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The covariant and non-covariant field equations involving cosmological constant and

electromagnetic fields in Teleparallel Equivalent of General Relativity (TEGR) have
been derived. The solution of the field equation in the presence of magnetic charge has

been obtained. The covariant formulation of teleparallel gravity for the magnetic and
electric black hole have been obtained. The singularities of the solution in covariant

formulation have been analyzed using some scalars obtained from the torsion and the
curvature tensor associated to the solution. The gravitoelectromagnetic fields of both
magnetic and electric black hole have been calculated and discussed.
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1. Introduction

Some alternative formulations for the theory of gravity as well as modifications to

the general theory of relativity have been proposed [1–6]. The motivations to pro-

pose alternative formulations of gravity and to modify general relativity include the

attempts to explain various discourses and observations in gravity, such as quan-

tum gravity, cosmological dark energy, and cosmological dark matter, which cannot

be explained by using general relativity. One alternative theory of gravity which

is paradigmatically different from Einstein’s general relativity is the teleparallel

theory of gravity. In the theory, the gravity is not regarded as the manifestation of

spacetime geometry, but it is regarded as a field of force. In this theory, tetrad fields

instead of metric tensors play the role of fundamental fields with the assumption

of absolute parallelism [7–11]. The theory involves the Weitzenböck connection. In

the so-called pure tetrad approach, the curvature of the connection is zero, but not

its torsion. The torsion of the connection describes the gravitational field strength

as a substitute for curvature in the general theory of relativity [12]. Teleparal-

lel gravity provides a new framework or perspective for observing and interpreting

gravitational phenomena that are different from the way of observing and interpret-

ing gravitational phenomena according to general relativity. Teleparallel gravity is

phenomenologically and conceptually consistent [13].

For a specific choice of parameters, teleparallel gravity is equivalent to Ein-

stein’s general relativity [6]. This version of teleparallel gravity is referred to as the

Teleparallel Equivalent of General Relativity (TEGR) [14]. However, despite being

equivalent, the two approaches are conceptually very different [6]. In general rel-

ativity, the Levi-Civita connection includes both gravitational and inertial effects.

From the point of view of TEGR, gravitational field is regarded as translational

gauge field and the effects of inertia are represented by the spin connections which

depends on the frame of reference. If we restrict our observation to the inertial

frames, then the spin connection must vanish [6]. The implication of ignoring the

spin connection is that the formulation is not covariant under local Lorentz trans-

formations. If the spin connection is assumed to be zero, then the tetrad appears

as the only field variable. Such approach is called pure tetrad teleparallel gravity

or non-covariant teleparallel gravity [6].

Using a suitable choice of spin connestions, we obtaind a fully covariant theory

of teleparallel gravity which is covariant under coordinate and local Lorentz trans-

formations [6]. Such formulation for instance is proposed by Krššák and is called the

covariant teleparallel gravity. The advantage of the covariant formulation is that

study of gravity is not restricted to a particular frame of reference. In the proce-

dure proposed by Krššák, this purely inertial spin connection is obtained from a

so-called reference tetrad in which the gravity is ”switched off”, for instance by set-

ting the universal constant G of gravitation equal to zero. However, there are some

criticisms against the method and shortcomings in some cases. For example, in the

case of the closed Friedmann–Lemâıtre–Robertson–Walker (FRLW) cosmology, the
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curvature components are not equal to the curvature components yielded in inertial

spin connection [15]. Another example is that for the same metric tensor, different

tetrads (especially non-diagonal tetrads) produce the same reference tetrad so that

the spurious inertial effect is lost not only in one proper frame [16]. However, the

method proposed by Krššák for other cases is still acceptable.

While, the general theory of relativity can explain various natural phenomena,

in particular around astrophysical objects which are classified as compact objects

in astrophysics, TEGR should also be able to explain such natural phenomena.

Studies on compact objects especially neutron stars and black holes in the contexts

of TEGR have been widely carried out [17–26]. Such studies for instance are to ob-

tain solutions and energy condition as well as to understand the physical properties

and singularities. Among the works mentioned above the solutions of the magnetic

and electric black hole have gained great attentions, for instance in [24] and [27].

