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Abstract— Artificial Intelligence (AI) and Machine learning 

(ML) models have proven to be scalable approaches for 
handling several biomedical problems. Recent availability of 
high-quality datasets which captures various factors 
contributing to the respiratory disease, have enabled the 
development of robust models that deliver high accuracy and 
precision scores in early detection of respiratory diseases. This 
paper focuses on asthma disease detection. It makes two primary 
contributions: (1) an empirical evaluation of their performance 
on an asthma disease detection dataset with data mining and 
pre-processing techniques, and (2) the identification of the most 
effective approach for asthma disease detection based on 
rigorous evaluation using metrics such as precision, accuracy, 
recall, F-1, and F-beta scores. Cat Boost Classifier was found to 
be the best model which predicted asthma disease with a 96.04% 
accuracy. Our code can be found here: 
https://github.com/ArkaMukherjee0/AsthmaDetection* 

Keywords—Asthma prediction, Machine Learning, Data 
mining 

I.        INTRODUCTION 

Asthma, a pervasive chronic inflammatory disease of the 
airways, affects over three hundred million individuals 
globally. Epidemiological studies indicate a significant 
portion of the population, approximately 10% of pediatric and 
6-7% of adult patients, are affected by the condition [1]. It 
leads to impaired lung function with severe exacerbations 
causing hospitalizations, thereby impacting the quality of life 
for the affected. Effective and accurate prediction of the 
disease is crucial to or in reducing healthcare costs, 
significantly decreasing the frequency and severity of asthma 
attacks, preventing long-term lung damage, and identifying 
potential risk factors and triggers. Interventions of AI and ML 
models are remarkably efficient at analyzing diverse patient 
data — spanning medical history, environmental and allergic 
influences, symptomatic presentations, and clinical 
measurements — to predict the likelihood of asthma onset [2]. 

A. The Respiratory System and Asthma 

The human respiratory process occurs in two phases: 
inhalation, when air is drawn into the body, and exhalation, 
whereby carbon dioxide, a metabolic byproduct, is expelled. 
Its primary function is to facilitate gas exchange, a 
bidirectional flow of oxygen into the body and carbon dioxide 
out. Asthma’s hallmark is airway hyperresponsiveness — 
characterized by airway inflammation, bronchoconstriction, 
and mucus hypersecretion. []. Thus, hypersensitivity renders 
the airways overly sensitive to various triggers, leading to 
sudden and often severe episodes of airflow limitation. 
Asthma attacks, marked by symptoms like wheezing, 
coughing, and shortness of breath, can be induced by multiple 
factors. These include allergens such as dust mites and pollen, 

respiratory infections, weather changes, emotional stress, and 
irritants like tobacco smoke and air pollutants [3].  

B. Risk Factors for Asthma 

The development of asthma can be attributed to a series of 
lifestyle and environmental factors. Exposure to allergens and 
irritants can significantly increase the risk of developing the 
condition. Additionally, lifestyle choices such as low physical 
activity levels, obesity, and poor diet choices like consumption 
of processed foods increase asthma susceptibility. Studies 
have shown that local environment and lifestyle factors 
influence the development of asthma. An analysis of data 
collected from Vancouver, Canada, and select spots in China 
shows significant differences in the prevalence of the disease. 
Healthcare professionals typically rely on medical history, 
clinical measurements, existing symptoms, and allergy factors 
to determine the condition [4]. 

C. Role of Technology  

Data-driven approaches using machine ML techniques can 
efficiently process vast corpora of data to make nearly- 
accurate predictions. Innovation in the field of supervised 
learning augmented with data pre-processing techniques has 
pushed the state of the art significantly on a variety of tasks. 
Rapid advancements have been made in applying this 
technology in healthcare, such as in pneumonia detection [5], 
arrhythmia detection [6], tuberculosis detection [7], malaria 
detection [8] etc. Asthma detection, similarly, can be 
efficiently approached with ML. In this study, we probe a 
variety of existing technologies and evaluate their 
performance. We try to answer which models perform the best 
and which are better avoided. While there has been extensive 
research on asthma detection using various data modalities, 
the application of ML to numerical datasets remains relatively 
unexplored. To the best of our knowledge, this is the first study 
to comprehensively evaluate the performance of a diverse set 
of machine learning models to the newly released “Asthma 
Disease Dataset” comprising solely of numerical features.  

