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Abstract

Objectives: The Middle Pleistocene (MP) saw the emergence of new species of homi-

nins: Homo sapiens in Africa, H. neanderthalensis, and possibly Denisovans in Eurasia,

whose most recent common ancestor is thought to have lived in Africa around

600 ka ago. However, hominin remains from this period present a wide range of mor-

phological variation making it difficult to securely determine their taxonomic attribu-

tion and their phylogenetic position within the Homo genus. This study proposes to

reconsider the phenetic relationships between MP hominin fossils in order to clarify

evolutionary trends and contacts between the populations they represent.

Materials and Methods: We used a Geometric Morphometrics approach to quantify

the morphological variation of the calvarium of controversial MP specimens from

Africa and Eurasia by using a comparative sample that can be divided into 5 groups:

H. ergaster, H. erectus, H. neanderthalensis, and H. sapiens, as well as individuals from

current modern human populations. We performed a Generalized Procrustes Analy-

sis, a Principal Component Analysis, and Multinomial Principal Component Logistic

Regressions to determine the phenetic affinities of the controversial Middle Pleisto-

cene specimens with the other groups.

Results: MP African and Eurasian specimens represent several populations, some of

which show strong affinities with H. neanderthalensis in Europe or H. sapiens in Africa,

others presenting multiple affinities.

Discussion: These MP populations might have contributed to the emergence of these

two species in different proportions. This study proposes a new framework for the

human evolutionary history during the MP.

K E YWORD S

calvarium, geometric morphometrics, Homo sapiens origin, late middle Pleistocene, multinomial
logistic regression

1 | INTRODUCTION

The evolutionary history of hominin populations during the Middle

Pleistocene (MP) (i.e., Chibanian, 0.77–0.126 Ma) has generated

numerous debates within the scientific community (Stringer, 2002;

Rightmire, 2008; Mounier et al., 2009; Tattersall, 2011). This period saw,

around 250 ka, the emergence of Homo neanderthalensis in Europe,

H. sapiens in Africa, and possibly Denisovans (Reich et al., 2010) in Asia,
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whose most recent common ancestor is thought to have lived in Africa

about 600 ka (Meyer et al., 2016; Mounier & Miraz�on Lahr, 2016;

Schlebusch et al., 2017).

The shift to a 100-ka climate cycle during the MP implied a

greater amplitude in the climatic conditions between interglacial and

glacial periods, which seems to have favored the mobility of hominin

populations (Bräuer, 2008; Lahr & Foley, 1998). These periods of

highly contrasting climate might be at the origin of important demo-

graphic discontinuities in Eurasia, marked by episodes of northward

migration during interglacials, and glacial periods during which only

the populations in southern Eurasia and the Levant would have sur-

vived (Dennell, 2008; Dennell et al., 2011). In Africa, long humid

periods from approximately 620 to 460 ka and from 400 to 160 ka

were alternating with shorter arid episodes from about 450 to 400 ka

and from 270 to 250 ka (Duesing et al., 2021). Therefore, episodes of

expansions might also have been driven by climatic and ecological fac-

tors and could have favored interactions between hominin popula-

tions within and outside the continent (deMenocal, 2011; Miraz�on

Lahr, 2016). This could partly explain the high degree of morphological

variation that can be observed in the hominin fossil record of this

period. These specimens exhibit mosaics of morphological features,

which are variably interpreted by palaeoanthropologists, hindering the

establishment of a consensus taxonomy and phylogeny (Arsuaga

et al., 2014; Di Vincenzo & Manzi, 2023; Hublin, 2001; Mounier &

Caparros, 2015; Stringer, 1983). The debate within the scientific com-

munity focuses mostly on two conflicting hypotheses (1) the existence

of two distinct species (i.e., H. heidelbergensis in Europe and

H. rhodesiensis in Africa), where H. heidelbergensis is a chronospecies

of H. neanderthalensis and H. rhodesiensis an exclusive ancestor of

H. sapiens (Arsuaga et al., 1997); and (2) a unique species present in

Africa and Europe (i.e., H. heidelbergensis s.l.), ancestral to both species

(Mounier, 2009, 2011; Rightmire, 1998). Nevertheless, some late MP

fossils can be easily classified either as H. sapiens (i.e., Omo I) or

H. neanderthalensis (i.e., Saccopastore 1). Other specimens, such as

the fossils from Jebel Irhoud, are more difficult to classify, given their

mosaic morphology retaining characters shared with more basal taxa

(i.e., H. ergaster and H. erectus) along with sapiens-like features (Hublin

et al., 2017). Similarly, the specimens from Sima de los Huesos, though

being dated to about 427 ka (Arnold et al., 2014), are often presented

as the first representatives of H. neanderthalensis (Arsuaga

et al., 2014; Mounier & Caparros, 2015). Moreover, several genetic

studies (Meyer et al., 2016; Petr et al., 2020; Posth et al., 2017) have

highlighted the existence of contacts between African and Eurasian

hominin populations during Late Middle Pleistocene (LMP, from

350 to 130 ka). These new genomic data, along with new fossil and

chronological evidence suggest a more complex pattern than previ-

ously thought for human evolution during the MP.

The present study proposes to reconsider the phenetic relation-

ships between MP specimens in order to decipher evolutionary trends

and possible contacts between the populations that those fossils rep-

resent. To this end, we performed a Geometric Morphometrics analy-

sis to quantify the morphological variation of the calvarium of the

hominins from this period to the exclusion of well-classified

individuals (i.e., Omo 1, Saccopastore 1). Our study sample is com-

posed of controversial African and Eurasian MP fossil crania. Our

comparative sample consists of specimens divided into H. ergaster,

H. erectus, H. neanderthalensis, Pleistocene H. sapiens, as well as Holo-

cene Africans and Europeans. We performed a Generalized Procrustes

Analysis (GPA), a Principal Component Analysis (PCA), and, for the

first time in this context, Multinomial Principal Component Logistic

Regressions using neural network (MLR) to quantify the phenetic

affinities of each Middle Pleistocene hominin with the groups forming

the comparative sample. We aim to test the following hypotheses:

1. African and Eurasian MP specimens present different phenetic

affinities which are linked to a separate phylogenetic history. This

would suggest a separate evolutionary history between two sepa-

rated lineages, ancestral to H. neanderthalensis and possibly Deni-

sovans in Eurasia and to H. sapiens in Africa

2. Phenetic affinities of MP fossils are not congruent with geography

indicating a more complex evolutionary history. Several popula-

tions might have lived contemporaneously at the continental level,

suggesting that they might have contributed to the apparition of

H. neanderthalensis and H. sapiens in different proportions.

3. Phenetic affinities of MP fossils are not congruent with chronol-

ogy. It would suggest that Middle Pleistocene hominins did not fol-

low an anagenetic evolution and that the origins of

H. neanderthalensis and H. sapiens are speciation events.

2 | MATERIALS AND METHODS

The sample analyzed in the present study is composed of 67 3D cal-

varia divided into a study sample (n = 14) and a comparative sample

(n = 53). The study sample is formed of MP African (n = 8) and Eur-

asian (n = 6) fossils which are not attributed to a consensually defined

taxon (Table 1). The comparative sample includes 53 specimens

divided into 5 groups (Table 1): 5 Early Pleistocene specimens from

continental Africa and Georgia, grouped as H. ergaster (Lordkipanidze

et al., 2013); 10 H. erectus from continental and insular Asia;

11 H. neanderthalensis; 14 Pleistocene H. sapiens specimens from

Africa and Europe, and 15 Holocene individuals (i.e., 11 Africans and

4 Europeans). The Holocene group is used to provide a measure of

current adult human variation from Africa and Europe, with a sex ratio

composed of 7 females and 8 males. The number of specimens was

kept low to emulate the number of specimens in the fossil groups.