However, the approach taken in the works [24] and [27] are still in non-covariant

formulation of TEGR. Thus, the applications of the results obtained there are re-

stricted only to inertial frames of reference. In order to ensure that the application

of the results obtained are not limited to the inertial frame of reference, it is nec-

essary to study the problems in the covariance approach. Therefore, the aims of

our work here is to study the possibility of formulating the problems proposed and

solved in [24] and [27] in the covariant fashion of TEGR. We will investigate phys-

ical systems (magnetic and electric black holes) studied for instance in [24] and

[27], but in the covariant formulation. We derive the covariant field equations for

such systems, find their solutions, and analyze the singularities of the magnetic and

electric black holes.

A Black hole is described by their mass, angular momentum and charge (electric

and/or magnetic) [28], which is khown as the no-hair theorem [29]. Due to the small

charge of a black hole, most researchers ignore the charge and emphasise the mass

and angular momentum of black hole [30, 31]. However, the small charge of a black

hole can significantly affect the motion of charged particles, especially cosmic rays

around the black hole [30]. In addition, it is important not to overlook the charge

of a black hole, as they can absorb surrounding matter, including charged matter

[32]. Charged black holes also provide an opportunity for new physics findings with

gravitational waves [31]. They are also considered as the regular black hole models

[33, 34] use to explain the concept of singularity [35]. In the context of Einstein-

Maxwell equations charged black holes play some important role [24], since they

provide easy example.

The similarity between the Coloumb force in electromagnetism and the grav-

itational force gave rise to the idea of gravitoelectromagnetism. In the context

of the general theory of relativity, Einstein and several physicists have discussed

the derivation of gravitoelectromagnetism through a review of perturbations in

Minkowski spacetime [36]. Gravitoelectromagnetism is also formulated in the con-

text of TEGR [37, 38] as a gauge theory based on the strong component of the gauge

field [37]. As in electromagnetism where Maxwell’s equations consist of electric and
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magnetic fields, in gravitoelectromagnetism, there are Maxwell-like equations con-

sist of gravitoelectric and gravitomagnetic fields (gravitational electric and magnetic

fields) [37, 38]. Spaniol and Andrade (2010) have derived two equations which are

similar to Gauss’ law and Ampere’s law in electromagnetism [37]. While the com-

plete Maxwell-like equations have been obtained by Ming at all [38]. They identified

the spatial components of the torsion tensor fields in Cartesian coordinate system

as gravitoelectric and gravitomagnetic fields based on the similarity between the

kinetic part of the Lagrangian density of the teleparallel gravity and the kinetic

part of the Lagrangian density of electromagnetism as well as the similarity be-

tween the expression of the torsion and of electromagnetic strength field [38]. They

investigated gravitoelectromagnetism in some astrophysical casess [37], such as the

gravitoelectromagnetic fields corresponding to the Schwarzschild metric [37, 38],

slowly rotating spherical shells [37], and gravitational waves [38] in non-covariant

formulations. Here, we will also investigate gravitoelectromagnetism corresponding

to the magnetic and electric black holes studied in [24, 27].

This article contains five sections. In Sect. 2 we will review TEGR and formu-

late the covariant field equation concerning magnetic black hole using the method

proposed by Krššák. In Sects. 3 and 4 we will analyze the solutions of our field

equation, discuss the singularities of the solutions, and formulate the gravitoelec-

tromagnetism for the electric and magnetic black holes.

2. The Formulation of the Covariant Field Equation in

Teleparallel Gravity

H. Weyl (1918), Th. Kaluza and O. Klein (1920) and Einstein (ten years later)

sought to unify gravity and electromagnetics [13]. Although these efforts were un-

successful, the ideas of unification remain essential today. Einstein proposed the

idea of unification based on the mathematical structure of teleparallelism by in-

troducing the tetrad fields. A tetrad is an orthonormal basis field in the tangent

space at each point of four-dimensional spacetime. Later, Cartan, with the Eintein-

Cartan theory, developed a modification of the general theory of relativity with

spacetime having curvature and torsion. Hayashi and Shirafuji also proposed the

so-called new general relativity.

Describing gravitational interactions requires curvature and torsion which cor-

responds to a connection. In general relativity the connection involved in the theory

has vanishing torsion. In teleparallel gravity, the connection involved has vanishing

curvature. General relativity and teleparallel gravity are conceptually different but

produce equivalent descriptions of gravitational interactions. A direct consequence

of this equivalence is that curvature and torsion are alternative ways of describing

the gravitational field [13].

