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Abstract. The generation of complete 3D models of real-world objects
is a well-known problem. The accuracy of a reconstruction can be defined
as the fidelity to the original model, but in the context of the 3D recon-
struction, the ground truth model is usually unavailable. In this paper,
we propose to evaluate the quality of the model through local intrinsic
metrics, that reflect the quality of the current reconstruction based on
geometric measures of the reconstructed model. We then show how those
metrics can be embedded in a Next Best View (NBV) framework as ad-
ditional criteria for selecting optimal views that improve the quality of
the reconstruction. Tests performed on simulated data and synthetic im-
ages show that using quality metrics helps the NBV algorithm to focus
the view selection on the poor-quality parts of the reconstructed model,
thus improving the overall quality.

Keywords: Iterative 3D Reconstruction · View Selection · Accuracy.

1 Introduction

The 3D reconstruction of real-world objects has become a key tool in revolu-
tionising industries by converting the real world into digital shapes. 3D recon-
struction can be performed using algorithms based on images [9,26,30] or depth
sensors like LiDAR (Light Detection and Ranging) [12,25,29]. Although 3D re-
construction is reliable and efficient, it is not immune to imperfections: it may
generate incomplete models, or models with noise, non-uniform, or inaccurate
geometry [27], as illustrated in Fig. 1. Usually, they are caused by insufficient
data collected by the sensor, whether because some parts of the scene are missed
during the acquisition (e.g . because of occlusions), or because the complex shape
and properties of the object prevent a complete reconstruction.

To palliate these issues, an iterative process integrating data acquisition
and reconstruction can be used to strategically determine the Next-Best-View
(NBV) [5] to enhance the 3D reconstruction of an object. NBV finds relevance
in a multitude of applications spanning robotics, autonomous navigation, and
exploration [28], virtual reality [21], and industrial inspection [8]. In this itera-
tive paradigm, the next view is determined by maximising the contribution of an
additional view to the quality of the reconstructed model. The contribution of a
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Fig. 1: Example of the assessment of a 3D reconstruction quality: the red circles
highlight the poorly reconstructed parts (left model) of the original model (right
model). The heat map (middle model) shows the response of the extrinsic metric
MSDM2 [13], with the poorly reconstructed parts having a higher score (hot
colors).

view to the reconstruction quality can be defined according to different metrics.
Some methods focus on the completeness of the model, thus base their metrics
on the visibility of the 3D model [5]: Massios et al. [17] control the geometry of
the model via the computation of the patch normals, Li et al. [16] minimize the
Mass Vector Chain and Maver et al. [18] explicitly detect possible occlusions in
the partial model. Other methods compute the uncertainty of the reconstructed
model and select the next view by minimizing the entropy [32] or covariance ma-
trix of the observations [7,10]. In the optimisation step, multiple metrics may be
considered simultaneously. Mendez et al . [19] combine uncertainty and coverage
to improve the current reconstruction and the baseline vergence angle to explore
new parts of the scene. The APORA algorithm [6] considers the uncertainty, the
visibility, and the proximity to frontier voxels. At the same time, in [2] a utility
function maximizes the information gain (i.e. the entropy of voxels in a given
viewpoint), and the density of the final model while penalizing viewpoints that
are too far away.

The accuracy of the final 3D model is usually evaluated w.r.t. a reference
model (i.e. the ground truth) with different metrics that rely on the geomet-
ric distance (e.g . Hausdorff [11], chamfer [3], accuracy and completeness [27])
between the points of the reconstructed model and the ground truth model, or
perceptual measures [14,13,31]. However, in general, the reference model is not
available, thus making the task of assessing the accuracy a more challenging
task.

In this paper, we propose to use local intrinsic quality metrics to assess the
quality of a 3D model without a reference model. We show that these quality
metrics can provide helpful insight to detect the regions of the model that are
poorly reconstructed and thus require more acquisitions. We then show how the
proposed metrics can be plugged into an existing NBV framework to guide the



A Quality-Based Criteria for Efficient View Selection 3

acquisition process to select the views that improve and ensure the quality of
the final reconstructed model.