More African individuals than Europeans were added as they present

more genetic variation (Schlebusch et al., 2020).

Different imaging techniques were used to study the 3D calvaria:

(1) medical computed tomographic scans (CT; voxel size between

0.449219 and 0.488281 mm) processed with the Amira software

(v.5.5, FEI); (2) photogrammetry (PH) with Photoscan (Agisoft, v.1.2.6),

and (3) 3D surface scans (OP), obtained with an optical scanner (HDI

Advance, 45 μ accuracy), using the FlexScan 3D software (v.3.3, LMI).

Photogrammetry, laser surface scanning, and medical computed tomo-

graphic scans produce reliable 3D models with a comparable error
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TABLE 1 Specimens included in the study.

Specimen Site Chronology Reference Institution 3D model

Study sample

Eurasian specimens

Petralona Petralona, Greece 150–250 ka (?) Grün, 1996 GPUT PH

SH5 Sima de los Huesos, Atapuerca, Spain 427 ± 12 ka Arnold et al., 2014 FD PH

Ceprano Ceprano, Italy 385–430 ka Manzi et al., 2010 SU CT

Jinniushan Jinniu Shan, Liaoning, China �260 ka Rosenberg et al., 2006 FD PH

Dali Dali, Shaanxi, China �270 ka Xiao et al., 2002 IPH PH

Narmada Narmada river, Madhya Pradesh, India 150–200 ka (?) Kennedy, 2014 FD PH

African specimens

Saldanha Elandsfontein, South Africa �600 ka (?) Klein et al., 2007 IMCT OP

Kabwe 1 Kabwe, Zambia 299 ka ± 25 ka Grün et al., 2020 MH PH

Ndutu Ndutu, Tanzania 200–400 ka (?) Rightmire, 1983 IPH PH

LH 18 Laetoli, Tanzania 200–300 ka Manega, 1995 TAZ CT

KNM-ES 11693 Eliye Springs, Kenya 270–300 ka Bräuer et al., 2003 NMK PH

Irhoud 1 Jebel Irhoud, Morocco 315 ± 34 ka Richter et al., 2017 IPH PH

Irhoud 2 id. id. id. IPH PH

Omo II Omo Kibish, Ethiopia �230 ka (?) Vidal et al., 2022 NMK PH

Comparative sample

Homo ergaster

KNM-ER 3733 Koobi Fora, Kenya �1.63 Ma Lepre & Kent, 2015 NMK PH

KNM-ER 3883 id. 1.6–1.5 Ma id. NMK PH

OH 9 Oduvai Gorge, Tanzania �1.4 Ma Tamrat et al., 1995 TAZ CT

D 2280 Dmanisi, Georgia 1.81 ± 0.03 Ma Garcia et al., 2010 IPH PH

D 3444 id. id. id. UFR PH

Homo erectus

Sangiran 2 Java, Indonesia �1.3 Ma Matsu'ura, 2020 MH CT

Sangiran 17 id. id. id. DC OP

Ngandong 6 id. 117–108 ka Rizal et al., 2020 IPH PH

Ngandong 7 id. id. id. IPH PH

Ngandong 14 id. id. id. IPH PH

Sinanthropus III Zhoukoudian, China 0.77 ± 0.08 Ma Shen et al., 2009 IPH PH

Sinanthropus XI id. id. id. IPH PH

Sinanthropus XII id. id. id. IPH PH

Homo neanderthalensis

Spy 1 Spy, Belgium 44.2–40.6 ka Devièse et al., 2021 IRSNB CT

Spy 2 id. id. id. IRSNB CT

La Chapelle aux Saints La-Chapelle-aux-Saints, France 56 ± 4–47 ± 3 ka Grün and Stringer, 1991 MH CT

La Quina H5 La Quina, France �40 ka Frouin et al., 2017 MH CT

Shanidar 1 Shanidar, Irak 55–45 ka Pomeroy et al., 2020 MH PH

Neanderthal 1 Kleine Feldhofer Grotte, Germany �40 ka Schmitz et al., 2002 MH PH

Tabun C1 Tabun, Israel 122 ± 16 ka Grün & Stringer, 2000 MH PH

Saccopastore 1 Saccopastore, Italy �250 ka Marra et al., 2015 SU PH

Monte Circeo I Guattari cave, Monte Circeo, Italy 52 ± 12 ka Grün and Stringer,1991 MP CT

Gibraltar 1 Forbes' Quarry, Gibraltar 95–55 ka Nathan, 2010 NHM CT

La Ferrassie 1 La Ferrassie, France 54 ± 3–40 ± 2 ka Guérin et al., 2015 MH CT

Amud 1 Amud, Israel 70–50 ka Valladas et al., 1999 DC OP

(Continues)
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margin (Katz & Friess, 2014; Slizewski et al., 2010) and they can be

combined in a single study (Waltenberger et al., 2021).

Variation in the morphology of the human calvarium is mainly

explained by neutral evolution, i.e., mutations and genetic drift

(e.g., Smith, 2009; von Cramon-Taubadel, 2009). On the contrary, it

has been suggested that the morphology of the upper face and the

mandible were also influenced by climatic (Zaidi et al., 2017) and

dietary factors (Katz et al., 2017). The extent of this influence on the

face is debated (Katz et al., 2017; von Cramon-Taubadel, 2009) and it

now appears likely that phenotypic variation due to diet could be

dwarfed by neutral evolutionary processes (Katz et al., 2017; Mounier

et al., 2018). We nevertheless chose to focus on the calvarium as it is

less influenced by external factors and better reflects the evolutionary

history of individuals.

