  A N D  

C O N D I T I O N I N G  

3.1 Data set and instrument selection 

To e v aluate our technique, we use data from the Cascadia Initiati ve 
(FDSN network 7D2011, IRIS OBSIP 2011 ; Toomey et al. 2014 ), 
because of its large range of water depths (from 100 to 5000 m), large 
sets of homogeneous instruments, and e xtensiv e previous analysis 
(e.g. Bell et al. 2015 ; Janiszewski et al. 2019 ; Stone et al. 2018 ; Tian 
& Ritzwoller 2017 ; Hilmo & Wilcock 2020 ). We wanted to use ho- 
mogenous instruments because instrument design is the first factor 
responsible for dissimilarities between PSDs at a site (Janiszewski 
et al. 2022 ). The instrument response of DPGs can slightly vary 
between two units, which can lead to dissimilarities in the PSDs 
between two stations (Doran et al. 2019 ). Such variations will have 
no impact on the denoising process. To concentrate on the compli- 
ance signal, we selected data which w as minimall y contaminated by 
tilt-induced seafloor current noise. We chose the BBOBS stations 
J09B, M11B and G02B, which share the same instrument design 
and period of acquisition and for which An et al. ( 2020 ) found 
no significant tilt-induced noise. These stations are respecti vel y lo- 
cated at water depths of 252, 1019 and 1920 m. Their features are 
summarized in Table 2 . 

We checked the tilt noise on the stations by analysing the coher- 
ence between the seismometer channels on a day with low IG-wave 
energy (Fig. 1 ). The coherence values in the compliance frequency 
band are low ( < 0.4) at stations M11B and G02B, whereas coherence 
is as high as 0.85 in a narrow band at J09B. While this is not ideal 
for a pure test of compliance calculation, it allows us to observe the 
effect of tilt noise on the compliance calculation. The estimated tilt 
angles for these stations are all less than 0.17 ◦ (Table 2 ). 

3.2 Data conditioning 

We downloaded 1-d data files using the International Federation of 
Digital Seismograph Networks (FDSN) application programming 
interface, then concatenated the data to obtain 1-yr gapless data 
files. The data conditioning w orkflo w consisted of anomaly detec- 
tion, downsampling and instrument response removal. The time 
spanned by the detected anomalies are set to zeros and tapered to 
pre vent from an y unstabilities during processing. Since the signal 
of interest lies below 50 mHz and the data were sampled at 50 Hz, 
we downsampled the data to 1 Hz after applying an anti-aliasing 
filter. We e v aluated the instrument response in the frequency do- 
main, using a w ater le vel of −60 dB, then removed the response 
using a deconvolution in the Fourier domain: details are available 
in Appendix B . 

4  M U LT I S C A L E  DATA  A NA LY S I S  

Signal stationarity is the main pre-requisite for frequency response 
transfer function-based seafloor compliance signal removal. The 
computation of the PSDs requires the signal to be stationary both 
over the period of each N w -second spectral window and along the 
overall N T signal analysis period. Short-duration changes ( < N w ) 
in signal statistics will make the Fourier transforms of each spec- 
tral window significantly different from one another. In this case, 
averaging their squared absolute values, as in eq. ( A7 ), will lead 
to inaccurate PSD estimates because of the mix between the tran- 
sient and the background signals at the frequencies where the tran- 
sient signal occurs. Medium-duration ( N w < · · · < N T ) changes 
in signal statistics can also affect the averaging step at the lowest 
frequencies because of residual trends that are not well removed. 
Long-duration changes ( > N T ) in signal statistics should not af- 
fect the estimation of the PSDs. In addition to, and sometimes 
in conflict with, the stationarity assumption, the durations used to 
calculate the PSDs must allow sampling of the longest IG-wave 
periods. 

We propose an approach for assessing the time varying properties 
of pressure and vertical acceleration signals in order to control the 
stationarity properties of these signals and to optimize the selection 
of the window length ( N w ) and the total signal analysis period ( N T ). 
We propose a multiscale sliding deviation analysis, to assess second- 
order statistical variations across time over a variety of scales. The 
scales N σ are closely related to N w and N T , as they define the length 
of each sliding segment on which the deviation is computed. They 
are therefore chosen to span a range covering the extreme possible 
values of N w and N T . 

We set a medium scale of 1 hr and other scales as power of two 
series up to 64 hr and down to 3 min and 45 s. These scales cover all 
the window and signal lengths that were used in previous studies, 
plus shorter lengths to account for transient events. The shortest 
duration (3 min and 45 s) is on the order of the maximum IG-wave 
period expected to be seen on the vertical component channel (Webb 
et al. 1991 ). The choice of the deviation metric is important, because 
different metrics can be sensitive to different parts of the signal. The 
signals are the combination of ‘background’ signals, such as IG 

waves and noise, and ‘foreground’ signals, such as transient events. 
Since the transient events are generally of higher amplitude than 
the background signal, and therefore easy to detect, we focus on the 
more subtle time-varying statistics of the background signal. The 
standard deviation (SD) metric is unsuited to reveal subtle changes 
in the background signals, because it is sensitive to outliers such as 
transient events. We choose the median absolute deviation (MAD), 
which is much less sensitive to transient events. The MAD is defined 
as: 