The rest of the paper is organized as follows. In Section, 2 
we conduct a thorough literature review of existing techniques 
for solving asthma disease detection. Section 3 describes the 
machine learning models used in this study. In Section 4, the 
empirical results obtained in our experiments are presented. 
Subsequently, Section 5 distils the findings into a conclusion 
and highlights future directions to improve asthma disease 
detection with AI and ML techniques followed by References. 

II.    RELATED WORK 

Yahyaoui and Yumuşak (2021) [9] used a private dataset 
collected from patients in Diyarbakir hospital, Turkey for 
asthma and pneumonia disease detection. The study utilized 
K-Nearest Neighbors and Deep Neural Network models. They 
reported 95% and 94.3% accuracies respectively. Similarly, 



Spathis and Vlamos (2019) [10] conducted another study on 
asthma and chronic obstructive pulmonary disease (COPD) 
detection with data collected by a pulmonologist in 
Thessalonik, Greece. Multiple ML models, encompassing 
Naïve Bayes, Logistic Regression, Neural Network, K-
Nearest Neighbors, Decision Trees, and Random Forest was 
employed. The best performing technique was Naïve Bayes 
classifier, which delivered a precision score of 82%. 

 Zhang et al (2020) [11] predicted asthma exacerbations 
with data from the AstraZeneca SAKURA records. ML 
models such as Logistic Regression, Decision Trees, Naïve 
Bayes classifier, and Perceptron were applied. The best 
technique was experimentally verified to be Logistic 
Regression with Principal Component Analysis (PCA). It 
achieved sensitivity, specificity, and AUC scores of 90%, 83%, 
and 85% respectively. Also, Zhan et al (2020) [12] used 
Mahalanobis–Taguchi system (MTS) and SVM to identify 
asthma with routine blood biomarkers. The data was collected 
from patients admitted to Wuxi People’s Hospital, China. The 
study recorded sensitivities of 94.15% and 93.55% with MTS 
and SVM respectively. Amaral et al. (2020) [13] ran tests on 
a private dataset created with ninety-seven volunteers with 
asthma and restrictive respiratory disease conditions. ML 
models such as K-Nearest Neighbors, Random Forests, 
AdaBoost with Decision Trees (ADAB), Support Vector 
Machines with radial basis function kernel (SVMR), and 
Neural Fuzzy Classifier (NFC). SVMR reported the best 
sensitivity of 99.1%, while ADAB reported the best specificity 
of 96.5%. 

 Awal et al (2021) [14] developed a system for early 
detection of asthma leveraging multiple ML models. Data 
from a clinical study conducted in Khulna, Bangladesh was 
utilized. The best model was Support Vector Classifier (SVC) 
with an accuracy of 94.35%. Similarly, Xie and Xu (2024) [15] 
utilized machine learning models to predict asthma disease in 
youth with National Health Interview Survey (NIHS) data. 
The best reported model is linear SVM with an accuracy of 
89.06%. In terms of precision, Random Forest is the best with 
a score of 47.06%. Also, Barua et al (2022) [16] contributed a 
1D-ARCSLBP model that can synthesize coughing sounds to 
predict asthma in patients. A novel dataset was proposed for 
the study with over a thousand subjects. The model delivered 
accuracy and precision scores of 98.24% and 98.49% 
respectively. This method, however, doesn’t take statistical 
data into account. Table 1 below provides a summary of the 
literature review. 