After presenting the NBV problem in Section 2, we present a full NBV
pipeline that we adapted to account for quality functions in Section 3. We re-
view the existing metrics for the assessment of the quality of 3D models that we
propose to use for the determination of the NBV as well as validation metrics in
Section 4. We conduct experiments on simulated data (Section 5) and synthetic
images (Section 6) data to show the advantage of using intrinsic metrics in an
NBV Selection context.

2 Next-Best-View Selection

In some applications, the image acquisitions involved in reconstructing a 3D
model are conducted in a series of successive steps. This means that a first set
of acquisitions is made, then, the 3D model is estimated and it is decided to
acquire new images to improve the 3D model. Other applications involve sensor-
equipped platforms with constrained mobility [15]. As a consequence, the choice
of subsequent viewpoints is crucial in efficiently improving the reconstruction
by minimizing occlusions, enhancing feature visibility, and mitigating the uncer-
tainty of the reconstruction.

As explained in the introduction, the NBV selection consists of the opti-
mal choice of the novel viewpoint in a sequence of viewpoints from which an
object or scene should be observed to optimize quality improvement of the 3D
reconstruction.

Fig. 2: NBV pipeline used in this paper.

Figure 2 presents a common NBV pipeline for an iterative reconstruction
process. At each step, new data is acquired to generate the current reconstructed
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model. If the model achieves a sufficient level of reconstruction, the algorithm
terminates; otherwise, the metrics are then used to evaluate the contributions of
novel views. Once an optimal view is selected, the corresponding data is acquired
and provided to the reconstruction algorithm to generate a novel reconstruction.
The NBV problem is an optimisation problem involving the greedy selection
of the next viewpoint for a given metric. The core concept of this algorithm
concerns the choice of the metric for selecting the best view, as discussed in the
next section.

3 Selected NBV Algorithm

3.1 A Global Max-Flow Based Method

Pan et al . [23] proposed a new approach based on the APORA [6] algorithm.
Starting from the observation that a local iterative selection may lead to poor
performance in view evaluation and that the fixed resolution of the 3D volumet-
ric occupancy map may cause sampling problems for small objects, a max-flow-
based approach is proposed that tackles the problem of small object reconstruc-
tion by adding a multi-resolution dimension.

Even though this method was designed for reconstruction using a LiDAR
sensor, it can be suitable for any kind of 3D reconstruction algorithm, as the max-
flow term ensures a certain overlap between the acquisitions. Like in APORA [6]
algorithm, Pan et al . [23] choose the NBV from a selected set of views around
the object. Then, for each view, they compute two terms: Ilocal and Iflow, which
will further be combined to compute the information gain.

The local view quality function is defined as :

Ilocal(v) =
∑

∀r∈Rv

∑
∀x∈Xr

H(x)× P (visx)× P (objx) (1)

With Rv, the set of rays from the view v, Xr the set of voxels x alongside the
ray r and H(x) the Shannon entropy function, applied to the uncertainty of the
voxel x. P (visx) represents the visibility of a voxel from a given view: if it is seen
through a lot of voxels, the probability of being visible will decrease. P (objx)
represents the probability of a voxel being hit by a ray coming from v to be
part of the object’s surface. This probability relies on the fact that most of the
objects are closed or nearly closed, this models the continuity of the surface of
the underlying model.

To achieve global optimality, they decide to introduce a novel representation,
and they model the NBV problem with a tripartite graph containing the view,
the rays, and the voxels, with the term of the sum in (Eq. (1)) on the edges
between rays and voxels. This representation is used to find a subset of views
that covers all the voxels of the model and that maximizes the information gain.
It is solved as a graph optimisation problem, using network flow modeling.