σ ( t, N σ ) = med t+ N σ / 2 
t−N σ / 2 

(
| s( t) − med t+ N σ / 2 

t−N σ / 2 ( s( t)) | 
)

, (3) 

where s( t) is the signal to be analysed and med t+ N σ / 2 
t−N σ / 2 is the median 

value calculated between t − N σ / 2 and t + N σ / 2 . For consistency 

https://github.com/WayneCrawford/tiskitpy
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Figure 1. Coherence between seismometer components on the M11B station on 2012 November 21 ( N w = 1800 s, N 0 = 900 s, a 4 π discrete prolate spheroidal 
window). The coherences are computed between the BHZ and BH1 + BH2 channels of station (a) M11B, (b) G02B and J09B. The straight line indicates the 
coherence significance at 95 per cent. 
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ith values provided by the SD metric, we apply a scaling factor
f 1.4826 (Rousseeuw & Croux 1993 ) to σ ( t, N σ ) . To focus on the
G-wav e frequenc y range, the multiscale sliding MAD is computed
n signals bandpassed between 10 −3 and 5 ×10 −2 Hz. 

We analyse two 1-month time periods: one located at the end of
utumn (2012 November 21 to December 21) and one in spring
2013 May 17 to June 17). We refer to them hereafter as the autumn
nd spring data sets. We will fully describe the analysis of M11B, lo-
ated at intermediate depth, and summarize our analysis of stations
02B and J11B below and in the Supporting Information . 

.1 Station M11B 

he multiscale deviations of station M11B are shown in Fig. 2 . The
ressure component (BDH) reveals a stronger IG-wave activity in
utumn than in spring. Consequently, the amount of high amplitude
ignal on the pressure and vertical components is greater and the
ignal-to-noise ratio (SNR) is higher in autumn. 

The differences in deviation across the scales are insignificant

rom half an hour to 32 hr for all dates and channels. For scales of b  
2 hr or longer, the deviations are smoother across time, especially
or the 64 hr scale. Most of the deviations are stable for up to 24 hr
corresponding to the spacing between the dotted white lines in
ig. 2 ), but not more. Hence, the maximum period of analysis ( N T )
hould not be longer than a day. 

For scales shorter than half an hour, the days-long trend (stable
eviations over 24 hr or longer), is still present, but three types of
ariations appear. The first type (type 1), are high amplitude, short
nd sparse variations, which are only present on the vertical com-
onent. They are most likely transient seismic events. The second
ype (type 2) seems to be periodic, suggesting that they are related
o variations at the longest IG-wave periods. The third type (type
) are high-amplitude variations, seen on both pressure and verti-
al components. The type 3 variations are better seen in smaller
ubsets (Fig. 3 ). Fig. 3 subsets highlight transition periods during
hich changes in signal statistics occur and exhibit the three dif-

erent types. Type 2 v ariations onl y occur during strong IG-wave
eriods, supporting the assumption that they are due to IG waves.
ype 3 variations are strong and not scale-dependent, which could
e due to a temporary increase in meteorological activity. During

art/ggae265_f1.eps
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae265#supplementary-data
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Figure 2. Multiscale sliding MAD of station 7D.M11B. The deviations were computed on bandpassed time-series between 1 and 50 mHz. Left: deviations 
values for the autumn data set. Right: deviation values for the spring data set. The dotted white lines are spaced every 24 hr. 

Figure 3. Multiscale sliding MAD subsets of station 7D.M11B. The deviations were computed on bandpassed time-series between 1 and 50 mHz. Left: 
de viations v alues during the autumn data set. Right: de viation v alues during the spring data set. The dotted white lines are spaced every 2 hr. The red ellipse 
shows an example of type 1 variations, the green ellipses show type 2 variations and the orange ellipses show type 3 variations. 
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low-amplitude IG-w ave periods, onl y type 1 (transient) events are 
seen, meaning that the background signal can be considered sta- 
tionary. 

The majority of the 2-hr periods (separated by white dotted lines 
in Fig. 3 ) contains significant variations of the deviation metric for 
scales from 0.0625 hr (225 s) to 1 hr. These periods are therefore 
not suitable to use as N w (window length) in the spectral analysis 
because the signal would not be stationary. A half-hour (1800 s) 
or quarter-hour (900 s) period is short enough to ensure that there 
would not be enough non-stationary windows in the PSD averaging 
step to significantly decrease the PSD estimate accuracy. Since 
we expect a maximum IG-wave period of 200 s, 15-min spectral 
windows (900 s) can resolve the IG-wave spectrum. 
4.2 Station G02B 

Station G02B is deployed at a deeper site (1920 m) than station 
M11B, so the IG-wave signal should be of lower amplitude and 
with a lower cut-off frequency. The station’s multiscale sliding 
MAD values (Figs S1 and S2 of the Supporting Information) also 
show stronger IG-wave activity in autumn than in spring and more 
frequent high MAD values in autumn. The IG-wave amplitudes 
are lower than for station M11B but the MAD values are simi- 
lar, indicating that the IG-wave signal power depends strongly on 
depth but that its overall variability does not. The result is simi- 
lar for the vertical component. The parameter analysis for G02B 

is similar to that for M11B but, since the IG-wave signal power 
and the cut-off frequency are lo wer , the short scales do not show 

art/ggae265_f2.eps
art/ggae265_f3.eps
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae265#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae265#supplementary-data
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Figure 4. M11B station da y-to-da y vertical-pressure coherence for the (a) autumn and (b) spring periods. 