TABLE I.  REVIEW OF LITRATURE  

Paper Method/Model Dataset Results 
[9] 
Yahyaoui 
and 
Yumuşak 
(2021) 

K-Nearest 
Neighbors, Deep 
Neural Networks 

dataset 
created with 
patient data 
from 
Diyarbakir 
hospital, 
Turkey 

Accuracy 
scores: KNN – 
95%, DNN – 
94.3% 

[10] 
Spathis 
and 
Vlamos 
(2019) 

Naïve Bayes, 
Logistic 
Regression, 
Neural Network, 
SVM, K-Nearest 
Neighbors,  

dataset 
recorded by 
pulmonologis
t in a suburb 
of 
Thessaloniki, 
Greece  

Precision 
scores: 
Naïve Bayes – 
82%,  

[11] 
Zhang et 
al (2020) 

Logistic 
Regression, 
Decision Tree, 

AstraZeneca 
SAKURA 
dataset  

Sensitivity – 
90%, Specificity 
– 83%, AUC – 

Naïve Bayes, 
Perceptron 

85% by LR with 
PCA 

 [12] Zhan 
et al 
(2020) 

Mahalanobis–
Taguchi system 
(MTS), SVM 

dataset 
recorded at 
Wuxi 
People’s 
Hospital, 
China 

MTS: 
Sensitivity – 
94.15%, 
Specificity – 
97.20%; SVM: 
Sensitivity – 
93.55%, 
Specificity – 
96.80% 

[13] 
Amaral et 
al. (2020) 

Best FOT 
Parameter (BFP), 
AdaBoost with 
Decision Trees 
(ADAB), Support 
Vector Machines 
(SVMR), Neural 
Fuzzy Classifier 
(NFC) 

Private 
dataset 
created with 
97 volunteers  

SVMR: 
Sensitivity – 
99.1%, 
Specificity – 
80.7%;  

[14] Awal 
et al 
(2021) 

K-Nearest 
Neighbors (KNN), 
XGBoost (XGB), 
(ANN), Support 
Vector Classifier 
(SVC) 

Data collected 
in a clinical 
study 
conducted in 
Khulna, 
Bangladesh 

Accuracy:  
SVC – 94.35% 

[15] Xie 
and Xu 
(2024)  

XGBoost (XGB), 
Neural Networks 
(NN), Random 
Forest (RF), 
Support Vector 
Machine (SVM), 
Logistic 
Regression (LR) 

National 
Health 
Interview 
Survey 
(NIHS) data 

Accuracy:  
SVM – 89.09% 

 [16] 
Barua et al 
(2022) 

One-dimensional 
Attractive-and-
Repulsive Center-
Symmetric Local 
Binary Pattern 
(1D-ARCSLBP) 

Novel cough 
sound dataset 
with >1,000 
subjects  

Accuracy – 
98.24%, 
Sensitivity – 
98.19%, 
Specificity – 
98.30%, 
Precision – 
98.49%, 
Geometric mean 
– 98.24%, F1-
score – 98.34% 

III.MATERIALS AND METHODS 

This section is a comprehensive exposition of the various 
technologies and methods used for the study.  

A. Dataset Description 

For empirical results, we used a statistical asthma dataset 
from Kaggle [17] titled “Asthma Disease Dataset” with 
diagnosis information for the disease. The dataset 
encompasses a variety of numerical parameters resulting in 
the condition, including age, gender, ethnicity, education 
level, lifestyle factors like Body Mass Index (BMI), smoking 
habits, levels of physical activity, diet quality, and sleep 
quality; environments and allergy factors like exposure to 
pollution, pollen, dust, pet allergies; medical histories like 
family history of the condition, eczema, hay fever, history of 
other allergies, and gastroesophageal reflux; clinical 
measurements like lung function FEV-1 and FVC; and 
existing symptoms like wheezing, shortness of breath, chest 
tightness, coughing, night-time symptoms, and exercise-
induced exacerbations. Fig.1. shows distribution of data as 
per asthmatic and non-asthmatic patients. 