TABLE 1 (Continued)

Specimen Site Chronology Reference Institution 3D model

Pleistocene Homo sapiens

Qafzeh 6 Qafzeh, Israel 130–90 ka Schwarcz et al., 1988 IPH PH

Qafzeh 9 id. id. id. DC OP

Skh�ul V Skh�ul, Israel 130–100 ka Grün et al., 2005 PM CT

Skh�ul IV id. id. id. MH PH

Omo I Omo Kibish, Ethiopia 233 ± 22 ka Vidal et al., 2022 FD PH

Pataud 1 Abri Pataud, France 28–26 ka Henry-Gambier et al., 2013 MH CT

Předmostí III Předmostí, Czechia 27–25 ka Farbstein & Svoboda, 2007 MH PH

Předmostí IV id. id. id. MH PH

Mladec 1 Mladeč, Czechia �31 ka Wild et al., 2005 NHMV CT

Pavlov 1 Dolní Věstonice, Czechia 34–30 ka Svoboda et al., 2016 MMB PH

Brno 3 Brno, Czechia �24 ka Pettitt & Trinkaus, 2000 MMB PH

Cro-Magnon I Les Eyzies-de-Tayac, France 28 ka Henry-Gambier, 2002 MH CT

NK 2 Nazlet Khater, Egypt 38 ± 6 ka Crevecoeur et al., 2009 IC CT

Hofmeyr 1 Hofmeyr, South Africa 36.2 ± 3.3 ka Grine et al., 2007 ELM PH

Holocene Homo sapiens

AfE1 (AF.23.0.109) Tanzania 19th–20th c. M DC CT

AfE2 (AF.23.0.112) Tanzania 19th–20th c. F DC CT

AfC1 (AfC-4973) Angola 19th–20th c. M (?) MH PH

AfC2 (AfC-9642) Gabon 19th–20th c. F (?) MH PH

AfS1 (Kh-1739) South Africa 19th–20th c. M MH PH

AfS2 (Kh-20,323) South Africa 19th–20th c. M DC PH

AfS3 (Kh-3436) South Africa 19th–20th c. F MH PH

AfW1 (AfW-9538) Guinea 19th–20th c. F MH PH

AfW2 (AfW-9543) Guinea 19th–20th c. M MH PH

AfN1 (AfN-18,451) Morocco 19th–20th c. M MH PH

AfN2 (AfN-18,464) Morocco 19th–20th c. F (?) MH PH

Eu1 (Eu.26.00.1) Germany 19th–20th c. F DC CT

Eu2 (Eu.26.00.2) Germany 19th–20th c. M DC CT

Eu3 (Eu-12,158) Greece 19th–20th c. F MH PH

Eu4 (Eu-33,102) Greece 19th–20th c. M MH PH

Note: Original specimens are in bold.

Abbreviations: CT, Computed tomography; DC, Duckworth Laboratory of the University of Cambridge (Cambridge, United-Kingdom); ELM, East London

Museum (East London, South Africa); FD, Laboratoire départemental de préhistoire du Lazaret (Fort de la Drette, France); GPUT, Geological and

Palaeontological Institute of the University of Thessaloniki (Thessaloniki, Greece); IMCT, Iziko Museum of Cape Town (Cape Town, Soouth Africa); IPH,

Institut de Paléontologie humaine (Paris, France); IRSNB, Institut Royal des Sciences Naturelles de Belgique (Brussels, Belgium); MH, Musée de l'Homme

(Paris, France); MMB, Moravian Museum (Brno, Czech Republic); MP, Museo Pigorini (Rome, Italy); NHM, Natural History Museum (London, United-

Kingdom); NHMV, Natural History Museum of Vienna (Vienna, Austria); NME, National Museum of Ethiopia (Addis-Ababa, Ethiopia); NMK, National

Museums of Kenya (Nairobi, Kenya); OP, 3D scanner; PH, Photogrammetry; SU, Sapienza Università (Rome, Italy); TAZ, National Museum of Tanzania (Dar

es Salaam, Tanzania).
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2.1 | 3D geometric morphometrics

We used a set of 636 landmarks (see Figures S1 and SI2) distributed

on the calvarium of each specimen of our sample, using the Landmark

IDAV software (version 3.0.0.7). The semi-landmarks patches were

placed following cranial sutures (i.e., bregma-lambda, lambda-asterion)

and craniometric points (Bookstein, 1991) (i.e., glabella-frontomalare

orbitale, frontomalare orbitale-most anteroinferior point of the tem-

poral (MAIT), MAIT-porion, porion-asterion). Five patches of semi-

landmarks were placed on the neurocranium: 4 patches of

144 semilandmarks were placed on both sides of the frontal bone and

each of the parietal and temporal bones, following a line from the gla-

bella to the lambda, and 1 patch of 64 semilandmarks was placed on

the occipital bone.

Missing landmarks were estimated by mirroring and by Thin Plate

Spline (TPS) interpolation using the preserved landmarks (Bookstein,

1989) for bilaterally missing landmarks (Table S2). TPS estimation was

run separately for each of the groups of the comparative and study

samples. This approach was applied to 45 specimens to estimate less

than 3.4% of the landmarks (after mirroring, 12 specimens only pre-

sented more than 5% of missing landmarks, see Table S1). In cases of

the absence of supraorbital structure, that is, for Saccopastore 1 and

KNM-ES11693, missing parts were reconstructed prior to data collec-

tion using the morphological information given by the preserved sur-

rounding areas (Harvati & Hublin, 2012). Only the glabella, the nasion,

and the symmetrical semi-landmarks located on the medial point of

each supraorbital arch were kept to guide the TPS reconstructions. To

test for the accuracy of the TPS reconstruction of the supraorbital

region following our protocol, we eliminated, on the best-preserved

calvaria of our study sample, the landmarks located on this structure,

and computed PCAs with the TPS-reconstructed specimens. The

results show our protocol is effective, as TPS reconstructions have a

very weak influence on the overall shape of the models

(Figures S7–S12, Tables S4–S9). In addition, the hemi-calvaria from

Narmada were reconstructed using mirroring prior to data collection.

We performed a Generalized Procrustes Analysis (GPA)

(Gower, 1975; Rohlf & Slice, 1990) on the coordinates of the 3D land-

marks, which removes scale, position, and orientation for each speci-

men in order to focus the analysis on the shape component

(i.e., Procrustes shape coordinates) only. To correct for bilateral asym-

metry, we used symmetrized landmark configuration of each speci-

men for subsequent analyses (Klingenberg, 2002). We ran a PCA on

the Procrustes shape coordinates to highlight variations in the data in

a reduced number of dimensions. We then modeled the shape of the

calvarium for the extreme of PC1 and PC2 variation and we used

these 3D warped models to visualize the main trend of morphological

variation of our sample. We tested for the effect of allometry on

shape (Mitteroecker, 2020), using a linear regression of the centroid

size on the shape data represented by the Principal Components (PCs)

coordinates. It is significant on several PCs (Table S4 and Figures S2–-

S6). The influence of size on shape is a biological phenomenon that

may have an impact on the study of phenetic relationships between

hominin populations (Joganic & Heuzé, 2019; Maddux &

Franciscus, 2009). We therefore chose to run all subsequent analyses

both with the raw data (i.e., the shape data after GPA and PCA) and

with the corrected data (residuals from the linear regression of the

shape data on centroid size after GPA and PCA).