Figure 5. G02B station da y-to-da y vertical-pressure coherence for the (a) autumn and (b) spring periods. The upper limit of the frequency scale is slightly 
different between (a) and (b). 
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eak values during strong IG-wave periods. This smooths the type
 variations and relaxes the signal stationarity, allowing us to use
onger N w . 

.3 Station J09B 

tation J09B is deployed in very shallow water (252 m), so its IG-
ave signal and cut-off frequency should be higher than at the other

ites. The station’s multiscale sliding MAD values (Figs S3 and S4
f the Supporting Information) correlate visually with those at the
ther stations for the autumn data set, but not for spring. During the
pring period, the vertical channel records periods of high energy
ith no correlated IG signal (e.g. between 2013 May 17 and 21).
his should lower the coherence between the two channels and make

he transfer function frequency response harder to estimate during
he spring season. The parameters chosen for station M11B are also
alid for J09B. 

 RO B U S T  C O M P L I A N C E  N O I S E  

E M OVA L  

n this section, we propose a new procedure to more accurately es-
imate the scTFFR and to improve compliance noise removal from
he vertical component. We pay particular attention to expanding
he frequency range over which compliance scTFFR is estimated,
hich pays off especially at the lowest frequencies. We first carefully

elect the optimum parameter values for the PSD estimation ( N w ,
N o and N T ) and the taper window ( N w and N T ). We then present an
utomated methodology for the window selection. Finally, we pro-
ose a month-stacking procedure for the daily-estimated scTFFR to
ncrease its stability. 
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Figure 6. J09B station da y-to-da y vertical-pressure coherence for the(a) autumn and (b) spring periods. 

Figure 7. M11B Monthly estimated scTFFRs magnitude and unwrapped phase values for the autumn (left) and spring (right) data sets. 
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In order to focus on the improvements obtained using this method, 
we do not remove tilt, nor known earthquakes, before our analy- 
sis. These operations may be separately applied before using our 
method. 

5.1 Optimum parameter value selection 

The spectral analysis relies on the values of N w , N T and N o . As 
we determined in Section 4 , N T should not be greater than 32 hr. 
We choose a conserv ati ve v alue of 24 hr. The N w parameter directl y 
impacts the spectral resolution and uncertainty: as N w increases, the 
frequency resolution increases but the number of windows to aver- 
age decreases. Fur ther more, the longer N w , the more samples will 
be discarded due to transients, but the better will be compliance 
calculation/removal at the lowest frequencies. Our analysis (Sec- 
tion 4 ) indicates that N w should not be greater than half an hour 
(1800 s). The expected maximum IG-wave period is approximately 
200 s and so N w should not be less than 400 s, to ensure that these 
long-period IG waves will be correctly sampled. Given these two 
limits, we select N w = 900 s. 

The taper window type does not have a significant influence on 
the scTFFR estimation. We choose the discrete prolate spheroidal 
window (Slepian 1978 ), with a standardized half bandwidth equal 
to four samples (Crawford & W ebb 2000 ). W e set N o = N w / 2 , to
equally cover all of the samples in the signal without significant 
redundancy. 

5.2 Spectral window selection 

5.2.1 Transient event detection 

The signals may contain transient events that are non-stationary 
in the IG-wave frequency range. A detection stage is required to 
eliminate these events. We focus of detecting transient signals that 
are stronger than the background IG waves, under the assumption 
that transient events that are less powerful than the background 
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Figure 8. G02B monthly estimated scTFFRs magnitude and unwrapped phase values for the autumn (left) and spring (right) data sets. 

Figure 9. J09B monthly estimated scTFFRs magnitude and unwrapped phase values for the autumn (left) and spring (right) data sets. 
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G-wave signal do not significantly affect the of the overall signal
tationarity. To detect transient events, we compute deviation values
ver a sliding window. We use the SD algorithm here, to focus on
oreground signals. The higher amplitude transient signals in the IG-
av e frequenc y range last from 60 to 1000 s, so we choose a 225 s

1/16 hr) window, which is the lowest scale e v aluated in Section 4 .
o account for any long-term changes in the signal amplitude, the
liding SD is divided into 2-hr segments, with the median value
or each segment multiplied by a factor a to determine the event
hreshold. The factor a value should be set between 2 (tight) and 5
very loose). Any sliding SD value above this threshold is labelled
s a transient event and any window containing transient events is
xcluded from spectral analysis. 