 



   
Fig. 1. Distribution of asthma disease diagnosis in the dataset 

B. Data exploration and pre-processing techniques 

The dataset used for this study includes patient ID and 
confidential information of the doctor in charge. These 
features were dropped. The ground truth values were derived 
as follows: 124 cases of asthma and 2,268 healthy individuals. 
Subsequently, we probed the dataset for any missing or 
duplicate values — none were found. 

Before applying any data pre-processing techniques, we 
plotted distribution graphs for these features — age, BMI, 
physical activity, diet quality, sleep quality, pollution 
exposure, pollen exposure, dust exposure, lung function FEV1, 
and lung function FVC. A correlation graph was plotted to 
check for excessive dependence between any features. 
However, the dataset is extremely well-behaved and doesn’t 
require any further processing. Additionally, data 
augmentation techniques like Principal Component Analysis 
(PCA) and Synthetic Minority Oversampling Technique 
(SMOTE) were utilized to further enhance the effectiveness of 
certain machine learning models. These methods enhanced 
performance in certain cases. 
 To solve the imbalance in asthma diagnosed and healthy 
patients (which stands at a ratio of 1:18.23), SMOTE was used 
widely across all models to boost performance. We also used 
PCA with each technique to empirically verify which model 
delivers the best results. 

C. Technology Used 

Since asthma disease detection is a binary classification 
problem, standard methods known to work well in the problem 
were utilized. These models include Logistic Regression, 
Random Forest, Support Vector Classifier (SVC), Decision 
Tree, Cat Boost, Extreme Gradient Boosting (XGBoost), 
Light Gradient Boosting Method (LGBM), Naive Bayes 
classifier, Neural Networks, and Multi-Layer Perceptron. 

Logistic Regression (LR) is a statistical model used for 
predicting binary outcomes. It relies on the logistic function to 
calculate log-odds which is then translated into probabilities. 
Despite being simple, logistic regression is an effective 
technique that can handle complex input information such as 
patient data. The output probabilities were tested with multiple 
parameters such as accuracy, precision, recall, F1-score, ROC-
AUC, and log loss scores to analyze the model’s capabilities 
in the task. 

Neural Networks (NN) are another widely used machine 
learning models for advanced predictive tasks. This technique 

is particularly potent in classification workloads such as 
asthma network. For this study, we have used a deep network 
with two hidden dense layers. The total trainable parameters 
were 14,337. 

Decision Trees (DT) are another widely used tree-like 
hierarchical classifier. These models take into account 
consequences of events in the form of conditional control 
statements and make decisions based on the event outcomes 
of each. However, this makes them sensitive to the underlying 
data distributions. 

Naïve Bayes Classifier (NBC) is a simple yet effective 
linear classification tool based on Bayesian statistics. It 
leverages the Bayes’ theorem of conditional probabilities, 
making them extremely scalable. However, performance 
suffers in problems with multiple dimensions. 

Random Forest (RF) is an ensemble learning technique 
involving aggregation of multiple decision trees that combines 
the results of all to give a single output. For classification tasks, 
such networks take the class chosen by the maximum number 
of trees. This way, they effectively solve overfitting issues 
prevalent with Decision Tree algorithms. 

K-Nearest Neighbors (KNN) is another common 
supervised learning technique that relies on proximity of 
closely related data points for both classification and 
regression workloads. It computes the Euclidean distance 
between all data points to map out relationships in the training 
data. Learned patterns are then used to compute predictions in 
a fully non-parametric way. However, the simple underlying 
mechanism translates to poor performance in high-
dimensional data. 

Support Vector Classifier (SVC) is a specific 
implementation of a larger family of Support Vector Machine 
algorithms that focuses on classification tasks. Given a corpus 
of multi-dimensional data, the technique aims to compute the 
hyper-plane that results in the best segregation of the input 
features. However, these techniques can be computationally 
intensive given the quadratic calculations involved with the 
process. 

