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ABSTRACT

Retinal degeneration is a hallmark of various degenerative oc-
ular diseases, and its accurate quantification is crucial for non-
clinical pharmacological studies. Here, we describe a method
to assess retinal atrophy by measuring the layers’ thickness in
histological sections stained with hematoxylin and eosin. We
use a semi-supervised approach with topological penalization
to segment layers followed by thickness measurements along
the layers’ medial axes. The method is tested on mice for
four layers, obtaining a high correlation with manual mea-
surements collected by biologists.

Index Terms— WSI, histology, retina, segmentation,
deep learning, CNN, semi-supervision, topological penaliza-
tion

1. INTRODUCTION

Retinal atrophy is a thinning of the retina that appears in
different eye diseases, leading to visual impairment in non-
clinical models (mice) and patients. Accurate measurement
of retinal atrophy is essential in studying these diseases. It
is critical for pharmacological research, in particular drug
discovery.

The retina is composed of several layers, each with dis-
tinct functions (see Fig. [I): the ganglion cell layer processes
visual information; the inner nuclear layer (INL) contains
bipolar, amacrine, and horizontal cells that amplify, extract
and compress signal; the outer plexiform layer (OPL) con-
tains the synaptic terminals of photoreceptors, horizontal
cells, and bipolar cells, connecting those different cells; the
outer nuclear layer (ONL) holds the nuclei of photoreceptor
cells; and the inner (IS) and outer segments (OS) capture the
light [I1]].

Retinal atrophy is not homogeneous and degradation of
different layers can occur at different rates in degenerative
ocular diseases. For medical and research purpose it is there-
fore useful to separately measure thickness for different lay-
ers. For instance, the ONL thickness is often used on its
own [2]. Measuring thickness for a layer usually requires
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Fig. 1: Retina section (left), layers structure with tearing (right).

manually drawing line segments (also called calipers), whose
lengths are used as local thickness values. Different methods
have been developed to automate this process across several
imaging modalities. The main principle is to segment a layer
before locally measuring border-to-border distance.

In fluorescence microscopy, the authors of [3]] use nu-
clei detection and morphological operations to construct the
contours of the ONL, and the thickness is measured as the
distance between borders along the medial axis. Thick-
nessTool [2] uses thresholding and morphological operations
to segment ONL and INL and thoroughly validates its mea-
surements against manual values.

In optical coherence tomography (OCT), segmentation
and thickness measurement of retina layers has been widely
studied: Most state-of-the-art methods use a variant of U-
Net [4} 5] to segment every retinal layer, and some include
semi-supervision [6] or topological constraints [[7} 8]].

Histological retina images offer great value for preclinical
research due to their high resolution and contrast. A method
is developed in [9] to segment and measure retina layer thick-
ness in histological images: ONL and INL layers are seg-
mented via a deep learning model, and thickness is measured
on local maxima of the distance function to the layer’s bound-
ary. The authors have access to relatively few labeled data
(14 annotated WSIs, all healthy), and because they use deep
learning models trained in a supervised fashion this causes a



severe performance drop in atrophied retinas. The measure-
ment algorithm introduced in [2]] is adapted to images from
multiple modalities.

This paper proposes a novel approach for retina layer seg-
mentation and thickness measurement in histological images.
Like [9], we have relatively few annotated retina sections (9
healthy, 12 atrophied) for training. However we have access
to many more unlabeled WSIs, and we exploit them with a
semi-supervised segmentation approach. In parallel, we use
topological penalization. We show that adding these com-
ponents improves agreement with manual measurements in
atrophied retina sections of LCA mice models.

2. METHOD

This section introduces the segmentation and thickness mea-
surement methods. The segmentation part details three dif-
ferent components used in the segmentation method. Four
segmentation models are tested, one for every component and
one using a combined approach. For each model, the same
thickness measurement approach is used to locally measure
border-to-border distance. Training the segmentation models
uses a set of labeled images (denoted by €);), and a set of un-
labeled ones (£2,,).