From this solution, they define the flow-network information gain Iflow for
each view, based on their history of appearance in the solution of the max flow
problem.
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This measure will then be mixed up with the local information gain Ilocal,
using a weighted sum:

Iglobal(v) = (1− γ)× Ilocal(v)∑
v Ilocal(v)

+ γ × Iflow(v)∑
v Iflow(v)

(2)

Finally, the NBV at a given iteration is defined as the view that maximizes
the Iglobal function :

v∗ = argmax
v∈V

Iglobal(v) (3)

3.2 Problem adaptation for accuracy improvement

These criteria mostly focus on the improvement of the completeness of the model.
As for the accuracy of the final model, this is usually solved by reducing the
entropy or uncertainty of the points, which is mostly based on the number of
times a point has been seen by a camera, and it is not correlated to the geometric
quality of the reconstructed model. During the process of acquiring data to create
a 3D model, different parts of the object usually require varying levels of detail
or complexity, which in turn, requires more data to accurately capture their
geometry. To overcome this challenge, we propose to integrate new metrics into
the NBV process that consider the geometric quality of the reconstructed parts
of the model. This approach ensures that the acquisition process is guided by
two opposing objectives: completing the model and ensuring sufficient accuracy.
To test our approach, we used the NBV pipeline proposed by Pan et al . [23] and
their available code. Moreover, we wanted to show that the proposed metrics
may be integrated into an existing View Selection pipeline.

We replaced their local information metric Ilocal with a quality function con-
taining, for each voxel of the model, the value of the quality ranging between 0
(low quality) and 1 (high quality), multiplied by the visibility criterion previously
used in the proposed pipeline:

Ilocal(v) =
∑

∀r∈Rv

∑
∀x∈Xr

P (visx)× (1− quality) (4)

With that novel local information function, the selected views will tend to have
a greater score if they are looking to poor quality voxels.

The next section presents the metrics that can be used to take the accuracy
into account and how they can be easily integrated.

4 Estimation of 3D Model quality

4.1 From Existing 3D Quality Metrics...

To assess the local quality of a 3D mesh, we perform a comparison to a reference
mesh. We will refer to those metrics as extrinsic metrics because they rely on an
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external reference model. As shown in our previous work [1], the most common
extrinsic metrics [14,13,31,11] are based on the computation of the Euclidean
distance between two meshes to assess their differences.

Other more complex metrics use the intrinsic parameters of both the reference
mesh and the reconstructed one. DAME [31] uses the difference in dihedral angle
to assess the quality of a reconstructed mesh. MSDM [14] uses several parameters
such as contrast, structure, and curvature, computed on both meshes. It can
produce local quality maps that are then used to generate a global quality score
on the model. A second version of that metric, called MSDM2 [13], takes into
account the multi-scale dimension of the problem. These two last metrics have
been proven to be correlated with subjective scores.

These metrics are interesting because they provide a quantitative and qual-
itative map of local quality by highlighting the differences between the original
and reconstructed meshes. The provided different local maps can be used as
a ground truth map to estimate the quality of a reconstructed mesh and as
validation metrics in our context of experiments on 3D reconstruction.

However, as the reference model is rarely available, the use of that kind of
metric is not suitable to assess the quality of the reconstruction. A metric that
depends only on the intrinsic geometric properties of the 3D model is therefore
more appropriate. This type of metric is called intrinsic and will be introduced
in the next section.

4.2 ...to a Quality Metric for NBV

In our previous work [1], we proposed different intrinsic metrics (i.e. metrics
that rely only on the geometry and the intrinsic parameters of the underlying
3D model). These metrics detect the different defects and issues of a 3D model, as
well as respond to sharp and salient features of the 3D object. They are suitable
in the context of 3D reconstruction as they do not need a reference mesh to be
computed and can be iteratively computed on the go.