 Multi-Layer Perceptron (MLP) is a key machine learning 
technique driving innovation in the fields of Natural Language 
Processing and Computer Vision. It is a modernized 
feedforward neural network with mathematically modeled 
neurons that adapt to classification tasks through iterations of 
gradient manipulation during training. Much like SVMs, it can 
be computationally intensive at scale — with the main 
drawback being the multitude of matrix operations in both 
forward and backward steps. This study utilizes a simple five-
layer MLP network with three dense layers and two dropout 
layers. The optimizer used is Adam and loss was computed 
with the binary cross entropy function. Training was carried 
out for 500 epochs. 

Gradient Boosting (GB) [18] is an ensemble learning 
technique that involves aggregating multiple weak models — 
typically DTs — into one strong learner that results in high 
precision and accuracy scores. The convergence is carried out 
using a loss function that penalizes the trees based on their 
accuracy on the train set. 

Ada Boost (AB) [18] is another ensemble learning 
algorithm that utilizes the strong and weak learner paradigm 
for high performance. The key difference between AB and 
XGBoost is in the added focus on misclassified instances, the 



exponential loss function, and a stage-wise additive 
optimization function.  

Extreme Gradient Boosting (XGBoost) [19] is another 
popular sequential ensemble learning technique that focuses 
on improving the original gradient boosting algorithm. The 
underlying principle remains largely intact — XGBoost 
employs several weak models (typically DTs) and iteratively 
reduces the error to achieve a single strong learner. However, 
this technique features several key improvements such as L1 
and L2 regularization, sparsity-aware split finding, caching, 
and others. These improvements allow XGBoost to beat 
traditional GB in a wide range of tasks. 

Cat Boost (CB) [20], short for Categorical Boosting, is one 
of the most powerful machine learning algorithms for 
classification and regression tasks. It relies on the same weak 
and strong learner framework as AB and XGBoost where new 
trees are trained to reduce the errors of previous iterations. 
However, the key strength is its ability to handle categorical 
features without explicitly using techniques such as one-hot 
encoding. For this study, CB was run for 1,000 iterations with 
learning rate set to 0.017861. 

Light Gradient Boosting Machine (LGBM) [21] is a powerful 
histogram-based variant of GB. It leverages an ensemble of 
DTs with residual-correcting mechanism, Exclusive Feature 
Binding (EFB) to tackle high-dimensional data and Gradient-
based One-size Sampling (GOSS) to speed up training. For 
this study, a learning rate of 0.1 was used for LGBM. 
 

D. Methodology 

Following the application of the machine learning algorithms, 
we used ensemble learning techniques such as bagging. Also 
known as Bootstrap Aggregating, bagging is a popular 
technique used to reduce high variance or overfitting and 
improve the stability of the model. It works by creating 
multiple instances of the originally trained base model with 
smaller subsets of the training data. Some of these samples 
are then drawn randomly with replacement and their 
performance is evaluated. In the backdrop of classification 
tasks such as this study, the method outputs an average 
prediction based on the principle of majority voting. 

The dataset underwent rigorous pre-processing and 
exploratory analysis prior to an 80-20 train-test split. A suite 
of machine learning classifiers was systematically applied to 
address the binary classification problem of asthma disease 
detection. Each model was imported from the scikit-learn 
library, instantiated, and then fitted on the corresponding 
training data. Subsequently, we carried out output sampling, 
evaluation score calculation, confusion matrix and ROC-
AUC curve computation. To further enhance predictive 
capabilities, the integration of dimensionality reduction 
techniques, specifically PCA, and ensemble techniques, 
notably bagging were explored. These methods were 
empirically probed and the best results are listed in Section 
IV.  Fig.2. shows the workflow of the methodology used. 
 