2.1. Segmentation

We formalize the segmentation problem as a 5-class pixel
classification task. Each class represents the retina layers pre-
viously introduced: IS, ONL, OPL, INL, and background.
We associate to each image I € R3*#*W g prediction P =
(Py, .., P5) € R>*HXW 'where, for each class ¢ € {1...., 5},
P. € RH*XW is the predicted probabilities for each pixel to
belong to the class c. Let us additionally define the operator
O that associates to P, a binary mask:

O(Pc)i,j = ]l{(i,j):c:argmaxke{1 ..... C}Pkyi‘j}(ﬁj) (D
where 1 is the indicator function, ¢ = 1,...,H, and j =
1,..., W. In the following, we denote by P (or P, for class c)
the prediction of the models and the related ground truth by
G (or G, for class c¢).

BASE. The baseline approach uses a U-Net [4] architecture.
For every image I; € (; the model is trained to minimize the
baseline supervised loss function Lp4s5:

Lpase = Lpice(P,G) + Loe(P,G) 2
where Lo is the standard cross-entropy loss and Lpjce is
the per-class Dice loss [10] defined as
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Fig. 2: UniMatch operations on unlabeled images.

SSL. This method is based on semi-supervised learning
(SSL): we exploit the set of unlabeled images (£2,) via the
UniMatch framework [11], illustrated in Fig. @ The method
is trained using pseudo-labels for unlabeled images that are
iteratively generated as the prediction of the current net-
work. UniMatch contains different branches. The first branch
weakly augments the initial image I, to generate a new image
W based on standard geometric transformation (random ro-
tation and flipping). The second branch generates the images
S1, 52 based on color modifications of W without modifying
its geometry (random blurring, perturbation for saturation,
contrast, brightness and hue). Finally, an additional pertur-
bation branch (FP) acts within the latent space by randomly
dropping features of the encoded W before decoding (dropout
with probability 0.5). UniMatch uses the following loss:
Ly = Lu(P%, PY) + Ly (P%2, PV) + 2L, (PF", PV)

4)
where

Ly(P,P") = Lpice(P,O(P™)) + Lep(P,O(PY)) (6)
The SSL method is trained with the following loss:

Lsst =1o,Lpase + 1o, Lum (M
TOPO. The last component introduces a topological penal-
ization to learn the spatial organization of the different lay-
ers more efficiently. This is achieved by the following con-
straint: pixels of non-adjacent layers should not be in contact
with each other. Here, we penalize adjacency between classes
{(IS,0OPL), (IS,INL), (ONL,INL), (OPL,background)}. For-
mally, let NAC be a set of paired non-adjacent classes, and
let the mask M4 = O(P4) be the binary prediction for class
A. Then proximity between two classes A and B can be esti-
mated using a morphological dilation with a kernel K, and the
topological interactions loss Ly [12] is computed as follows
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Fig. 3: Segmented layers with medial axes and calipers.

L7ri(P,G)=Lcp(POV,GOV)

V= |J MioMp+xK)UMp® (My+K) ®
(A,B)ENAC
where * is the convolution operation. Here V is the set of
pixels violating the non-adjacency rule. This defines the fol-
lowing loss acting on the labeled dataset:

Lropo = 1q,(Lpase + ArrLrr) )
SSL-TOPO. Finally, we can consider one last loss combining
topological penalization and semi-supervised learning on top
of the base approach:

Lssi—topo = 1o, Lroro + 1a,Lum (10)