Different geometric properties of a 3D model can be computed such as cur-
vature, dihedral angles, saliency, or local roughness. They are usually used and
combined to give a global quality score for the mesh. In our context, we use them
to express a quality factor for each point of the 3D model. In our precedent work,
we presented three intrinsic metrics suitable for the problem of quality assess-
ment. The Plane Local Roughness (PLR) as proposed by Rodríguez-Cuenca et
al . [24], estimates the roughness of the 3D model by evaluating the reprojection
error on the least square fitting plane of the neighboring patch for every vertex.
This metric examines whether the existing vertex neighborhood can be char-
acterized as planar. This gives us information on the underlying surface of the
reconstructed model. For instance, when reconstructing a 3D object, if a sur-
face is mostly planar, the need to have a high density of points is reduced. The
Quadric Local Roughness [1] metric is similar to PLR, as it estimates the rough-
ness of the model by computing the reprojection error on the least square-fitting
quadric of the neighboring patch. Those two first metrics allow us to evaluate
locally the regularity of the surface that should respect a plane or a quadric. The



A Quality-Based Criteria for Efficient View Selection 7

Mean Curvature introduced by Meynet et al . [20], assesses the mean curvature of
a vertex by computing the derivative of the estimated least square fitting quadric
of its neighborhood. As this metric is unbounded, it can not be used directly as a
quality metric. However, it can give us information on high curvature areas that
are either sharp features or defects of the object. These two kinds of surfaces are
of interest for improving the reconstruction as they can correspond to parts of
the model poorly reconstructed.

All these metrics are integrated in the NBV pipeline but we show in the
first synthetic quality experiment that the metric needs to be monotonic as it
will allow the camera to change positions. If a metric is not monotonic between
every iteration and does not change, the NBV proposed by the algorithm will
stay relatively close to the previous one as it was the best one according to the
quality criterion. In that case, we need a quality function that is locally strictly
monotonic. A way to achieve that is to multiply the quality factor by a new
term that is correlated with the occupancy of each voxel in the Pan et al . [23]
pipeline:

Ilocal(v) =
∑

∀r∈Rv

∑
∀x∈Xr

P (visx)× (1− quality)×H(x), (5)

where the Shannon entropy function is

H(x) = − occ(x) ln(occ(x))− (1− occ(x)) ln(1− occ(x)), (6)

and occ(x) is the occupancy of the voxel x. The occupancy of the occupied voxels
is a function that tends to one as the number of iterations increases.

5 Experiments on Simulated Data

5.1 Experimental Setup

To add a quality criterion to the pipeline described in Fig. 2, we need to modify
the metrics used for the view selection algorithm. We introduce two new stages
in the metrics estimation scheme (cf . Fig. 3): the first one computes the intrinsic
quality of the model used to determine the NBV. The second one computes the
extrinsic quality of the model to validate the choice of the view and to verify
the increase of the reconstructed model quality at each iteration. To that end,
it needs a reference model for the comparison and the computation of extrinsic
quality metrics.

First, we need to assess whether the addition of a local quality metric to the
NBV pipeline has an impact and guides the views to explore the poor quality
areas of the model. To that end, we performed synthetic experiments on a chosen
3D model, with an arbitrary given quality score for each vertex.

To perform this experiment, we adapted the NBV pipeline provided by Pan
et al . [23] as described in the Section 3. The pipeline also comes with a LiDAR
emulator, that can acquire the 3D points seen by a camera from a ground truth
model. For our first synthetic experiments, we used this emulator.
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Fig. 3: A detailed view of the metric block of the global NBV pipeline. Note that
the original 3D model is only used to render the images according to the selected
viewpoints.

We created a small dataset composed of a single 3D geometric object (cf . the
armadillo in Fig. 4). To simulate the quality, we defined an arbitrary metric: for
each vertex of the model, we associate a quality value that is either 0.5 for vertices
considered with “poor quality” and 1.0 for those of “good quality”. We defined 20
different, randomly generated quality versions for that same 3D object. In each
version, the positions of the quality patches are randomly chosen as well as their
sizes, as can be seen in Fig. 4.

At each iteration, when performing a new acquisition, the quality term of
the voxel is updated as follows:

qlt(vi) =

{
qlt(vi)

0.9 if vi ∈ Vseen

0.5 elsewhere. (7)

With vi the voxel to update, qlt(vi) representing its quality in the working oc-
tomap, and Vseen the set of voxels that has already been seen during previous
iterations. The quality of a voxel is defined to be updated only once during an
iteration and not every time an acquired point falls into a voxel because it will
help us in the validation process to compute the number of voxels of poor qual-
ity that have been modified at each iteration. We use the function pow(x, 0.9)
to ensure that the algorithm will not propose the same view at each iteration
as the quality metric is not evolving on the ground truth model. We employ
this function due to its asymptotic behavior approaching one as the number of
iterations tends towards infinity. This update function allows us to see if the
algorithm, is well suited for a quality metric that will improve itself and whether
it can explore the poorly reconstructed parts of the model.