 

      
Fig. 2. Workflow diagram for asthma detection with ML algorithms 

IV.      RESULTS AND DISCISSION 

This section outlines the results recorded with various 
machine learning algorithms on the dataset.  All ML models 
were imported from the scikit-learn library and evaluation was 
carried out locally in Visual Studio Code with Python 3.12.1 
in an Anaconda environment. The workstation is powered by 
an Intel® Core™ i5-12450H CPU (4P+4E cores), 16 GB of 
DDR5-4800 memory, Nvidia® RTX™ 4060 8 GB GPU, and 
1 TB Gigabyte PCIe Gen 4 NVMe storage. 

For the remainder of the paper, we have used some 
standard abbreviations. They are summarized in Table II. 

TABLE II.  STANDARD ABBREVIATIONS 

Standard name Abbreviation 
used 

Cat Boost CB 
Random Forest RF 
Light Gradient Boosting Machine LGBM 
Extreme Gradient Boosting (XGBoost) XGB 
Support Vector Classifiers SVC 
Neural Networks NN  
Gradient Boosting GB 
Multi-Layer Perceptron MLP  
Decision Trees DT 
Ada Boost AB 
Logistic Regression LR 
K-Nearest Neighbors KNN 
Naïve Bayes Classifier NBC 
Accuracy Score Acc 
Precision Score Prec 
Recall Score Rc 
F1-Score F1 
F-beta Score (beta=0.5) Fb 
Jaccard Score Jc 
ROC-AUC Score Auroc 
Average Cross Validation Score Cv 
Log Loss Score Ll 

 
Table   3 provides the performance score of ML algorithms 

used on the asthma dataset without bagging. Among the 
evaluated models, CatBoost exhibited superior performance 
with an accuracy of 96.04%, an F1-score of 0.96, a Jaccard 
score of 0.92, an ROC-AUC score of 0.96, and a Log loss of 
1.429. Notably, the SVC classifier attained the highest 
precision and F-beta score, reaching 99.52% and 0.9773, 
respectively. Furthermore, the Neural Network model 



achieved the highest average cross-validation (CV) score of 
0.9954, while the K-Nearest Neighbor model demonstrated 
perfect precision with a score of 1.00. LGBM, SVC, Random 
Forest, and Gradient Boosting models also displayed 
commendable performance, surpassing 90% accuracy. Multi-
Layer Perceptron, Decision Tree, Logistic Regression, and 
AdaBoost achieved moderate performance with accuracy 
scores exceeding 80%. Overall, the models demonstrated 
good performance on this asthma dataset. Notably, applying 

SMOTE for addressing class imbalance led to a discernible 
improvement in performance. However, the utilization of 
Principal Component Analysis (PCA) for dimensionality 
reduction did not consistently yield enhanced results, 
suggesting that the efficacy of bagging, ensemble techniques, 
and dimensionality reduction is contingent upon the specific 
context and dataset characteristics. The distribution and 
inherent behavior of the data play a pivotal role in determining 
the suitability of these techniques.   

TABLE III.  COMPARATIVE PERFORMANCE OF ML MODELS 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Models were trained extensively with and without pre-
processing and bagging techniques. With bagging applied, 
performance improved marginally in some models while 
effects were adverse in some other implementation. Table III 
contains data before and after applying bagging to all the 
models. XG Boost performed best with bagging by achieving 
an accuracy of 96.04%. 

TABLE IV.  PERFORMANCE OF ML MODELS WITH BAGGING APPLIED 

Models Accuracy 
 (in %) 

Accuracy with 
bagging (in %) 

Cat Boost 96.04 95.93 
Random Forest 95.81 95.26 
LGBM 95.81 95.70 
XGBoost 95.81 96.04 
Support Vector Classifiers 
(SVC) 

95.37 94.93 

Neural Networks 94.93
  

N/A 

Gradient Boosting 92.84 92.84 
Multi-Layer Perceptron 87.67

  
N/A 

Decision Trees 87.33 91.63 
Ada Boost 87.00 86.45 
Logistic Regression 86.23 85.79 
K-Nearest Neighbors 80.62 80.73 
Naïve Bayes Classifier 80.40 80.62 