2.2. Thickness measurement

For all segmentation models, we use the segmentation maps
to measure a thickness profile along each layer. However our
images present frequent tissue discontinuities in layers, espe-
cially the INL. Such discontinuities make it difficult to reli-
ably estimate thickness, and are a problem for atrophied reti-
nas that tend to be especially fragile. These tears or holes in
tissue are artifacts from the slicing and fixation process, do
not reflect a biological reality and are ignored by biologists
in their measurements. To detect the holes, we annotate the
tissue discontinuities as background for training. Then, any
background region enclosed within a layer contour is con-
sidered as a hole. Next, we compute the thickness of each
layer along the medial axis, removing the hole width if needed
(see Fig. B). The Straight Medial Axis Calculator plugin of
Icy is used to compute the medial axis of each layer.
To obtain a single thickness value for the whole layer, parts
near the optic nerve and at the boundary of the retina should

not be measured: the layers there are thinner than in the rest
of the retina and taking them into account skews the measure-
ment. The thickness value for the whole layer is therefore
computed as the mean of all values between the 25th and 75th
quantiles of the distribution. In addition, removing values out-
side the quantiles helps filters out outliers in the segmentation
and anomalous calipers caused by abrupt changes in the me-
dial axis.

2.3. Data and implementation details

We use 21 labeled retina sections for training (9 healthy, 12
atrophied) and 4 for testing (atrophied). 671 unlabeled slides
are used for semi-supervised training. All slides were stained
in H&E and scanned with 40x magnification at a resolution
of 0.227 pum/pixel. Because of their large size, the training
and inference are performed on image patches, managed us-
ing TIAToolbox and Sleek-patch [16]. The labels are
handled with Cytomine and Rasterio [18]].

U-Net training is performed using 100 epochs with
stochastic gradient descent for the full dataset. The learn-
ing rate follows a cosine decay starting at 1072, Weight
decay is 10~%, momentum 0.9 and batch size is 16. For S;
and S5 branches in UniMatch, the CutMix augmentation
is used in addition to blurring and color perturbations.

For topological penalization, A7y is set at 1074, and the
dilation kernel uses 4-connectivity.

Manual thickness measurements for the IS, INL, OPL,
and ONL are available on 61 sections of the atrophied retina.
None of these sections are included in the training or vali-
dation set. For the thickness measurement, we apply a mor-
phological closing of 4 pum, sample every 10 um along the
medial axis, and the calipers have a max length of 400 pm.
Operations on contours use OpenCV and Shapely [21].

3. RESULTS AND DISCUSSION

We show in Table[T] the results of layers segmentation for the
different models. We use two metrics for model comparison:
the Dice score DSC(O(P.), G.) @) measures the overlap be-
tween prediction and annotation for class c; the 75% Haus-
dorff distance (HD75) computes border distances up to the
75th quantile of the distances distribution:
HD75(0(Fe), Ge)=max{qrs(O(Fr), Ge), q75(Ge, O(F)) }
(1)
where, for two sets of pixels My, Ma, g75(M7, M3) denote
the 75th quantile of the distribution of the distances d(p, M2)
with p € M;. Using the 75th quantile was necessary as the
segmentation from the BASE model presents large spurious
connected components. Because of these large outlier re-
gions, both the regular Hausdorff distance and the 95% Haus-
dorff distance are too sensitive to outliers, and the removal of
small connected components is ineffective to accurately com-
pare the contours of segmented layers with the ground truth.



Method Metric IS ONL | OPL | INL | Average
DSCt | 0.79 | 090 | 0.80 | 0.91 0.85
SSL-TOPO | HD75) | 2.1 1.9 2.1 3.1 2.3
DSCT | 0.79 | 0.89 | 0.79 | 091 0.85
SSL HD75] | 2.2 1.9 2.1 32 2.4
DSCt | 0.74 | 089 | 0.74 | 0.86 0.81
TOPO HD75] | 2.6 2.1 2.4 4.4 2.9
DSCt | 0.75 | 0.89 | 0.70 | 0.83 0.79
BASE HD75] | 3.8 1.9 29 59 3.6

Table 1: Segmentation results based on Dice score (DSC) and 75%
Haussdorff distance (HD75) in um between prediction and manual
ground truth. BASE is the regular supervised approach, TOPO adds
penalization for predictions that don’t respect the structure of the
retina, and SSL uses UniMatch to perform semi-supervised learning.
SSL-TOPO combines SSL and TOPO.