Here will use the Greek alphabets µ, ν, ρ, ... = 0, 1, 2, 3 as spacetime indices,

while for the tangent space indices we will use the Latin alphabets a, b, c, ... =

0, 1, 2, 3. Here, a quantities with the symbol ”�” over them are related to general
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relativity, and all quantities with the symbol ”�” over them to teleparallel grav-

ity. In teleparallel gravity, the fundamnetal field is a tetrad field (ha
µ) describing

gravitational field of the form

ha
µ ≡ ∂µx

a +Ba
µ , (1)

with

Bµ = Ba
µPa (2)

is the gauge potential and Pa = ∂
∂xa is the translational generators.

Every point in spacetime with a metric gµν has a tangent space attached to it.

The tangent space is defined as Minkowski spacetime with the tangent space metric

being ηab = diag(+1,−1,−1,−1). The tetrad field connects the metrics gµν and ηab
according to

gµν = ηabh
a
µh

b
ν . (3)

The connection in teleparallel gravity is the Weitzenböck connection (
•
Γρ

νµ) given

by
•
Γρ

νµ = h ρ
a ∂µh

a
ν + h ρ

a

•
ωa

bµh
b
ν , (4)

where
•
ωa

bµ is the inertial spin connection. The torsion of the Weitzenböck connec-

tion is formally given by
•
T ρ

µν =
•
Γρ

νµ −
•
Γρ

µν . (5)

The torsion of the Weitzenböck connection in the non-covariant formulation is

expressed in term of tetrad field as [12]

•
T a

µν ≡ ∂µh
a
ν − ∂νh

a
µ. (6)

It is well known fact that the Weitzenböck and Levi-Civita connections are related

by
•
Γρ

νµ −
•
Kρ

µν =
◦
Γρ

µν , (7)

where
•
Kρ

µν is the contortion of the connection defined by

•
Kρ

µν = −1

2

(
•
Tµν

α −
•
T νµ

α −
•
T µν

α

)
. (8)

Furthermore, the superpotentials of the Weitzenböck connection is defined by

•
S µν
α =

1

2

(
•
Kµν

α + δµα
•
T βν

β − δνα
•
T βµ

β

)
, (9)

and the curvature of the Weitzenböck connection by
•
Rρ

θµν = ∂µ
•
Γρ

θν − ∂ν
•
Γρ

θµ +
•
Γρ

σµ

•
Γσ

θν −
•
Γρ

σν

•
Γρ

θµ (10a)

= ∂ν
•
ωa

bµ − ∂µ
•
ωa

bν +
•
ωa

eν

•
ωe

bµ − •
ωa

bµ

•
ωe

bν . (10b)
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From equation (4), if the spin connection
•
ωa

bµ vanishes then the curvature
•
Rρ

θµν

also vanishes. The Weitzenböck connection (
•
Γρ

νµ) is a connection with non-zero

torsion and zero curvature. It implies the condition of absolute parallelism where

the Weitzenböck covariant derivative of tetrad fields vanishes,

•
∇ha

µ ≡ ∂νh
a
µ −

•
Γρ

µνh
a
ρ = 0. (11)

If the expression of Levi-Civita conection
◦
Γρ

µν in Equation (7) is subtituted in

the Riemannian curvature tensor

◦
Rρ

θµν = ∂µ
◦
Γρ

θν − ∂ν
◦
Γρ

θµ +
◦
Γρ

σµ

◦
Γσ

θν −
◦
Γρ

σν

◦
Γρ

θµ (12)

then we obtain the following equation [13]

•
Rρ

θµν =
◦
Rρ

θµν +
•
Qρ

θµν , (13)

where

•
Qρ

θµν = ∂µ
•
Kρ

θν − ∂ν
•
Kρ

θµ +
•
Γρ

σµ

•
Kσ

θν −
•
Γρ

σν

•
Kρ

θµ −
•
Γσ

θµ

•
Kρ

σν

+
•
Γσ

θµ

•
Kρ

σν

•
Kρ

σν

•
Kσ

θµ −
•
Kρ

σµ

•
Kσ

θν . (14)

Whenever the curvature
•
Rρ

θµν of the Weitzenböck connection vanishes, then we

have

−
◦
Rρ

θµν =
•
Qρ

θµν . (15)

In this case, from equation (14) and equation (15), the scalar
•
Q therefore is given

by [13]

•
Q = −

◦
R =

•
Kµνρ

•
Kρνµ −

•
Kµρ

µ

•
Kνρ

ν +
2

h
∂µ

(
h

•
T νµ

ν

)
. (16)