 

Receiver Operating Characteristic (ROC) curves offer a 
powerful visual and qualitative assessment of the models’ 
discriminative capabilities on the test dataset. Steeper slopes 
indicate higher sensitivity, measuring the models’ capability 
to correctly identify positive cases. Ideally, the curves should 
hug the top left corner of the plot. Additionally, the area under 
the curve (AUC) provides a qualitative measure of 
performance. The larger the area under the curve denotes 
higher performance of the model. Fig. 3 represents the ROC 
characteristic observed with each ML model used in this study.  

  
Fig. 3. ROC Curve for all ML models used 

V.   CONCLUSION AND FUTURE WORK 

 Empirically, we conclude that Cat Boost is the best 
machine learning algorithm for asthma disease detection with 
statistical data, especially in the context of the “芉芊芋芌 Asthma 
Disease Dataset 芉芊芋芌” from Kaggle. This model achieved 
accuracies of 96.04% in our tests, making it significantly 
better than most of the literature cited in section II. Per Table 
III, it delivered best results in five out of the eight metrics used 
for the comparison. Some notable mentions include Ada Boost 
and Support Vector Classifier (SVC), the latter of which was 
the best performing model in two of the evaluation metrics. 
While Ada Boost delivered similar accuracies to Cat Boost 
with bagging applied, the added computational cost of the 
ensemble technique makes it less feasible when implementing 
the model at scale. 
 In summary, this work presented three contributions: (1) a 
review of popular classification models, (2) all relevant recent 
ML-based applications in the field of asthma disease detection 

MODEL Acc Prec Rc F1 Fb Jc Auroc Cv Ls 

CB 96.04 95.04 0.9714 0.9608 0.9545 0.9245 0.9604 0.9555 1.4290 
XGB 95.81 94.44 0.9736 0.9588 0.9501 0.9208 0.9581 0.9533 1.5084 
LGBM 95.81 94.83 0.9692 0.9586 0.9524 0.9205 0.9581 0.9555 1.5084 
RF 95.81 95.81 0.9581 0.9581 0.9581 0.9197 0.9581 0.9550 1.5084 
SVC 95.37 99.52 0.9119 0.9517 0.9773 0.9079 0.9537 0.9511 1.6672 
NN 94.93 94.54 0.9537 0.9496 0.9471 0.9040 0.9493 0.9954 1.8260 
GB 92.84 91.65 0.9427 0.9294 0.9216 0.8682 0.9284 0.9189 2.5802 
MLP 87.67 87.34 0.8811 0.8772 0.8749 0.7812 0.8767 0.8993 4.4459 
AB 87.00 84.15 0.9119 0.8753 0.8547 0.7782 0.8700 0.8477 4.6841 
DT 87.33 86.61 0.8833 0.8746 0.8695 0.7771 0.8733 0.8755 4.5650 
LR 86.23 85.22 0.8767 0.8643 0.8570 0.7610 0.8623 0.8488 4.9620 
KNN 80.62 72.06 1.0000 0.8376 0.7633 0.7206 0.8062 0.8289 6.9864 
NBC 80.40 77.27 0.8612 0.8146 0.7889 0.6872 0.8040 0.8062 7.0658 



and their performance as reported in literature, (3) an 
empirically-verified machine learning technique that best fits 
asthma detection. To our best knowledge, this is the first study 
to incorporate a comprehensive study of numerous popular 
machine learning models on a moderately large-scale 
numerical dataset. This proves the novelty of the paper. 
 Future work can expand on even more ML techniques for 
asthma detection. Better datasets with added features can be 
developed to address overfitting issues with some 
sophisticated models such as MLP and SVC. Further, multi-
modal data involving both coughing sounds, medical history, 
and statistical information could be combined for more 
effective predictive models. 
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