To validate the data we computed the completeness of the model at each
iteration in two different ways. The first one corresponds to the number of voxels
marked as Seen in the partially reconstructed model. The second one uses the
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Fig. 4: Some examples of poor quality patches on the armadillo model (in red).
The patches are placed on the model by randomly selecting a vertex and its
N -ring neighbours, where N is a parameter that defines the size of the patch.

completeness defined by Seitz et al . [27] and is computed by comparing the
partial point cloud and the original model. Then we introduced another metric
that corresponds to the number of times the quality of voxels has been updated
using the Eq. (7). This metric will show us if the NBV is focusing more on poor
quality areas compared to standard methods.

5.2 Results and Analysis

For this study, we compare the default reconstruction method proposed by Pan et
al . [23], the APORA method proposed by Daudelin et al . [6], and our metric
described in Section 3. We performed 20 iterations of the NBV algorithm.

As our method does not have any term that encourages the exploration of
unknown areas of the object we needed to have an already complete 3D model.
So if the first selected views do not see any “poor quality” voxels, our metric
will show no results. To that end, for our method, the first 10 iterations will
be computed using the APORA method. We chose the number of 10 iterations
as the model will have sufficient completeness. We use APORA instead of the
Pan et al . method, as it is deterministic so that different runs can be compared.
Moreover, for every patch size and patch position, we will work on the same
initial reconstructed model.

Figure 5 presents the average results on 5 different patch positions, for a
given patch size. We used 10 iterations for the reconstruction of a complete
model as the completeness metric and the number of Occupied voxels viewed at
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(a) Number of Occupied voxels viewed. (b) Middleburry Completeness

(c) Number of voxels of bad quality that
changed of state at each iteration

(d) Cumulative number of voxels of bad
quality that changed of state

Fig. 5: Average values on different patch positions for a given patch size (here
10-ring neighborhood).
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that stage seems constant. The maximum number of voxels viewed is achieved
around the tenth iteration and changes very little afterward. Note that the blue
and green curves (resp. APORA and Ours) are merged on the 10 first iterations
as the APORA algorithm is used to perform the complete reconstruction on
the first ten iterations of our method. Finally, the fourth graph, presenting the
cumulative number of voxels whose quality changed during the reconstruction,
shows a huge improvement in the number of “poor quality” voxels seen at each
iteration. On average, for this size of the patch, the Pan et al . and the APORA
method view only 115 poor-quality voxels while our method can view more than
140 voxels.

The same kind of results are achieved for even smaller patch sizes, see Fig. 6.
We can denote that for the last ten iterations, the slope of the curve is almost
equivalent to the number of voxels that are considered to have a “poor quality”.
This demonstrates that the algorithm selects views that show a patch of poor
quality.

(a) 4-ring neighborhood (b) 6-ring neighborhood (c) 8-ring neighborhood

Fig. 6: Average cumulative number of voxels of "bad quality" that changed of
state, on different neighborhood sizes.

Another advantage of our method is that it tends to view more times the same
poor-quality patches. By using our function described in Eq. (7), and limiting
the quality update of voxels to only one time per iteration, we can draw the map
of the quality distribution of the octomap depicted in Fig. 7: at each iteration,
it shows a stacked bar histogram of the distribution of the quality values in the
octomap.