.2.2 Correlation criterion 

e add a supplementary criterion for the automated window se-
ection, based on the correlation coefficient between the pressure
nd vertical component signals. The final coherence between the
ertical and pressure component signals is strongly related to their
orrelation. Some spectral windows may have low correlation in
he IG-wave frequency range, bringing down the coherence values.
he following methodology allows us to eliminate these windows

rom spectral analysis. First, the signal windows are filtered between
.5 and 50 mHz. Then, the unbiased correlation coefficient is com-
uted between each pair of windows. If the absolute value of the
orrelation coefficient is less than 0.5, the windows are discarded. 

.3 Transfer function fr equenc y r esponse stacking 

n past studies, the scTFFR and the noise-free vertical component
ignal were estimated on a da y-to-da y basis in the frequency range
here the coherence value is above the 95 per cent significance
alue. We propose to extend compliance estimation to a monthly
asis, assuming that the seafloor compliance is stable across time. 

The monthly scTFFR estimate, hereafter referred to as the
onthly stacked scTFFR , is the average of the 24-hr scTFFR

stimates, stacked in the largest frequency range found during
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Figure 10. Da y-to-da y PSDs of the original vertical acceleration signal of station M11B for the (a) autumn and (d) spring data sets and for the vertical signal 
acceleration corrected from the compliance component using a da y-to-da y estimated scTFFR for the (b) autumn and (e) spring data sets and the monthly 
stacked scTFFR for the (c) autumn and (f) spring data sets. The corrections were carried out in the frequency range defined by the da y-to-da y coherence 
significance threshold for the da y-to-da y correction. For the monthly stacked correction, it was carried out using the best frequency range found of the season 
related da y-to-da y correction. The PSDs ha ve been estimated using a 4-pi spheroidal window with N w = 900 s, N o = 450 s and a median a verage. 
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the month. The denoising process is then applied to each day’s 
data using the monthly stacked scTFFR . By applying the monthly 
stack scTFFR to each day’s data, we take advantage of the monthly 
scTFFR ’s lower uncertainty and constant frequency range, resulting 
in a more efficient and stable noise reduction. 

The assumption that compliance is stationary over a month’s 
time could be false if the subsurface changes rapidly, such as over a 
volcano in the period surrounding an eruption (Doran & Crawford 
2020 ), or if the subsurface structure is strongly 2-D and the IG 

waves change directions over multiday periods (Crawford et al. 
1998 ). This can be e v aluated b y comparing the for mal uncer tainty 
of the stacked estimates with the variance between the daily values, 
with a significantly higher variance indicating that compliance is 
not stationary. In this case, the monthly estimate could be replaced 
by a shorter, N -day estimate that satisfies stationarity conditions. 

5.4 Performance assessment 

We use two methodologies to quantify how much of the IG-wave 
signal is removed from the vertical component. First we calculate 
the deviation of the daily signal and e v aluate how much it decreases 
and stabilizes around what should be a compliance-free background 
vertical acceleration value. Since the background signal is of inter- 
est, we use the σ MAD metric. Second, we compare the performance 
of the proposed approach to that of the reference method described 
by Crawford & Webb ( 2000 ), hereafter referred to as the ‘classical 
method’. To ensure an unbiased comparison of the two approaches, 
the classical method was applied to the same preprocessed data, 
including quality control, and used the same parameter values ( N w , 
N o and window type). 

6  R E S U LT S  

6.1 Coherences and transfer function frequency responses 

We processed the autumn and spring data’sets of the three stations 
using the classical and proposed denoising methodologies. We com- 
puted daily coherences between the vertical and pressure compo- 
nent signals, using the classical method. On the M11B station, there 
is a clear difference in coherence between the autumn and spring 
seasons (Fig. 4 ). The frequency band of the autumn coherence is 
wider and the values higher than in the spring, indicating that the 
IG-wave amplitudes are greater in autumn. This is consistent with 
the higher level of deviation in autumn (Fig. 3 ). This is also true at 
the G02B station, except that the maximum coherence frequency 
bands are the same for both seasons (Fig. 5 ). At station J09B, 
the coherence levels are approximately the same in both seasons 
(Fig. 6 ). 
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Figure 11. Da y-to-da y PSDs of the original vertical acceleration signal of station G02B. More details can be found in the caption of Fig. 10 . 
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More windows are rejected in spring than in autumn at stations
11B and G02B (Figs 4 and 5 ), meaning that more transient

vents are detected during spring and/or the correlation between
he two channels is more often below the threshold value. Both of
hese are probable consequences of the lower IG-wave amplitude in
pring. 

The monthly stacked scTFFR amplitude for each station is not
ignificantl y dif ferent between spring and autumn (Figs 7–9 ). The
hase values lie around π radians, consistent with the physics of
eafloor compliance. Uncertainties in the DPG instrument response
ay affect the estimated compliance (Godin et al. 2013 ) but will

ot affect the IG noise removal. 