2.2 | Statistical analysis

We computed Multinomial Principal Component Logistic Regression

(MLR) models (Moghimbeygi & Nodehi, 2022), in order to estimate

the morphological affinities of the specimens of our study group with

the groups of the comparative sample. As a multinomial logistic

regression, MLR is used to classify several possible outcomes, that is,

the different groups of our comparative sample, using predictor vari-

ables, that is, the PC scores and the residuals from the linear regres-

sion of the PC scores on the natural logarithm of the centroid size of

the specimens. The models were computed using the comparative

sample only and the fossils from our study sample were added to the

analysis a posteriori in order to obtain their relative affinities to

the comparative sample groups. We ran three different models using

respectively 2, 3, and 5 PCs as variables for both raw and corrected

data. Efficiency of the models was estimated using the Akaike Infor-

mation Criterion (AIC) (Akaike, 1987) along with the classification

accuracy of the comparative groups. We notice that increasing the

number of PCs used for the models increases the accuracy of the pre-

dictions (Table 3). However, the Akaike information criterion (AIC)

shows that the quality of the model is better when a small number of

input variables is used (Table 2). We consequently decided to use a

maximum of 5 PCs for our models GPA and PCA were performed with

R (version 1.2.5033) using the Morpho package (Schlager, 2017; ver-

sion 2.8), and the MLR models using the package nnet (Venables &

Ripley, 2002; version 7.3–12).

3 | RESULTS

3.1 | Principal component analysis

The two first principal components (PCs) of the PCA on raw data rep-

resent 58.32% of the total variance, that is, 49.04% for PC1 and

9.28% for PC2 (Figure 1, Table S1).

Towards the positive values of the PC1 axis and in norma lateralis,

the shape variation is mainly associated with an anterosuperior exten-

sion of the calvarium, as observed in H. sapiens specimens (Table S2).

In the anterior part of the cranium, the supraorbital structure is gracile.

In norma occipitalis, the parietal bones are slightly diverging superiorly

and the euryon is positioned in the superior part of the parietals. In

the posterior part of the cranium, the occipital squama and the nuchal

plane are rounded. The overall shape of the calvarium is globular. The

negative values of the PC1 correspond to a general flattening of

the cranial vault at the level of the bregma. The calvarium is stretched

anteroposteriorly with a strong forward projection of the supraorbital

structure. In norma occipitalis, the parietals are converging superiorly
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and the maximum of the calvarium width (euryon) is located in a low

position, at the level of the crista supramastoidea on the temporal. In

norma lateralis, the occipital squama is short and forms a sharp angle

with the nuchal plane.

Towards the positive values of PC2, we observe in norma occipi-

talis the characteristic H. neanderthalensis “forme en bombe” of the

calvarium, which presents a rounded profile while the euryon is

located at mid-height of the calvarium. In the posterior part of the cal-

varium, there is a pinch at the level of the lambdoid suture associated

with an occipital bun. Towards the negative values of PC2, the calvar-

ium presents in its posterior part a more globular morphology with a

more regular curvature of the two planes of the occipital. The calvar-

ium features a receding frontal bone with a pronounced post-orbital

constriction in norma lateralis.

The morphospace displays three main clusters, grouping respec-

tively H. erectus, which overlap with H. ergaster, H. neanderthalensis,

and Pleistocene and Holocene H. sapiens. The Middle Pleistocene

hominins (MPH) present the largest distribution in the morphospace.

In more detail, PC1 separates each of the five comparative sample

groups albeit some overlapping, between H. ergaster and H. erectus

and, predictably, between both H. sapiens groups. Regarding the study

sample, three African specimens dated from the LMP, Irhoud 2, Omo

II, and KNM-ES 11693 are positioned between H. neanderthalensis

and H. sapiens. KNM-ES 11693 is close to the Levantine specimen

Skh�ul IV. The rest of the MPH is scattered towards the negative

values of PC1 and mainly overlaps with H. neanderthalensis except

Ceprano, which overlaps with the groups of H. ergaster and H. erectus.

On average, the African MPH presents more positive values than the

Eurasian MPH specimens except Kabwe 1, which seems to share

strong affinities with the groups of H. ergaster and H. erectus. Holo-

cene H. sapiens present more extreme positive values than Pleisto-

cene H. sapiens, which is probably driven by a more derived

morphology of the cranial vault which appears higher and more globu-

lar. The MPH shows a significant dispersion along this axis, while the

H. neanderthalensis is the most cohesive group of the sample. The sec-

ond PC separates H. ergaster and most of H. erectus from

H. neanderthalensis, the latter group being located exclusively on the

upper side of the morphospace.

The MPH group shows a wide dispersion in the

morphospace. Several fossils plot within H. neanderthalensis points’
cloud, including Irhoud 1, Irhoud 2, Ndutu, Jinniushan, Petralona and

SH5. Kabwe 1 appears in an outlier position when compared with the

rest of the African specimens, as it is closer to the H. ergaster and

H. erectus distributions. The other African MPH is located closer to

the Pleistocene H. sapiens. LH 18 and Saldanha are placed in a low

position between the H. ergaster and the Pleistocene H. sapiens, while

KNM-ES 11693 and, to a lesser extent, Omo II, are closer to the old-

est H. sapiens of the sample. Among the Eurasian MPH, Ceprano

occupies a very off-centred position compared to the mean configura-

tion of the MPH. The distribution of the specimens from continental

Asia is very large in the morphospace. Finally, Narmada is positioned

closer to the oldest H. sapiens fossils, along with some African MP

specimens.

Figure 2 displays the morphospace based on the residuals of the

linear regression of shape on size. On PC1, it is slightly different from

Figure 1 with only two main clusters: the H. sapiens specimens show-

ing positive values and the rest of the sample showing negative. The

specimens with a centroid size in the average of the sample are less

TABLE 3 Percentage of correct prediction of each group of the comparative sample using MLR for the first 2, 3, and 5 PCs both on raw and
corrected data.

Accuracy H. ergaster H. erectus H. neand. Pleist. H. sap. Hol. H. sap. Total accuracy

Raw data 2 PCs 67.3% 66.4% 96.1% 70.7% 67.0% 73.5%

Corr. data 2 PCs 74.6% 71.6% 86.3% 66.4% 71.3% 74.0%

Raw data 3 PCs 59.3% 73.9% 97.9% 69.3% 71.4% 74.4%

Corr. data 3 PCs 79.4% 78.3% 96.3% 71.0% 72.9% 79.6%

Raw data 5 PCs 93.6% 94.4% 98.4% 70.1% 71.9% 85.7%

Corr. data 5 PCs 95.6% 94.3% 96.4% 75.2% 76.7% 87.6%

TABLE 2 Model summaries of fitting the MLR to raw and corrected data for the first 2, 3, and 5 PCs, showing the values of AIC, residual
deviance, CoxSnell and Nagelkerke pseudo-R2, and Hosmer-Lemeshow test.