On average, our method allows us to have a wider range of quality states,
as it is more likely to propose views that acquire the pre-defined poor-quality
patches. We also defined a global quality function score:

γ =
∑

vi∈V i
qlt

qlt(vi), (8)

where V i
qlt represents the set of voxels known to have a “poor quality” at the

iteration i. This function, plotted in black in Fig. 6, shows how our method,
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(a) Pan et al . method (b) APORA method (c) Our method

Fig. 7: Average map representing the distribution of the quality values in the
octomap: at each iteration (x-axis) the stacked bar histogram shows the evolution
of the quality values. The colors range from red (poor quality) to purple (better
quality).

designed to encourage the views containing poor quality voxels, contributes to
the enhanced overall model quality compared to the other two methods.

The comparison of those 3 methods shows that there is a real interest in
adding a quality criterion to an NBV pipeline to propose a novel view that will
be focused on the poor-quality regions of the objects. The challenge is to apply
this transformation to a real object using a real-life 3D reconstruction algorithm,
with bigger uncertainty on the reconstruction and with the use of real quality
metrics like the ones described in Section 4.2.

6 Experiments on Synthetic Images

6.1 Experimental Setup

We tested the proposed quality metrics in the context of a 3D reconstruction
based on images. We relied on Meshroom [9], a 3D reconstruction framework for
unordered sets of images. We considered textured 3D models and used Blender [4]
to generate synthetic images from a given set of viewpoints. The NBV pipeline
proposed by Pan et al . [23] was used as a reference and baseline for our com-
parisons. Since our goal is to show where the model quality can be improved,
we used the reconstructed model obtained by Pan et al . after 20 iterations (that
is, using 20 images) as a starting point. We call this reconstruction the base
model ; note so that the base model was mostly complete. Then, for each subse-
quent iteration, we ran the APORA algorithm [6] and its modified version that
includes a term to take quality into account in the minimization process. The
reconstruction (with Meshroom) provides the poses of the selected views. Pan et
al . [23] focus on LiDAR for acquiring 3D but in photogrammetry more views are
necessary since overlap is needed for the reconstruction. Thus, at each step, we
consider the 4 best candidate views to render the relevant images and we add
them to the set of input images for the reconstruction.
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For this study, we changed the metric used in the NBV selection step. We
used two different quality metrics presented earlier, the Quadric Local Roughness
and the Plane Local Roughness. We used the mean version of them and they
will be computed using their 50-nearest neighbors. Those metrics have a strong
response on the areas of the objects that are considered as a default, but they
also can have a high response regarding the geometry of the object as they are
also sensitive to sharp and salient structures. While the response of the metrics
in areas of poor quality vanishes if they are corrected, that is not the case for the
areas with interesting geometry. To tackle this problem we propose to add the
Shannon entropy term to the Local Information for the NBV Selection in Eq. (5).
This term helps reduce the importance of the voxels marked as “poor quality”
because they are just responding to the geometry of the model. The Shannon
entropy H(x) defined in Eq. (5) goes to 0 if the point has been seen many times
(by many different views). Thus it will help to differentiate the metrics response
corresponding to the sharp and salient features from the response corresponding
to its defaults.

Finally, extrinsic metrics that we described in Section 4.1 are used for val-
idation, to evaluate the quality of the reconstruction relative to ground truth.
During our whole process, we will be able to follow the evolution of the quality
metrics we use for the reconstruction, as well as other global and/or local extrin-
sic quality metrics such as Seitz et al . completeness and accuracy [27], Hausdorff
distance [11], MSDM [14] and MSDM2 [13]. An example of local maps is given in
Figure 8. The Seitz et al . [27] metrics are defined using a certain threshold. For
our study, we used an accuracy ratio of 99% and a completeness distance corre-
sponding to 1% of the diagonal of the object. Those thresholds are restrictive,
but allow us to better identify improvement in accuracy.

6.2 Results and Analysis

For our experiments, we have used a 3D model representing an Elephant from the
Texture Quality Assessment Dataset [22]. This model has complex shapes but
also has a good texture which is essential for the photogrammetry reconstruction
pipeline.