2.1. Covariant formulation of teleparallel gravity

A nontrivial field or anholonomic tetrad is of the form [6]

ha
µ = ∂µx

a +
•
ωa

bµx
b +Ba

µ . (17)

The difference between equation (17) and equation (1) is that there is a second

term
•
ωa

bµx
b, where

•
ωa

bµ is the inertial spin connection. In general relativity, the

spin connection
•
ωa

bµ includes both gravitational and inertial effects. However, in

teleparallel gravity
•
ωa

bµ represents only inertial effects, while the contorsion
•
Ka

bµ

represents only gravity [39] with

•
ωa

bµ −
•
Ka

bµ =
◦
ωa

bµ. (18)



October 10, 2024 22:40 WSPC/INSTRUCTION FILE Yasrina-Uddarojad-
Hermanto-Rosyid-article

Instructions for Typing Manuscripts (Paper’s Title) 7

The torsion corresponding to the tetrad appearing (17) is given by

•
T a

µν ≡ ∂µh
a
ν − ∂νh

a
µ +

•
ωa

bµh
b
ν − •

ωa
bνh

b
µ. (19)

Equation (19) shows that the teleparallel gravitational field strength is just the

torsion tensor.

In teleparallel gravity, each tetrad is associated with a spin connection. There-

fore, there exists a frame of reference characterized by pairs of tetrads and spin

connections (ha
µ,

•
ωa

bµ). One of the methods to obtain the spin connection of a

tetrad was proposed by Krššák [6]. The methods involves finding the reference

tetrad ((r)ha
µ) in which the spin connection is given by

•
ωa

bµ =
1

2

(r)

ha
µ

(
f a
b c (

(r)h) + f a
c b (

(r)h)− fa
bc (

(r)h)
)
, (20)

where the reference tetrad ((r)ha
µ) is the tetrad obtained by equating the gravita-

tional constant G to zero (or turning the gravity off)

(r)ha
µ ≡ ha

µ|G−→0, (21)

and f c
ab (

(r)h) is the coefficients of anholonomy

fa
bc (

(r)h) =(r) ha
µ

(r)hb
ν

(
∂(r)
ν hc

µ − ∂(r)
µ hc

ν

)
. (22)

2.2. The Formulation of Covariant Field Equations

The action of teleparallel gravity is given by

•
I =

1

16πG

∫
Tr

(
•
T ∧ ⋆

•
T

)
=

h

16πG

∫ (
1

4

•
Tλµν

•
Tλµν +

1

2

•
Tλµν

•
Tµλν −

•
T ν

µν

•
Tλµ

λ

)
hd4x, (23)

where G is the universal gravitational constant (in the unit system with c = 1),

and h the determinant of the tetrad ha
µ. Therefore, the Lagrangian density of the

action is of the form

•
L =

h

16πG

(
1

4

•
Tλµν

•
Tλµν +

1

2

•
Tλµν

•
Tµλν −

•
T ν

µν

•
Tλµ

λ

)
. (24)

Equation (24) can be written in torsion scalars by using the definitions of the

contortion tensor (equation (8)) and superpotential (equation (9)) as follows

•
L =

h

16πG

(
•
Tα

µν

•
S µν
α

)
=

h

16πG

•
T , (25)

where the torsion scalar
•
T is defined as [13]

•
T =

1

4

•
Tλµν

•
Tλµν +

1

2

•
Tλµν

•
Tµλν −

•
T ν

µν

•
Tλµ

λ. (26)
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If the physical effect related to the cosmological constant and electromagnetic field

are taken into account the action in teleparallel gravity becomes [24]

•
I (hiµ) =

∫ (
1

16πG

(
•
T − 2Λ

)
− 1

2
F ∧ ⋆ F

)
h d4x

=

∫ (
1

16πG

(
•
T − 2Λ

)
− 1

4
FµνF

µν

)
h d4x, (27)

where Lem = − 1
2F ∧ ⋆ F is the Lagrangian of the electromagnetic field. The corre-

sponding Lagrangian density for the action
•
I (hiµ) equation (27) is given by

•
L =

h

16πG

(
•
T − 2Λ

)
− h

4
FµνF

µν

=
h

16πG

(
1

4

•
Tλµν

•
Tλµν +

1

2

•
Tλµν

•
Tµλν −

•
T ν

µν

•
Tλµ

λ

)
. (28)