Model AIC Residual deviance

Pseudo-R2 Hosmer–Lemeshow test

CoxSnell Nagelkerke χ2 p-value

Raw data 2 PCs 28.07 4.07 0.91 0.95 8.03 1.00

Corr. data 2 PCs 27.65 3.65 0.92 0.96 4.36 1.00

Raw data 3 PCs 71.16 39.16 0.90 0.95 7.95 1.00

Corr. data 3 PCs 35.06 3.05 0.93 0.96 3.14 1.00

Raw data 5 PCs 75.12 27.11 0.92 0.97 3.07 1.00

Corr. data 5 PCs 49.80 1.80 0.94 0.98 2.45 1.00
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sensitive to the removal of allometry. Smaller specimens shift towards

higher values of the first PC while the larger ones shift towards lower

values. The Pleistocene H. sapiens exhibit nevertheless a larger shape

variation than Holocene H. sapiens, with the older specimens posi-

tioned closer to the fossil taxa.

All MPH groups broadly with the non-H. sapiens fossils at the

negative end of PC 1, but vary in their affinities with H. erectus /

H. ergaster and H. neanderthalensis. The Eurasian specimens Jinniushan

and SH5 and the African fossils Irhoud 1 and Ndutu group with

H. neanderthalensis variation, while Irhoud 2 is located close to Sacco-

pastore 1, an early H. neanderthalensis. Petralona is positioned in the

vicinity of the H. erectus Sangiran 2 and Ngandong 7 and the

H. neanderthalensis Spy 1. Omo II and LH 18 are grouped with the

H. ergaster of the sample and Kabwe 1 with the H. erectus. Compared

to the other MPH, the South African specimen Saldanha scores lower

along PC2. KNM-ES11693 is the closest MPH to the H. sapiens. At

last, Dali is located, as in the PCA on raw data, between H. ergaster

and H. erectus and H. neanderthalensis.

3.2 | Phenetic affinities

We carried out MLR models to assess the phenetic affinities of the

MPH with the different groups of our study. We used the scores of

the first 2, 3, and 5 PCs (i.e., raw shape data; representing respectively

58.43%, 64.43%, and 74.44% of the total variance, see Table S2) as

well as the residuals of the linear regression of the centroid size of the

specimens on these PCs (i.e., corrected data) as inputs for our models.

The Hosmer-Lemeshow test assesses the models’ goodness of

fit. The model correctly fits the data if the test statistic is not signifi-

cant. Here, the Hosmer-Lemeshow statistics are not significant for

every data set, meaning that all the models appropriately fit the data

at the 0.05 level. The AIC shows that the models using corrected

data are of better quality than those using raw data (Table 2). The

models using the residuals are slightly better classifiers for the

H. ergaster, H. erectus, and H. sapiens groups (Table 3,

Tables S10–S15).

The percentage of affinities of each MPH with the groups of the

comparative sample is relatively stable in the different models

(Table 4 and Table 5). Most of the African specimens are classified in

the H. ergaster, H. erectus, and H. sapiens groups while the Eurasian

specimens are mostly classified in the groups of H. ergaster, H. erectus,

and H. neanderthalensis. Several specimens are however distinguish-

able from this general pattern. Narmada is classified among H. sapiens

in the models using the raw shape data but among H. ergaster and H.

erectus in the models using the corrected data. Dali is classified in sev-

eral groups, though proportionally more among H. neanderthalensis

and H. ergaster. Ndutu differs from the other African specimens as it is

F IGURE 1 Morphospace of the first two Principal Components (PC1 and PC2) of the calvarium shape. The 3D warped models represent the
shape of the calvarium for the extreme values of each PC in norma lateralis and norma occipitalis. The mean shape of each group is represented by
a point: HErgs for H. ergaster, HErct for H. erectus, NEand for H. neanderthalensis, MPHEu for Eurasian Middle Pleistocene hominins, MPHAf for
African Middle Pleistocene hominins, PHSap for Pleistocene H. sapiens, and HHSap for Holocene H. sapiens. The size of the points is proportional
with the centroid size of each specimen.
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classified among H. neanderthalensis in several models. Compared to

the other African specimens, Kabwe 1 displays a peculiar profile, as it

shares important affinities with H. erectus in the models using cor-

rected data. At last, the specimens from Jebel Irhoud, as well as the

Eurasian specimen SH5 and Ceprano, are classified almost exclusively

among the H. neanderthalensis by every model.

4 | DISCUSSION

The fossil record of the MP is very scarce and the majority of the

available specimens are fragmentary. Our study sample focuses on

the best-preserved calvaria dating from approximately 600 ka to

150 ka in order to limit as much as possible reconstructions and esti-

mations of missing parts. However, the scarcity of the available fossil

record from this time period constitutes an important limitation to our

study. The discovery of new fossil specimens from this time period

along with the use and development of innovative methodological

approaches, are therefore of paramount importance to help further

our understanding of human evolutionary history during the MP.

Our main results highlight the important morphological variation

within the analyzed MPH group. Several morphological patterns are

discernible, suggesting that these fossils might represent different

populations and/or species. While our results suggest overall morpho-

logical differences between African and Eurasian MPH, it appears dif-

ficult to divide them into two geographic groups. As a general trend,

African fossils tend to share more affinities with H. ergaster and

H. sapiens and the Eurasian specimens with H. neanderthalensis

(Figures 3 and 4). Among these fossils, only SH5 is included in the

range of variation of the H. neanderthalensis group in both

size-corrected and raw PCA analyses, which supports its attribution to

this taxon. The other specimens from Africa are out of the morpholog-

ical variation of H. sapiens, and those from Eurasia, are out of the vari-

ation of H. neanderthalensis. It is therefore difficult to validate

phenetically their attribution to any of these taxa. These affinities

could be interpreted as an evolutionary trend towards

H. neanderthalensis and possibly “Denisovans” in Eurasia and towards

H. sapiens in Africa. However, some specimens do not follow this gen-

eral pattern at the continental level. This would imply that lineages

with different ancestries lived contemporaneously or that these dif-

ferent populations evolved from a common ancestor but had separate

evolutionary histories. Therefore, we cannot validate the hypothesis

that only two distinct lineages lived in Africa and Eurasia during the

MP. Consequently, the affinities of the MPH are not entirely congru-

ent with geography, which suggests that hypothesis 2 is valid. It is

important to note that the MPH specimens included in this study,

with the exception of Saldanha (Table 1), are broadly dated to the mid

to late MP, a period postdating the supposed genetic last common

ancestor (LCA) of H. neanderthalensis and H. sapiens, which might have

lived about 700–600 ka in Africa (Meyer et al., 2016; Mounier &

Miraz�on Lahr, 2016; Schlebusch et al., 2017). While more recent fos-

sils tend to share more affinities with H. neanderthalensis in Eurasia

F IGURE 2 Morphospace of PC1 and PC2 of the calvarium shape based on the residuals after removing allometry. The 3D warped models
represent the shape of the calvarium for the extreme values of each PC in norma lateralis and norma occipitalis.
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and H. sapiens in Africa, several penecontemporaneous specimens

present affinities with more basal taxa, meaning that the affinities of

the MP fossils are not entirely congruent with chronology, as postu-

lated in hypothesis 3.