.2 Performance 

e now analyse the performance of the IG-wave component cor-
ection, first for the M11B station and then for the G02B and J09B
tations. We first apply the classical correction method using the
a y-to-da y scTFFR to both autumn and spring data sets in the fre-
uency range defined by the 95 per cent significance coherence
hreshold for the given day. We then apply our proposed approach
or each day using the monthly stacked scTFFR of the related season
n the best frequency range found by the classical method during the
orresponding month. Since the instrument response has been re-
oved on the y ear -long data set, the resolution of the low-frequency

ontent is much improved than if the instrument response was re-
oved for only one day. Therefore, complex large-scale trends are
resent after the instrument response removal when considering
nly 1-d-long segments. To stabilize the noise removal process in
he low er frequencies, w e found that polynomials with an order
f at most 10 are capable of removing these trends. Consequently,
ach day-long pressure and acceleration signals are detrended using
n appropriate 10th-order polynomial. Moreover, to ensure Fourier
peration stability, the edges of the signals are tapered using a 2-
in-long half-shaped taper window. Since the amount of tapered

ata is minimal compared to the whole signal, the shape of the win-
ow does not impact the following Fourier operation. The PSDs of
he original and compliance-corrected vertical component signals
re shown in Figs 10 –12 for stations M11B, G02B and J09B. They
ave been estimated using a 4-pi spheroidal window with N w =
00 s and N o = 450 s. We use the 4-pi spheroidal window to con-
orm to Crawford & Webb ( 2000 ). The frequency range covered
 y the IG-w ave component v ariations are significant during both
easons for station M11B, which is consistent with the coherence
een in Fig. 4 . Due to the lack of correction and the less stable daily
cTFFR under 8 ×10 −3 Hz, low-frequency IG-wave components re-
ain. This is seen during both seasons for station M11B, but the

educed frequency range is more pronounced during spring. These
emaining IG-wave components are greatly reduced in the M11B
ignal corrected by the monthly stacked scTFFR and the PSDs of
he signals corrected by the monthly stacked scTFFR are more con-
istent across time. This is especially true for the autumn season.
he correction seems to remove slightly more IG-wave component
sing the monthly stacked scTFFR than the da y-to-da y one between
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Figure 12. Da y-to-da y PSDs of the original vertical acceleration signal of station J09B. More details can be found in the caption of Fig. 10 . 

Figure 13. Da y-to-da y PSDs of the original and corrected vertical acceleration signal for (a) 2012 December 19 and (b) 2013 Ma y 29 for station M11B. 
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10 −2 and 3 ×10 −2 Hz, especially around 2012 November 24 and 
29. Some high-frequencies IG-wave component are also more ac- 
curately remo ved abo ve 3.5 ×10 −2 Hz, around 2013 May 21 for in- 
stance. As we could have expected considering the coherence level 
and the amount of rejected windows, the corrected spring data set 
signals show much noisier PSD levels between 10 −2 and 3 ×10 −2 

Hz, even when using the monthly stacked scTFFR . The noisier PSD 

comes from 2013 May 24. This is mainly due to the occurrence of 
a magnitude 8.4 earthquake at 5:44:48 which is recorded by the 
M11B station. Although its decay is long enough to affect the me- 
dian averaging for the visualization PSD estimation, the IG-wave 
component w as successfull y removed. This is due to both the auto- 
mated event detection procedure and the window cross-correlation 
selection. Because the event detection method divides the signal 
in 2 hr segments, only the part of the earthquake signal that has 
the higher magnitude level is labelled as an event. But, the cross- 
correlation coefficient value between the bandpassed pressure and 
vertical acceleration windows containing the earthquake is not high 
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Figure 14. 20-min bandpassed segments of corrected vertical acceleration signal (top), extracted IG-wave acceleration signal (middle) and original ne gativ e 
pressure signals (bottom) for 2012 December 19 (left) and 2013 May 29 (right) for station M11B. 

Table 3. Mean de viation v alues (MAD) for 30 d in the autumn data set 
(from 2012 November 21 to December 21) and 31 d in the spring data set 
(from 2013 May 17 to June 17). The o , d and s indices stand respecti vel y 
for original, da y-to-da y corrected and monthly stacked corrected vertical 
component data. The overline symbol x stands for the average over all days 
in the corresponding periods. The best values are shown in bold. 

Data set σo (m s −2 ) σd (m s −2 ) σs (m s −2 ) 

Autumn 1.03 ×10 −7 8.90 ×10 −9 6.17 ×10 −9 

Spring 4.87 ×10 −8 1.15 ×10 −8 8.39 ×10 −9 
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nough. Consequently, the rest of the event is not kept during the
pectral analysis, which ensured an accurate scTFFR estimate. The
ame analysis can be drawn for the station G02B (Fig. 11 ), the main
ifference between the stations G02B and M11B is the magnitude
f the original PSD, which is greatly lower for the station G02B due
o its deeper location. The lower frequency IG wave remaining com-
onents are still present after the compliance correction using the
lassical method and they are accurately removed by the proposed
ethod. The corrected PSDs for station J09B (Fig. 12 ) are how-

ver not different between the proposed and the classical method.
ome days even show a poorer corrected PSD using the monthly
tacked scTFFR (2012 November 28). We assume that this is due
o the shallower location of this station. The background signal is
ertainly not only populated by the IG waves but also by microseis-
icity which amplitude can change across the month and affect the
onthly stacked scTFFR estimation. We hereafter conduct a more