Method Metric IS ONL | OPL | INL | Average
Rt 094 | 098 | 0.88 | 0.83 0.91
SSL-TOPO MAE] 1.3 1.5 0.7 2.0 14
SSL RT 094 | 098 | 0.86 | 0.82 0.90
MAE| | 1.2 1.7 0.7 1.9 14
RT 092 | 0.64 | 0.76 | 0.77 0.77
TOPO MAE| | 1.2 2.1 1.2 4.1 2.2
RT 040 | 0.84 | 0.76 | 0.77 0.69
BASE MAE| | 5.1 1.7 1.2 4.1 3.0

Table 2: Correlation (R) and mean absolute error (MAE) in um
between predictions and manual thickness values.

We use the MONALI [22] implementation for both metrics.
Using UniMatch for semi-supervision leads to a clear im-
provement (+7.6% DSC, -33% HD75) and the topological pe-
nalization also improves results (+2.5% DSC, -19% HD75).
Combining the two leads to our best result.

Article [9] reports an accuracy of 94.4% for ONL and
INL, defined as the percentage of pixels correctly segmented.
For ONL and INL, we obtain 97.6% (SSL-TOPO) and 97.2%
(BASE) accuracy, suggesting an advantage for our method.
However direct comparison is difficult, as we do not have ac-
cess to their models or data. We use accuracy here for the sake
of comparison as it is the only metric reported by [9], but it is
a problematic metric for segmentation, as it is strongly influ-
enced by the proportion of classes, especially background.

As a final validation of both our segmentation and mea-
surement method, we report Pearson R correlation and mean
absolute error (MAE) between our results and manual mea-
surements from a biologist on 61 retina sections.

The results for correlation are presented in Table 2 We
notice that including topological interactions improves results
(+12% R, -26% MAE). Using UniMatch considerably im-
proves correlation (+30.4%) with manual measurements and
reduces MAE (-53%). Combining both slightly improves this
result (+1% R). Our best method reaches 0.91 average cor-
relation with manual measurements, with 0.98 for the ONL
and 0.83 for the INL. For reference, the authors of [2] report
a correlation with manual measurements of 0.88 for the ONL
and 0.84 for the INL on fluorescence images.

Finally, similarly to [[12]], we test the influence of the A
parameter on the SSL-TOPO method in Table[3] The results
for 10~2 show that setting the value too high will degrade per-

AT Metric IS ONL | OPL | INL | Average
DSC?t 0.77 | 0.89 0.79 | 091 0.84

1075 | HD75) | 22 2.1 2.1 3.3 24
DSCT | 0.79 [ 0.90 | 0.80 | 0.91 0.85
104 | HD75) | 2.1 1.9 2.1 3.1 2.3
DSCT [ 0.79 | 0.90 | 0.79 | 0.91 0.85
10=3 | HD75) | 23 1.9 2.0 3.3 2.4

DSCt | 0.76 | 0.86 | 0.70 | 0.82 0.79
1072 | HD75) | 26 3.0 3.0 75.6 21.0

Table 3: Influence of the topological penalization weight A7 on
segmentation performance, with the SSL-TOPO method.

formance, with worse results for every layer and an especially
high Hausdorff distance for the INL caused by outliers under
the 75th quantile.

The semi-supervised approach based on UniMatch con-
siderably improves segmentation and thickness quantification
performance compared to the baseline method. The role of
UniMatch is mostly to increase the model robustness to ir-
relevant changes in input images, improving generalization.
Moreover, topological penalization encourages the model to
learn global structural interactions, resulting in a more biolog-
ically consistent segmentation. Our approach results in high
correlation and low error in mice with atrophied retinas, even
for very thin layers.