The African specimens KNM-ES 11693, Saldanha, LH 18, and

Omo II share strong affinities with Pleistocene H. sapiens, and with

H. ergaster and H. erectus (Figures 3 and 4, Table 4 and Table 5).

KNM-ES 11693 is the specimen that shares the most affinities with

H. sapiens in both the models with raw and corrected data. However,

KNM-ES 11693 presents a pathological alteration of the calvarium

with an important increase in the bone thickness, notably a broaden-

ing symmetrical to the sagittal suture (Bräuer et al., 2003). Such a con-

dition could have possibly contributed to the increase in the general

globular shape of the cranial vault and facilitated the classification of

the specimen as H. sapiens. However, according to the results dis-

played in Table 1 by Bräuer et al. (2003), the pathologically thickened

cranial vault of KNM-ES 11693 deviates from the expected variation

from �3 to �6 mm (depending on the reference group) and it would

seem unlikely that this could have had a strong impact on the global

shape of the calvarium. It is interesting to note that the results from

the models using corrected data increase the likelihood of Saldanha,

LH 18 and Omo II to be classified as H. erectus (see Figures 3 and 4). It

appears therefore that the shape of the calvarium of these specimens,

when taking off the influence of size, is more reminiscent of H. erectus

than of H. sapiens. These fossils exhibit morphological features found

in H. erectus—a strong angulation of the occipital bone and a

TABLE 4 Percentage of classification of each MPH of the study in the different groups of the comparative sample by the MLR models using
raw data for 2, 3, and 5 PCs.

Raw data

2 PCs

H.

ergaster

H.

erectus

H.

neand.

Pleist.

H. sap.

Hol.

H. sap.

Raw data

3 PCs

H.

ergaster

H.

erectus

H.

neand.

Pleist.

H. sap.

Hol.

H. sap.

Irhoud1 0.5% 0.0% 98.8% 0.6% 0.0% Irhoud1 0.2% 0.0% 99.6% 0.1% 0.0%

Irhoud2 0.0% 0.0% 97.6% 2.2% 0.1% Irhoud2 0.0% 0.0% 99.9% 0.1% 0.0%

Kabwe1 82.5% 5.2% 11.7% 0.6% 0.0% Kabwe1 52.4% 14.3% 32.7% 0.5% 0.0%

ES11693 0.6% 0.0% 21.5% 76.7% 1.2% ES11693 1.9% 0.0% 24.9% 72.5% 0.6%

Saldanha 4.1% 0.0% 0.0% 95.9% 0.0% Saldanha 5.0% 0.0% 0.0% 95.0% 0.0%

Ndutu 0.7% 0.0% 99.1% 0.2% 0.0% Ndutu 34.3% 2.4% 58.8% 4.4% 0.0%

LH18 2.5% 0.0% 0.0% 97.4% 0.0% LH18 4.1% 0.0% 0.0% 95.9% 0.0%

OmoII 0.7% 0.0% 0.2% 98.9% 0.2% OmoII 1.9% 0.0% 0.0% 98.0% 0.1%

Petralona 6.8% 1.3% 91.9% 0.1% 0.0% Petralona 5.4% 4.4% 90.1% 0.0% 0.0%

SH5 0.3% 0.0% 99.7% 0.0% 0.0% SH5 1.4% 0.9% 97.7% 0.0% 0.0%

Ceprano 0.0% 78.5% 21.5% 0.0% 0.0% Ceprano 0.0% 77.2% 22.8% 0.0% 0.0%

Jinn. 6.6% 4.1% 89.3% 0.0% 0.0% Jinn. 1.9% 4.3% 93.9% 0.0% 0.0%

Narmada 3.8% 0.0% 1.5% 94.5% 0.1% Narmada 8.5% 0.0% 0.1% 91.3% 0.1%

Dali 35.3% 0.1% 50.0% 14.6% 0.0% Dali 25.1% 0.5% 66.4% 8.0% 0.0%

Raw data 5 PCs H. ergaster H. erectus H. neand. Pleist. H. sap. Hol. H. sap.

Irhoud1 0.1% 0.0% 99.7% 0.2% 0.0%

Irhoud2 0.0% 0.0% 99.5% 0.5% 0.0%

Kabwe1 51.9% 23.8% 24.0% 0.3% 0.0%

ES11693 0.1% 0.0% 2.0% 97.7% 0.2%

Saldanha 1.2% 0.0% 0.0% 98.8% 0.0%

Ndutu 28.9% 0.1% 63.3% 7.7% 0.0%

LH18 0.8% 0.0% 0.0% 99.1% 0.0%

OmoII 0.1% 0.0% 0.0% 99.7% 0.1%

Petralona 3.0% 0.1% 96.9% 0.0% 0.0%

SH5 0.3% 0.0% 99.7% 0.0% 0.0%

Ceprano 0.0% 82.9% 17.1% 0.0% 0.0%

Jinn. 1.6% 13.4% 84.9% 0.0% 0.0%

Narmada 2.1% 0.2% 0.6% 97.1% 0.1%

Dali 22.0% 0.1% 59.8% 18.2% 0.0%

Note: Percentage of classification exceeding 50% are given in bold.
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protruding supraorbital suture for instance—associated with traits

found in H. sapiens, such as a relatively higher neurocranium and a

larger cranial capacity (Lieberman, 2011). The important phenetic

affinities of these fossils with H. sapiens indicate they might represent

ancestral populations to this species. This suggests that diverse popu-

lations distributed across Africa might have contributed to that of

H. sapiens (Hublin et al., 2017; Mounier & Miraz�on Lahr, 2019; Berg-

ström et al., 2021; Andirk�o et al., 2022). Following geographic and

demographic fluctuations, these populations may have taken part in

the origin of H. sapiens in different proportions (Miraz�on Lahr, 2016;

Mounier & Miraz�on Lahr, 2019). However, to our knowledge, Sal-

danha, which is imprecisely dated to about 600 ka (Klein et al., 2007),

have never been interpreted as an African MPH whose morphology is

reminiscent of H. sapiens (e.g., Rightmire, 1998, 2008; Lieberman,

2011; Mounier, 2009).

Ndutu, broadly dated to 400–200 ka (Rightmire, 1983), shares

affinities with several groups. Along with the specimens from Jebel

Irhoud, it is the only African specimen to share important affinities

with H. neanderthalensis in some of the models. This specimen has

however been subjected to an important reconstruction (Clark, 1976),

notably on the frontal and the parietal bones. The rather gracile aspect

of Ndutu's morphology compared to the other African MPH might

also be due to sexual dimorphism (Harvati & Reyes-Centeno, 2022).