etailed analysis and only focus on station M11B. 
To illustrate the improvement of the proposed approach, more
etails of the compliance signal removal results are shown for
012 December 19 and 2013 May 29. The PSDs of the original
nd corrected signals for these days are shown in Fig. 13 . While
he correction results in the PSDs is equi v alent for both methods
bove 10 −2 Hz, the proposed approach using the monthly stacked
cTFFR outperforms the classical method under 10 −2 Hz, especially
or 2012 December 19. This improvement can also be seen in the
ime domain. Fig. 14 sho ws tw o 20-min segments of the corrected
cceleration signals, the extracted IG waves acceleration compo-
ent and the original ne gativ e pressure signals. The acceleration
ignals corrected using the monthly stacked scTFFR do not have
ong-period components unlike the signals corrected using the clas-
ical da y-to-da y scTFFR . The acceleration signal corrected with
he da y-to-da y scTFFR is then of higher amplitude than the one
orrected with the monthly stacked scTFFR . Finally, the mean de-
iation value (MAD) of the original and vertical acceleration signal
re given in Table 3 . The best performance is achieved when using
he monthly stacked scTFFR with a reduction of the MAD of 94
nd 82.8 per cent, respecti vel y, for the autumn and spring data set,
hile the reduction is of 92.2 and 79.7 per cent when using the
ail y scTFFR, respecti vel y, for the autumn and spring data set. The
ean deviation of the compliance signal corrected using the daily

cTFFR is reduced by 22.8 and 15.2 per cent by using the monthly
tacked scTFFR, respecti vel y, for the autumn and spring data set.
he decrease of deviation is less important for the spring data set
ue to the fact that the magnitude of the IG waves during this season
s lower than during the autumn season. 
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Figure 15. Da y-to-da y PSDs of the original vertical acceleration signal of station M11B for the (a) spring season and for the (b) vertical signal acceleration 
corrected from the compliance component using monthly spring stacked scTFFR and (c) the monthly autumn stacked scTFFR. The PSDs have been estimated 
using a 4-pi spheroidal window with N w = 900 s, N o = 450 s and a median average. 
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6.3 Limitations 

This study was carried out on only three stations with a focus on 
the M11B station whose depth is low enough to let a substantial 
amount of IG waves to reach the seafloor without overlapping with 
the microseismic frequency range. A study conducted on the en- 
tire Cascadia Initiative network would overcome this uncertainty. 
Moreover, we restricted our studies to N w = 900 s which is prior 
knowledge from the multiscale deviation analysis. We believe that 
an optimum value of N w can be found between 900 and 1800 s 
as 1800 s is seen as the limit of stationarity. Also, the deviation 
information can be further used during the compliance signal re- 
moval process as a stationarity index, making possible to detect 
non-stationary windows and discard them. It should also be noted 
that the performance are blindly assessed, meaning no true verti- 
cal component noiseless signal are available to precisely quantify 
the noise removal process. Further investigations are required to 
quantify precisely the denoising performance with synthetic data. 
Such data can be generated using eqs ( A1 ) and ( A2 ) for the IG- 
wave modelling and a seafloor compliance model (Crawford 2004 ). 
This study also focus on high-coherence pressure versus vertical 
component data sets. It should be interesting to quantify the denois- 
ing performance data sets showing more frequent lower coherence 
values. 

6.4 Transferability of the monthly stacked scTFFR 

It is of interest to e v aluate the transferability of the monthly stacked 
scTFFR from the autumn season to the spring season to check if the 
mantle crust has evolved between these seasons (Doran & Craw- 
ford 2020 ; Crawford et al. 1998 ; Webb & Crawford 1999 ) and if 
we can use a better estimated monthly stacked scTFFR on another 
data set. To this end, the corrected PSDs of station M11B and G02B 

during the spring season, using both monthly autumn and spring 
stacked TFFR, are shown in Figs 15 and 16 . On the one hand, for 
the M11B station, both scTFFRs share the same frequency range 
and yield to fairly identical corrected PSDs. On the other hand, the 
G02B stations station shows a wider coherent frequency range when 
computing the stacked scTFFR during the autumns than during the 
spring seasons. This is due to IG waves having more frequency 
content during the autumn season. Removing the compliance signal 
from the spring data set using the autumn scTFFR slightly improves 
the SNR below 5 mHz. Two conclusions can be drawn from this re- 
sult. The first conclusion would be that the compliance response of 
the sediment remains unchanged between 2012 autumn and 2013 
spring seasons. The second one is that a different amount of IG 

waves accross the seasons can lead to slightl y dif ferent robustness 
of the transfer function estimate and prevents from completely re- 
moving the compliance signal. Even if the robustness in the transfer 
function estimate is not systematic, it is rele v ant to remove the com- 
pliance signal using the scTFFR estimated during the period having 
the strongest IG waves that cover a larger frequency range. 