4. CONCLUSION

We present a technique for assessing the thickness of retinal
layers in H&E-stained histological images. Our approach cor-
relates well with manual measurements, even for very thin
layers. It estimates retinal atrophy within mice cohorts, with
the goal to aid in non-clinical in vivo pharmacology studies,
and drug discovery at large. Our contribution is threefold: we
introduce the first method for segmenting up to four retinal
layers in histological images, a novel approach for assessing
layer thickness that accounts for tissue discontinuities, and a
strategy that uses unlabeled images and topological priors to
mitigate the prevalent challenge of annotation scarcity. This
should enable researchers to adopt our method for studies us-
ing different stains or imaging modalities with relatively few
labels, and potentially for different types of tissue with a lay-
ered structures.

The fragility of atrophied retinas exposes them to tis-
sue tearing during the slicing and fixation process, making
thickness measurement difficult. Our method presents a step
forward in this direction by properly handling tears included
within the closed contour of a layer, as holes in the seg-
mentation. However some of the discontinuities open the
contour and cannot be considered as holes. Further research
is needed to manage these discontinuities. Our method uses
semi-supervision and topological interactions to improve seg-
mentation quality. Despite the improvement compared to the
base model, segmentation maps still present outlier regions.
To reduce outliers, additional penalization could be used such
as contour regularization, and a multi-resolution approach
could be adopted to increase available context.



5. COMPLIANCE WITH ETHICAL STANDARDS

All animal procedures were performed with approval from
the French Ministry of Research (APAFIS project authoriza-
tion 45924-2023092513468026) in compliance with guide-
lines for animal experiments in France and conducted in ac-
cordance with the ethical principles.

6. ACKNOWLEDGMENTS

This work was supported by the DIM ELICIT ile-de-France
(21006574), Medetia Pharmaceuticals and the Labex IBEID
(ANR-10-LABX-62-IBEID). We thank France De Malglaive
(Medetia), Iris Barny (Medetia), and Jean-Michel Rozet (Int.
Imagine; INSERM) for sharing the images and expertise.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

7. REFERENCES

Ching-Hwa Sung and Jen-Zen Chuang, “The cell biology of
vision,” Journal of Cell Biology, vol. 190, no. 6, pp. 953-963,
Sept. 2010.

Daniel E. Maidana, Shoji Notomi, Takashi Ueta, et al., “Thick-
nessTool: Automated ImagelJ retinal layer thickness and profile
in digital images,” Scientific Reports, vol. 10, no. 1, pp. 18459,
Oct. 2020.

J Byun, MR Verardo, N Vu, et al., “Quantifying structural dis-
tortions in retinal tissue before and after injury,” in Workshop
on Multiscale Biological Imaging, Data Mining and Informat-
ics. Citeseer, 2006.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox, “U-Net:
Convolutional Networks for Biomedical Image Segmentation,”
in Medical Image Computing and Computer-Assisted Inter-
vention — MICCAI 2015, Nassir Navab, Joachim Hornegger,
William M. Wells, and Alejandro F. Frangi, Eds., Cham, 2015,
Lecture Notes in Computer Science, pp. 234-241, Springer In-
ternational Publishing.

Ignacio A. Viedma, David Alonso-Caneiro, Scott A. Read, and
Michael J. Collins, “Deep learning in retinal optical coherence
tomography (OCT): A comprehensive survey,” Neurocomput-
ing, vol. 507, pp. 247-264, Oct. 2022.

Xiaoming Liu, Jun Cao, Tianyu Fu, et al., “Semi-Supervised
Automatic Segmentation of Layer and Fluid Region in Reti-
nal Optical Coherence Tomography Images Using Adversarial
Learning,” IEEE Access, vol. 7, pp. 30463061, 2019.