Teleparallel gravitational field equations are derived through the Euler-Lagrange

equations

∂
•
L

∂ha
ρ

− ∂σ
∂

•
L

∂
(
∂σha

ρ

) = 0. (29)

The superpotential (
•
S ρσ
a ) given in equation (9) can be derived from the Lagrangian

density through

•
S ρσ
a = −

•
S σρ
a ≡ k

h

∂
•
L

∂
(
∂σha

ρ

) . (30)

Furthermore, the Noether gravitational energy-momentum flow (
•
J ρ
a ) is defined as

•
J ρ
a ≡ − 1

h

∂
•
L

∂ha
ρ

. (31)

The formulation of the field equations requires explicit expressions of the superpo-

tential
•
S ρσ
a (equation (30)) and Noether gravitational energy-momentum current

•
J ρ
a (equation (31)). We require also the expression of the torsion given in equation

(19). We obtain the momentum flow of Noether gravitational energy as follows

•
J ρ
a =

1

2k

(
4
•
S ρσ
c

•
ωc

aσ − 4
•
h λ
a

•
S ρ‘ν
c

•
T c

νλ

)
−

•
h ρ
a

2k

(
•
T − 2Λ

)
−

•
h µ
a gρσF

µρF σ
ν +

1

4
h ν
a gλρgϵσFλϵFρσ. (32)

Then, equations (9) and (32) are subsumed intothe Euler Lagrange equation (29)

to obtain the covariant field equations involving the cosmological constants and the
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electromagnetic fields, namely

Iνµ = h−1hi
µ∂ρ

(
hh α

i

•
S ρν
α

)
−

•
S ρν
α

•
ωα

µρ −
•
Tα

λµ

•
S νλ
α − 1

4
δνµ

(
•
T − 2Λ

)
+ 4πG

(
−FµρFνρ +

1

4
δνµF

ρσFρσ

)
= 0, (33)

If the spin connection
•
ωα

µρ vanishes, the term
•
S ρν
α

•
ωα

µρ also vanishes and we

obtained the non-covariant field equation

Iνµ = h−1hi
µ∂ρ

(
hh α

i

•
S ρν
α

)
−

•
Tα

λµ

•
S νλ
α − 1

4
δνµ

(
•
T − 2Λ

)
+ 4πG

(
−FµρFνρ +

1

4
δνµF

ρσFρσ

)
= 0. (34)

2.3. Gravitoelectromagnetism in teleparallel gravity

The first term of the vacuum Lagrangian density is of the same form of the La-

grangian density of electromagnetic field except the summation in internal (tan-

gential) space, where the torsion tensor fields
•
T a

µν and electromagnetic field tensor

Fµν are in the same place. From Eq. (5), the tetrad fields ha
µ can be regarded as

the potentials of the theory and the torsion fields
•
T a

µν as the strength of field.

Ming, et.al. [38] have proposed the following form of the torsion field

•
T a

µν =


0 Ea

x Ea
y Ea

z

−Ea
x 0 −Ba

z Ba
y

−Ea
y Ba

z 0 −Ba
x

−Ea
z −Ba

y Ba
x 0

 , (35)

where with Ea
i and Ba

i (a = 0, 1, 2, 3) and (i = 1, 2, 3) are the gravitoelectric

and gravitomagnetic fields respectively. In equation (35) the gravitoelectric and

gravitomagnetic field components are written in Cartesian coordinates.

3. Magnetic Black Holes

3.1. Exact solutions

The way to understand the general theory of relativity and TEGR is to obtain

the solution of equations concerning black holes, especially magnetic black holes

[24]. A magnetic black hole with cylindrical spacetime symmetry describes a black

hole with a flat horizon. The metric used to describe flat horizon spacetime in the

cylindrical coordinate system is of the form

ds2 = A(r) dt2 − 1

A1(r)
dr2 − r2dϕ2 − r2dz2, (36)
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where A(r) and A1(r) are functions to be determined. The tetrad chosen here is

the diagonal, namely

haµ = diag

(√
A,

1√
A1

, r, r

)
, (37)

with the various index variations being

ha
µ = diag

(√
A,− 1√

A1

,−r,−r

)
, (38a)

and

h µ
a = diag

(
1√
A
,−
√
A1,−

1

r
,−1

r

)
. (38b)

The tetrad determinant of equation (37) is clearly

dethaµ = h = r2
√

A

A1
. (39)