From the base model, generated by 20 iterations of Pan et al . [23], we com-
puted at each iteration the quality of the mesh, using either the PLR or QLR.
For each iteration, the quality of the mesh is mapped to the octomap using a
min function:

qltv(v) = min(qltp(x), ∀ x ∈ v ⊂ X), (9)

with qltv(v) designing the quality of the voxel v in the octomap, qltp(x) the
quality of the point x in the reconstructed mesh, and X is the set of points
of the reconstructed mesh. This function takes into account the fact that each
voxel of the octomap can contain multiple points of the mesh. Since the points
falling into one voxel might come from different parts of the mesh, the min
function is to be preferred to e.g . mean and median to propagate the poor
quality region in the octomap. An example of the octomap is shown in Fig. 9,
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(a) Original model (b) Reconstructed model (c) Geometry

(d) Hausdorff distance (e) MSDM2 local map

(f) Mean PLR (g) Mean QLR

Fig. 8: Example of local maps for extrinsic and intrinsic metrics for the recon-
structed model.
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with the poor-quality voxel highlighted in red. Figure 9b shows the PLR metric
has high responses on the back, on the trunk, and the back feet of the elephant.
The views selected by the algorithm (cf . Figure 9.c-f) maximise the number of
poor-quality voxels viewed, as they can be seen in the different selected views
(trunk, feet, and back).

The choice of the views selected by the modified algorithm taking into account
the quality shows an improvement of the accuracy of the model. For validation,
Figure 10 presents the results of extrinsic metrics on the Elephant model, for
the three considered methods, a basic method using the APORA algorithm, our
method using the Plane Local Roughness and using the Quadric Local Roughness.

The methods embedding the quality term achieve a similar reconstruction
completeness after 15 iterations, where 87% of points are at a distance less than
1% of the object diagonal. It is also worth noting that the methods with quality
reach better completeness for the first 5 iterations, thus showing that the quality
metrics also help for the completeness of the model.

For the accuracy of the reconstructed model (second graph from the left of
Figure 10), the values have a similar evolution as the APORA method and are
slightly lower (better accuracy). This is corroborated by the Hausdorff distance
metric (middle graph of Figure 10), where the methods with the quality term
converge more quickly to a threshold value. This value is mainly due to the poor
reconstruction of the little elephant on the back of the big one, where the space
between his legs is not well reconstructed.

Finally, the Mesh Structural Distortion Measures (last two graphs of Fig-
ure 10) confirm that the methods with the quality term have in general better
results.

This shows that integrating the proposed quality metrics in an NBV pipeline
provides a better selection of views. In the case of photogrammetry, both the
accuracy and the completeness of the reconstructed model are improved.

The proposed quality metrics have, in general, a lower response on zones with
high-density reconstructed points as they are computed on a 50-nearest-neighbor
of each point. Hence they guide the view selection to focus on low-density areas
of the object, which often correspond to poorly reconstructed zones of the object.

7 Conclusion

In this paper, we proposed the use and addition of local intrinsic metrics in
the NBV Selection pipelines. In the first simulated experiment, we showed that
using those metrics tends to encourage the views around the poor-quality regions
of a 3D object. Then, we decided to test this method on real data, with an
external photogrammetry reconstruction algorithm, using generated views from
a reference 3D model. When using the local intrinsic metrics PLR and QLR, we
show that it helps improve the accuracy of the model alongside its completeness
and MSDM measures.

The metrics we proposed can detect the defaults of the 3D model, as well
as the sharp and salient features of the object; The response of those metrics
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(a) Octomap Quality
(b) Mean PLR on the reconstructed mesh

(c) First view selected (d) Second view selected

(e) Third view selected (f) Fourth view selected

Fig. 9: Local map of the mean PLR metric and its corresponding octomap rep-
resentation, followed by the associated selected views.

Fig. 10: The extrinsic metric response on 15 iterations for the 3 methods tested.
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is defined according to a certain neighborhood, we can imagine developing a
multiscale version of those metrics (like in MSDM2 [13]) to take into account
the different sizes of features of the objects.

In the future, we would like to combine different metrics to be able to differ-
entiate between salient features of the objects and actual defaults. This paper
opens the way to the definition of new intrinsic quality metrics for NBV Selection
algorithm, as it shows the interest of those metrics in a reconstruction process.
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