Bo Wang, Wei Wei, Shuang Qiu, et al., “Boundary Aware
U-Net for Retinal Layers Segmentation in Optical Coherence
Tomography Images,” IEEE Journal of Biomedical and Health
Informatics, vol. 25, no. 8, pp. 3029-3040, Aug. 2021.

Timo Kepp, Jan Ehrhardt, Mattias P Heinrich, et al.,
“Topology-preserving shape-based regression of retinal lay-
ers in oct image data using convolutional neural networks,”
in 2019 IEEE 16th International Symposium on Biomedical
Imaging (ISBI 2019). IEEE, 2019, pp. 1437-1440.

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

[21]

[22]

Maria Cristina De Vera Mudry, Jim Martin, Vanessa Schu-
macher, and Raghavan Venugopal, “Deep Learning in Toxico-
logic Pathology: A New Approach to Evaluate Rodent Retinal
Atrophy,” Toxicologic Pathology, vol. 49, no. 4, pp. 851-861,
June 2021.

Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi,
“V-net: Fully convolutional neural networks for volumetric
medical image segmentation,” in 2016 fourth international
conference on 3D vision (3DV). leee, 2016, pp. 565-571.

Lihe Yang, Lei Qi, Litong Feng, et al., “Revisiting Weak-to-
Strong Consistency in Semi-Supervised Semantic Segmenta-
tion,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2023, pp. 7236-7246.

Saumya Gupta, Xiaoling Hu, James Kaan, et al., “Learning
Topological Interactions for Multi-Class Medical Image Seg-
mentation,” in European Conference on Computer Vision.
Springer, 2022, pp. 701-718.

Fabrice de Chaumont, Stéphane Dallongeville, Nicolas
Chenouard, et al., “Icy: An open bioimage informatics plat-
form for extended reproducible research,” Nature Methods,
vol. 9, no. 7, pp. 690-696, July 2012.

Daniel Felipe Gonzdlez Obando, Jean-Christophe Olivo-
Marin, Laurent Wendling, and Vannary Meas-Yedid, “Vector-
based morphological operations on polygons using straight
skeletons for digital pathology,” in Discrete Geometry for
Computer Imagery: 21st IAPR International Conference,
DGCI 2019, Marne-la-Vallée, France, March 26-28, 2019,
Proceedings 21. Springer, 2019, pp. 249-261.

Johnathan Pocock, Simon Graham, Quoc Dang Vu, et al.,
“TIAToolbox as an end-to-end library for advanced tissue im-
age analytics,” Communications Medicine, vol. 2, no. 1, pp.
120, sep 2022.

D. Mandache, E. Benoit a La Guillaume, Y. Badachi, et al.,
“The lifecycle of a neural network in the wild: A multiple
instance learning study on cancer detection from breast biop-
sies imaged with novel technique,” in 2022 IEEE International
Conference on Image Processing (ICIP), 2022, pp. 3601-3605.

Raphaél Marée, Loic Rollus, Benjamin Stévens, et al., “Col-
laborative analysis of multi-gigapixel imaging data using cy-
tomine,” Bioinformatics, vol. 32, no. 9, pp. 1395-1401, 2016.

Sean Gillies et al., “Rasterio: geospatial raster i/o for Python
programmers,” 2013—, https://github.com/rasterio/rasterio.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, et al., “Cutmix:
Regularization strategy to train strong classifiers with localiz-
able features,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2019, pp. 6023-6032.

G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of
Software Tools, 2000.

Sean Gillies, Casper van der Wel, Joris Van den Bossche, et al.,
“Shapely,” Oct. 2023, https://github.com/shapely/shapely.

M Jorge Cardoso, Wengqi Li, Richard Brown, et al., “Monai:
An open-source framework for deep learning in healthcare,”
arXiv preprint arXiv:2211.02701, 2022.



	 Introduction
	 Method
	 Segmentation
	 Thickness measurement
	 Data and implementation details

	 Results and discussion
	 Conclusion
	 Compliance with ethical standards
	 Acknowledgments
	 References