The field equations involving cosmological constant and electromagnetic field in

non-covariant formulation are obtained by subtituting the expression of the compo-

nents of the torsion tensor
•
Tα

µν , the superpotential tensor
•
Sα

µν , the torsion scalar
•
T , and of the electromagnetic tensor Fµν into equation (34). The components of

torsion
•
T a

µν that are not equal to zero are obtained using equation (6), namely

•
T 0

01 = −
•
T 0

10 = − A,r

2
√
A
, (40a)

and

•
T 2

12 = −
•
T 2

21 =
•
T 3

13 = −
•
T 3

31 = −1. (40b)

The nonzero torsion components
•
Tα

µν are

•
T 0

01 = −
•
T 0

10 = −A,r

2A
, (41a)

and

•
T 2

12 = −
•
T 2

21 =
•
T 3

13 = −
•
T 3

31 = −1

r
. (41b)

The components of the superpotential
•
Sα

µν that do not vanish are obtained using

equation (9), namely

•
S0

01 = −
•
S0

10 = −A1

r
, (42a)

and

•
S2

12 = −
•
S2

21 =
•
S3

13 = −
•
S3

31 =
A1

4rA
(rA,r + 2A) . (42b)
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Furthemore, the torsion scalar
•
T obtained using equation (25) is given by

•
T =

2A1

r2A
(rA,r +A) . (43)

Here, we adopt the generalized gauge potential for a magnetic black hole with

cylindrical symmetry from [24], i.e.

v = (a(ϕ) + a1(z)) dr + (b(z) + b1(r)) dϕ+ (s(ϕ) + s1(r)) dz. (44)

Therefore the nonzero components of the electromagnetic field strength tensor Fµν

and Fµν are given by

F12 = F21 = (b1(r)),r −(a(ϕ)),ϕ , (45a)

F13 = F31 = (s1(r)),r −(a1(z)),z , (45b)

F23 = F32 = (s(ϕ)),ϕ −(b(z)),z , (45c)

F 12 = F 21 =
A1

r2
(b1(r)),r −(a(ϕ)),ϕ , (45d)

F 13 = F 31 =
A1

r2
(s1(r)),r −(a1(z)),z , (45e)

and

F23 = F32 =
1

r4
(s(ϕ)),ϕ −(b(z)),z . (45f)

The non-covariant field components are obtained by subsuming the torsion
•
Tα

µν ,

the superpotential
•
Sα

µν , the electromagnetic field tensor Fµν and Fµν , and the
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torsion scalar
•
T to equation (34). Therefore, we obtain

I12 =I21 =
4πG

r2
(s(ϕ),ϕ − b(z),z) (s1(r),r − a1(z), z) = 0, (46a)

I13 =I31 =
4πG

r2
(s(ϕ),ϕ − b(z),z) (b1(r),r − a(ϕ),ϕ) = 0, (46b)

I23 =I31 = 4πGA1 (s1(r),r − a1(z),z) (b1(r),r − a(ϕ),ϕ) = 0, (46c)

I00 =
A1,r
2r

+
A1

2r2
+

Λ

2
+

2πG

r2

[
A1 (b1(r),r − a(ϕ),ϕ)

2
+A1 (s1(r),r

−a1(z),z)
2
+

1

r2
(s(ϕ),ϕ − b(z),z)

2

]
= 0, (46d)

I11 =− A,r
2rA

− 1

2r2
− Λ

2A1
+

2πG

r2

[
(b1(r),r − a(ϕ),ϕ)

2
+ (s1(r),r

−a1(z),z)
2 − 1

r2A1
(s(ϕ),ϕ − b(z),z)

2

]
= 0, (46e)

I22 =− r2A1

4A
A,rr +

r2A1

8A2
(A,r)

2 − rA1

4A
A,r −

r2

8A
A1,r A,r −

r

4
A1,r −

r2Λ

2

+ 2πGr2
[
A1

r2
(b1(r),r − a(ϕ)ϕ)

2 − A1

r2
(s1(r),r − a1(z),z)

2

+
1

r2
(s(ϕ),ϕ −b(z),z)

2

]
= 0, (46f)

and

I33 =− r2A1

4A
A,rr +

r2A1

8A2
(A,r)

2 − rA1

4A
A,r −

r2

8A
A1,r A,r −

r

4
A1,r −

r2Λ

2

+ 2πGr2
[
−A1

r2
(b1(r),r − a(ϕ)ϕ)