7  C O N C LU S I O N  

This study focused on improving the seafloor compliance noise re- 
moval method, which is based on the frequency response transfer 
function between a BBOBS’s vertical and pressure channels. We 
first conducted a multiscale deviation analysis to assess the validity 
of the critical assumption, implicit in the calculation of the scTF- 
FRs, that the two signals are stationary. This analysis allows us to 
calculate the range of values of the key parameters, in particular the 
window length and the overall analysis duration, over which the sta- 
tionarity assumption is valid. Using data from broad-band seafloor 
stations from the Cascadia Initiative, we found that the upper limit 
for the analysis duration is 32 hr and the valid range of window 

lengths is 15–30 min. 
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Figure 16. Da y-to-da y PSDs of the original vertical acceleration signal of station G02B for the (a) spring season and for the (b) vertical signal acceleration 
corrected from the compliance component using monthly spring stacked scTFFR and the (c) monthly autumn stacked scTFFR. 
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We propose a multistage approach to improve estimates of
eafloor compliance and to remove its related noise. An automated
indow selection step discards windows containing transient events
r whose vertical-pressure cross-correlation coefficient is below a
hreshold v alue. Next, b y stacking dail y scTFFR estimates, we in-
rease the SNR of the corrected signal. These long-term compliance
stimates also allow us to uniformly remove compliance noise over
ll of the days in the period, including days with low pressure-
ertical coherence. When applied to the Cascadia Initiative stations
11B, G02B and J09B, our method visibly improves noise removal

t the lowest compliance frequencies. We also demonstrated that the
ompliance was stationary over the year measurements in our test
ata and that, in this case, compliance estimated during a period
ith good pressure-acceleration coherence can be used to remove

ompliance noise from other periods. 
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A P P E N D I X  A :  B A C KG RO U N D  T H E O RY  

A1 Infra-gravity w av e signal and seafloor compliance 

For more than two decades, highl y sensiti ve BBOBSs (Webb 1998 ) 
have been used to record subtle seismological signals below 0.2 Hz, 
including microseism and IG w aves. These w aves are generated by 
nonlinear interactions between ocean surface w aves, mostl y near 
coastlines, and propagate into the deep ocean with little attenuation 
(Webb et al. 1991 ). IG waves also include waves directly generated 
by ocean swells (Bi ésel 1952 ). Their seafloor signal drops dramati- 
cally at frequencies corresponding to wavelengths that are less than 
the water depth (Bell et al. 2015 ; Crawford et al. 1998 ), making 
them clearly recognizable in pressure PSDs. In shallow water ( < 

500 m), IG wa ves ma y occupy some of the same frequency range 
as microseisms, making them more difficult to recognize in pres- 
sure PSDs. This frequency-depth dependence is easily seen in the 
formulation (Webb et al. 1991 ): 

P b ( k ) = 

P 0 

cosh ( k D ) 
= 

aρg 

cosh ( k D ) 
, (A1) 

where k is the wavenumber (rad × m 

−1 ), P 0 is the pressure mag- 
nitude (Pa) at the top of the water column, D is the depth beneath 
the sea surface, ρ is the seawater surface density (kg m 

−3 ) and g is 
the Earth’s gravitational acceleration (m s −2 ). The wavenumber k is 
linked to the frequency f using the dispersion equation: 

(2 π f ) 2 = g k tanh ( k D ) . (A2) 

The average height of IG waves is about 10 mm and the wavelengths 
of IG waves detectable at the seafloor cover a range from D to 
≈ 300 

√ 

( g × D) (2–40 km for a 2 km water depth) (Crawford et al. 
2005 ). 

The seafloor deforms under the pressure fluctuations generated by 
IG waves (Crawford et al. 1998 ). The vertical deformation does not 
exceed 10 μm but is enough to be recorded by the BBOBS. Seafloor 
compliance is defined as the ratio of the differential seafloor vertical 
displacement to the seafloor pressure. 

A2 Conditions for estimating the transfer function 

fr equenc y r esponse 

We summarize here the conditions under which we can relate signals 
to seafloor compliance through frequency-domain estimates. We 
assume no seafloor current-induced noise. In the frequency range 
of the IG waves, the seafloor compliance relation is considered linear 
and characterized by its impulse response h ( t) . This relation links 
the clean (compliance-free) vertical acceleration z( t) , the recorded 
acceleration z c ( t) and the pressure p( t) signals through: 

z c ( t) = z( t) + p( t) ∗ h ( t) , (A3) 

where ∗ denotes the convolution product. 
We can rewrite eq. ( A3 ) to express the clean signal in the spectral 

domain, using capital letters to represent a spectral representation of 
signals, possibly obtained over a limited time range and windowed: 

Z ( f ) = Z c ( f ) − P 

† ( f ) H ( f ) , (A4) 

where f is the frequency and † denotes the complex conjugate. 
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Table A1. Description of BRUIT-FM toolbox parameters. 