The specimen from Zambi’, Kabwe 1, is never classified in the

group of the Pleistocene H. sapiens. In the models using the residuals,

it is mostly classified among H. ergaster. Such a result highlights the

robust aspect of its calvarium compared to other African MPH speci-

mens. Initially placed among the first African specimens to feature a

morphology clearly distinguishable from H. erectus along with Sal-

danha (Rightmire, 2001), it has been recently dated to about 299 ka

TABLE 5 Percentage of classification of each MPH of the study in the different groups of the comparative sample by the MLR models using
corrected data for 2, 3, and 5 PCs.

Corr. Data

2 PCs

H.

ergaster

H.

erectus

H.

neand.

Pleist.

H. sap.

Hol.

H. sap.

Corr. Data

3 PCs

H.

ergaster

H.

erectus

H.

neand.

Pleist.

H. sap.

Hol.

H. sap.

Irhoud1 2.6% 0.9% 96.4% 0.0% 0.0% Irhoud1 0.2% 0.0% 99.8% 0.0% 0.0%

Irhoud2 1.2% 0.0% 97.5% 1.2% 0.1% Irhoud2 0.0% 0.0% 100.0% 0.0% 0.0%

Kabwe1 10.5% 86.5% 3.1% 0.0% 0.0% Kabwe1 9.5% 85.4% 5.1% 0.0% 0.0%

ES11693 35.0% 0.1% 44.9% 19.4% 0.6% ES11693 36.2% 0.0% 46.7% 16.8% 0.3%

Saldanha 88.2% 0.0% 0.0% 11.7% 0.0% Saldanha 93.0% 0.0% 0.0% 7.0% 0.0%

Ndutu 3.1% 0.1% 96.2% 0.5% 0.0% Ndutu 35.7% 0.5% 61.6% 2.0% 0.1%

LH18 93.0% 0.1% 0.1% 6.8% 0.0% LH18 97.6% 0.0% 0.0% 2.3% 0.0%

OmoII 89.6% 8.3% 1.9% 0.2% 0.0% OmoII 87.1% 12.9% 0.0% 0.0% 0.0%

Petralona 1.6% 63.4% 35.0% 0.0% 0.0% Petralona 0.6% 70.6% 28.9% 0.0% 0.0%

SH5 0.8% 0.0% 99.0% 0.2% 0.0% SH5 0.3% 0.0% 99.7% 0.0% 0.0%

Ceprano 0.0% 66.4% 33.6% 0.0% 0.0% Ceprano 0.0% 95.6% 4.4% 0.0% 0.0%

Jinn. 2.3% 37.2% 60.5% 0.0% 0.0% Jinn. 0.3% 5.4% 94.3% 0.0% 0.0%

Narmada 90.1% 5.0% 4.4% 0.6% 0.0% Narmada 95.6% 4.3% 0.0% 0.0% 0.0%

Dali 56.0% 13.9% 29.9% 0.2% 0.0% Dali 49.9% 2.6% 47.5% 0.0% 0.0%

Corr. Data 5 PCs H. ergaster H. erectus H. neand. Pleist. H. sap. Hol. H. sap.

Irhoud1 0.9% 0.0% 99.1% 0.0% 0.0%

Irhoud2 0.3% 0.0% 99.4% 0.3% 0.0%

Kabwe1 0.3% 99.4% 0.3% 0.0% 0.0%

ES11693 18.6% 0.0% 0.5% 80.9% 0.0%

Saldanha 94.0% 0.0% 0.0% 6.0% 0.0%

Ndutu 81.6% 0.0% 1.9% 16.4% 0.0%

LH18 90.9% 0.8% 0.0% 8.3% 0.0%

OmoII 65.3% 34.7% 0.0% 0.0% 0.0%

Petralona 0.6% 22.6% 76.8% 0.0% 0.0%

SH5 2.3% 0.0% 97.3% 0.4% 0.0%

Ceprano 0.0% 60.2% 39.8% 0.0% 0.0%

Jinn. 0.5% 30.3% 69.2% 0.0% 0.0%

Narmada 0.3% 99.7% 0.0% 0.0% 0.0%

Dali 70.3% 8.4% 21.3% 0.0% 0.0%

Note: Percentage of classification exceeding 50% are given in bold.
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(Grün et al., 2020). Kabwe 1 is thus penecontemporaneous to other

East African fossils, which exhibit a morphology much closer to

H. sapiens. Stringer (1983, 2012), Rightmire (2015, 2017), and Mou-

nier et al. (2009, 2011) have shown the strong morphological similari-

ties of Kabwe 1 with the specimen from Greece, Petralona. Both

fossils share important affinities with the H. ergaster. It seems there-

fore possible that these specimens come from populations that are

phylogenetically close, and that repeated contacts happened between

African and Eurasian populations. This hypothesis is corroborated by a

palaeoenvironmental study carried out by Bailey and colleagues

(2019) which showed that periods of low sea level (i.e., corresponding

to transitions between glacial and interglacial periods) were accompa-

nied by better climatic conditions during the last 400 ka in the Medi-

terranean basin, which may have favored the mobility of hominins.

Recent discoveries of sites with Acheulean lithic industry in the Greek

archipelago, also seem to show the existence of a migration route

following the coasts of southern Europe during this period

(Tourloukis & Harvati, 2018; Tsakanikou et al., 2020; Konidaris

et al., 2023).

The Eurasian specimens Ceprano, Petralona, SH5, and Jinniushan

share important affinities with H. neanderthalensis. Ceprano is mainly

classified as H. neanderthalensis. Its peculiar morphology, which retains

characteristics observable in H. erectus associated with features dis-

played by other MPH, has been shown by several studies (Mounier

et al., 2011; Manzi, 2016; Di Vincenzo et al., 2017). If we consider the

dating of Ceprano between 430 and 385 ka (Manzi et al., 2010) and

its morphology, it is likely that this fossil originated from a population

that came from Africa to Europe at the beginning of the Middle Pleis-

tocene. The first occurrence of the Acheulean in Europe is documen-

ted in the South of the Italian peninsula at Notarchirico, as well as at

La Noira and Moulin Quignon, in central France at around 700 ka

(Moncel, Despriée, et al., 2020; Moncel et al., 2020; Antoine

F IGURE 3 Map of the sites where the MPH fossils of the study sample have been recovered. Bar plots represent the proportion of
classification of each MPH in the different groups of the comparative sample (see Table 4) using raw data for the first 2, 3, and 5 PCs (from left to
right).
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et al., 2019), which is corresponds to, or slightly predates, the genetic

split between H. neanderthalensis and H. sapiens. Following a period of

probable depopulation of Europe around 1.1 Ma: (Margari et al.,

2023), the arrival of new hominin populations in Eurasia may then

have been favored by the extension of grasslands to higher latitudes

towards the end of the Middle Pleistocene Transition (i.e., from

1.25 Ma to ca. 700 ka; Dean et al., 2015) and the subsequent opening

of migration corridors from East Africa in particular (Abbate &

Sagri, 2012; Beyin et al., 2019; Head & Gibbard, 2015). In Africa,

hominin populations may have suffered a major bottleneck between

approximately 930 to 810 ka, leading to a dramatic loss of genetic

diversity (Hu et al., 2023). In Eurasia, some regions, such as Iberia, the

Italian peninsula, and the Balkans, might have served as refugia zones

during periods of climatic deterioration, favoring bottleneck effects

and sometimes leading to extinctions (Dennell et al., 2011).

SH5 is exclusively classified in the group of H. neanderthalensis.

This is consistent with several paleoanthropological (e.g., Arsuaga

et al., 2014; Mounier & Caparros, 2015) and genetic studies (Meyer

et al., 2016) which have shown that the fossils from the Sima de los

Huesos (SH, Spain) are early representatives of H. neanderthalensis.

Jinniushan calvarium exhibits important affinities with the speci-

mens from Western Europe, notably Petralona, and is often classified

with H. neanderthalensis by the models. Dated to about 270 ka

(Rosenberg et al., 2006), it is often grouped with other LMP fossils

from continental China, such as Dali (Hublin, 2013; Ao et al., 2017;

Wu et al., 2019; Ni, 2021; Mounier, 2011), while the shape of its cal-

varium was found to show affinities with H. neanderthalensis

(Mounier, 2009; Mounier et al., 2011). The fossil from Dali, which pre-

sents affinities with several groups, stands out from the rest of the

specimens from Eurasia. Its morphology, more robust than Jinniush-

an's, is sometimes interpreted as sexual dimorphism within the same

population (Kaifu, 2017). Some researchers also explain its peculiar

morphology by the existence of several populations in continental

China evolving in a braided stream network of gene flow (Athreya &

F IGURE 4 Map of the sites where the MPH fossils of the study sample have been recovered. Bar plots represent the proportion of
classification of each MPH in the different groups of the comparative sample (see Table 5) using corrected data for the first 2, 3, and 5 PCs (from
left to right).
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Wu, 2017). Genetic studies (Meyer et al., 2014; Reich et al., 2010)

and new discoveries (Chen et al., 2019; Demeter et al., 2022) have

shown that a sister group of the H. neanderthalensis sharing the same

mtDNA as the individuals from SH, often referred as the “Deniso-

vans” (Reich et al., 2010), was living in Asia during LMP. It is therefore

probable that these specimens from continental China are ancestral to

this population (Di Vincenzo & Manzi, 2023). In addition, a recent phy-

logenetic study (Ni, 2021), suggested that Jinniushan and Dali are part

of the same clade as the newly found cranium from Harbin in North-

ern China, and Ji and collaborators (2021) proposed that they should

be integrated into a new taxon, H. longi. However, the attribution of

the specimens described as potential “Denisovans” to this new taxon

remains to be clarified.

The fossil from the Indian subcontinent Narmada is the only Eur-

asian specimen to be classified in the H. sapiens group by the models

using raw data. In this regard, Narmada resembles some of the African

MPH. It is however important to note that this fossil, a hemi-

calvarium, has been virtually reconstructed by mirroring. It exhibits a

peculiar morphology with morphological features found in H. erectus

associated with characters found in H. sapiens and specific traits

(Kennedy, 2014), making it difficult to decipher its phylogenetic rela-

tions (Athreya, 2007; Cameron et al., 2004; Sankhyan, 2020).

Irhoud 1 and 2 are the only African specimens to be classified

almost exclusively among H. neanderthalensis by every model. How-

ever, the shape of the Jebel Irhoud specimens’ faces (i.e., Irhoud 1 and

10) has been shown to share affinities with H. sapiens (Hublin

et al., 2017; Mounier, 2012). It has therefore been proposed that they

should be placed at the root of the H. sapiens lineage (Hublin

et al., 2017). Posth et al. (2017), in a recent genetic study, showed that

the ancestral Neanderthal mtDNA was replaced by an African mtDNA

between 400 and 260 ka. In addition, Petr et al. (2020) showed that

gene flows from Africa also replaced the Y-chromosome DNA of Mid-

dle Pleistocene European populations between 450 and 100 ka. The

Jebel Irhoud specimens, given their particularly H. neanderthalensis-

like morphology compared to LMP African fossils (Mounier & Miraz�on

Lahr, 2019), their dating (i.e., about 315 ka, Richter et al., 2017) and

their geographical origin, could represent a lineage of which some

members would have hybridized with a European population in the

Middle Pleistocene. However, this hypothesis remains difficult to con-

firm as the fossil record for this period is scarce and presents very few

precisely dated fossils (Hublin, 2013). Moreover, the effect of hybridi-

zation on the phenotype is still poorly understood, despite increasing

interest in the subject (e.g., Gunz et al., 2019; Harvati &

Ackermann, 2022).

Additional taxonomical hypotheses have been made regarding

the classification of the controversial MP fossils, the most recent

being the introduction of a new species named, H. bodoensis, to

accommodate some of the African MP fossils (Roksandic et al., 2022).

Nevertheless, it is not clear how the change of a species' name con-

tributes to the clarifying of the phylogenetic relationships between

these fossils. The present study offers an alternative evolutionary

hypothesis to the dichotomy between the classic Afro-European

(i.e., H. heidelbergensis s.l. as a unique Afro-European species) and

European (H. heidelbergensis s.s. or H. neanderthalensis in Europe and

H. rhodesiensis/H. bodoensis in Africa) H. heidelbergensis hypotheses.

Though being limited to the morphology of the calvarium, our results

allow us to draw a framework for human evolution during LMP. In

Africa, several populations may have existed contemporaneously at

the continental level, with local morphs retaining H. erectus-like fea-

tures and others exhibiting more derived, pre-sapiens morphologies, in

the East and the South of the continent. Such a result is congruent

with the study by Mounier and Miraz�on Lahr (2019), which showed

that H. sapiens might have originated in these regions of Africa.

Phases of expansion may have led to hybridizations while the

increased fragmentation could have caused local extinctions eventu-

ally resulting in the emergence of H. sapiens, which could constitute a

speciation event. H. sapiens is first documented in the fossil record

with Omo I (Ethiopia), dated to at least 233 ka (Vidal et al., 2022). In

Eurasia, populations display a pre-H. neanderthalensis morphology

in western Europe seems to have spread across the continent from

over 400 ka with local morphological variants which could have

resulted from several founder effects or hybridization with archaic

populations, such as in Southern Europe or continental Asia. In this

latter region, a local morph could probably be identified, with the fos-

sils from Dali and Jinniushan, to the “Denisovans”. More fossils from

this part of the world would however be necessary to further those

conclusions.
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