Parameter Description 

N w Length (seconds) of the analysis window 

N o Length (seconds) of the overlap between two windows 
N T Total duration (seconds) of the signals to be analysed 
Taper type Shape of the taper window, for example, Hann, Hamming and 
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An optimal estimate of H ( f ) (written with hat ̂  · ) can be ob-
ained, assuming that all three signals are second-order station-
ry. We introduce the notion of cross-spectrum for signals x and

y: G xy ( f ) = X 

† ( f ) Y ( f ) . We obtain G z c p ( f ) and the individual
auto-)power spectra G p ( f ) and G z c ( f ) . If the compliance sys-
em is time-invariant, and z( t) and p( t) are uncorrelated, an opti-

al scTFFR is estimated as the Wiener filter (Bendat & Piersol
011 ): 

̂ H ( f ) = 

G z c p ( f ) 
G p ( f ) 

. (A5) 

In practice, one often improves this estimate by splitting the
ressure and acceleration signals (of total length N T seconds) into

K windows of length N w , with an overlap of N o seconds. Theses
arameters are summarized in Table A1 . Each signal is apodized by
 suitable taper window. These are the key parameters used in the
RUIT-FM toolbox and are summarized in Table A1 . 
Then, through Welch’s modified periodogram (Welch 1967 ), by

 veraging window ed cross and pow er spectra denoted by l, their
indow index, a novel estimate of scTFFR is obtained with: 

̂ G z c p ( f ) = 

1 
L 

∑ L 
l= 1 Z 

† 
cl ( f ) P l ( f ) , (A6) 

̂ G p ( f ) = 

1 
L 

∑ L 
l= 1 P 

† 
l ( f ) P l ( f ) . (A7) 

The length N w of windowed segments drives the frequency res-
lution and the SNR of the estimates. In a nutshell, the larger the
egment, the better the frequency resolution and the lower the SNR.
 minimal frequency resolution (larger N w s) is required to ac-

uratel y e v aluate the IG w a ves bandwidth. How ever, second-order
tationarity is not granted in practice. To ensure that the signal
ariance does not significantly change over time, smaller N w s are
referred. A compromise must then be found. 

Several practical condition mismatches can be acknowledged.
irst, z( t ) and p( t ) may not be fully uncorrelated in practice, for
 xample, a low-magnitude/frequenc y earthquake can be recorded
y both pressure instruments and seismometers. A selection step is
sually conducted to remove the data contaminated by any earth-
uake signals from the spectral anal ysis. Ne vertheless, correcting
he vertical acceleration signal while earthquake signals are present
n the pressure signal leads to distortions (Bell et al. 2015 ; An et al.
020 ). Secondly, z c ( t ) and p( t ) may not carry enough information to
stimate ̂ H ( f ) properly. A common procedure is to estimate ̂ H ( f )
n a reduced spectral range, with the highest level of coherence
 pz c ( f ) ∈ [0 , 1] : 

 pz c ( f ) = 

| G pz c ( f ) | √ 

G pp ( f ) G z c z c ( f ) 
. (A8) 
C © The Author(s) 2024. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License ( h
permits unrestricted reuse, distribution, and reproduction in any medium, provided
One can also define the statistical coherence significance
Thompson 1979 ): 

 α = 1 − (1 − α) 
1 

N−1 , (A9) 

here α denote the confidence sought in the statistical result, also
nown as p-value. The spectral range is then usually defined for
n y coherence v alue above a 95 per cent significance threshold.
his can restrain the process to a limited frequency range of the IG-
ave spectrum or even make it impossible to estimate the scTFFR if

he coherence level is too low. 

P P E N D I X  B :  DATA  C O N D I T I O N I N G  

hey come as raw data designated as r c ( t) , where c stands for the
hannel number, and need to be preprocessed before trying to extract
ny features or information from it. 

.1 Anomaly detection 

he first pre-processing stage is the detection and tagging of anoma-
ies like saturated amplitudes or zero-valued data. The invalid data
ime spans are dilated by 60 s using a binary morphological math-
matics tool (Dougherty 1992 ) and convolved with a 60-s taper
indow. Given the few amount of anomaly in the data, the shape of

he taper window should not have any impact on the signal, hence
e used the classic Hamming window. The signal is multiplied by

he resulting convolved mask to smooth the discontinuities. This
peration also tapers the edges of the signal, which improves the
tability of the forthcoming filtering operation. 

.2 Downsampling 

ince the signal of interest lies below 50 mHz and the data are usu-
lly sampled at 50 Hz, we downsample them to 1 Hz to reduce data
torage consumption and computation cost. Prior to downsampling,
n anti-aliasing filter is applied. We need a filter with a flat response
n the passband. A nonlinear phase shift is not a problem since
he filter can be applied both forward and backward, cancelling the
hase component of the filter. Two filter designs are well suited
or this task: the Butterworth filter, which has a smooth transition
etween the passband and the stopband, and the type 2 Cheb yshe v
lter which has a sharper gain transition between the passband and

he stopband, and has ripples in the stopband. Both designs com-
lete the task well and their produced results would be close to
ach other. We use a fifth-order lo w-pass Butterw orth design with a
ut-off frequency of 0.4 Hz. The filter is performed on an extended
ersion of the original signal, whose edges have been mirrored over
n eighth of the signal to mitigate stability issues. The filtered data
re then linearly interpolated in the time domain to the targeted
ampling frequency. 

.3 Instrument response removal 

he downsampled instrument response is e v aluated in the frequency
omain for the month-long signal. A water level of −60 dB is
pplied and a deconvolution is performed in the Fourier domain. 
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