2
+

A1

r2
(s1(r),r − a1(z),z)

2

+
1

r2
(s(ϕ),ϕ −b(z),z)

2

]
= 0. (46g)

The value of each term containing the magnetic field strength (s1(r),r−a1(z),z),

(b1(r),r − a(ϕ)ϕ), and (s(ϕ),ϕ − b(z),z) can be obtained from the field equation

components I12, I13 and I23. The possible values of the three terms are as follows

(a) All terms (s1(r),r−a1(z),z), (b1(r),r − a(ϕ),ϕ), and (s(ϕ),ϕ−b(z),z) vanish. How-

ever the field equations obtained with this choice do not contain the gravitational

constant G needed to determine the reference tetrad.

(b) Only one of the terms is not equal to zero.

(i) The only nonzero term is (s1(r),r − a1(z),z). This choice results in differ-

ential equations being insufficient to generate the solutions A(r) and A1(r)

explicitly.

(ii) The only term is (b1(r),r − a(ϕ),ϕ) ̸= 0. This choice results also in differ-

ential equations being insufficient to generate the solutions A(r) and A1(r)

explicitly.
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(iii) The only term is (s(ϕ),ϕ−b(z),z) ̸= 0. This choice yields deferential equations

which are sufficient to generate the solutions A(r) and A1(r) explicitly.

Therefore, in order to obtain the solutions A(r) and A1(r) explicitly which

contain the gravitational constant G, we choose the last possibility (b.iii) where the

only nonzero term is s(ϕ),ϕ − b(z),z. In this case the solutions for a1(z), b1(r), and

s1(r) are

a1(z) = α1z, b1(r) = β1r, s1(r) = γ1r, (47)

where α1, β1, and γ1 are the integration constants. For the solution b(z) we choose

b(z) = βz, (48)

where β is the integration constant.

Since the system under consideration is a black hole in cylindrical symmetry,

the solutions for a(ϕ) and s(ϕ) are

a(ϕ) = α, s(ϕ) = γ, (49)

where α and γ are the integration constants. The solutions A(r) and A1(r) of the

field equations (46d-46g) therefore are given by

A1(r) = c1A(r), (50)

and

A(r) = c3 −
c2
r

+
4πGβ2

c1r2
− Λr2

3c1
, (51)

where ci, i = 1, 2, 3, are constants of integration. If c1 = c3 = 1 and c2 = 2GM are

chosen, the solutions A(r) and A1(r) are given respectively by

A1(r) = A(r), (52)

and

A(r) = 1− 2GM

r
+

4πGβ2

r2
− Λr2

3
. (53)

The metric corresponding to the solution (52)-(53) is

ds2 =

(
1− 2GM

r
+

4πGβ2

r2
− Λr2

3

)
dt2 −

(
1− 2GM

r
+

4πGβ2

r2
− Λr2

3

)−1

dr2

− r2dϕ2 − r2dz2. (54)

These results (equation (54)) are in concommitance with the Reissner-

Nordström de-Sitter metric discussed for instance in [39–43] in which the term

4πGβ2

r2

indicates the presence of the magnetic field sources. Our solution obtained here

are different from [24]. The differences are due to the fact that our field equations

which are derived via the variational principle have different sign in the terms

corresponding to electromagnetic field.



October 10, 2024 22:40 WSPC/INSTRUCTION FILE Yasrina-Uddarojad-
Hermanto-Rosyid-article

14 A. Yasrina, A. A. R. Uddarojad, A. Hermanto, M. F. Rosyid

3.2. Covariant formulation

Here we will formulate our solution in covariant fashion by using the method pro-

posed by Krššák through the reference tetrad [6]. Now we will use Krššák procedure

by computing firstly the reference tetrad. Afterwards, we calculate the anholonomic

coefficients, the spin connections, the torsion, the superpotensial, the torsion scalar,

the electromagnetic field tensor, the contortion, and curvature of the spin connec-

tion. In our study, we choose the diagonal tetrad

(r)haµ = diag

(√
AG(r),

1√
c1AG(r)

, r, r

)
, (55)

as reference tetrad, where (AG(r)) and (A1G(r) = c1AG(r)) are the values of (A(r))

and (A1(r)) respectively when the universal gravitational constant G is set to be

zero. The reference tetrad with varying indices is therefore given by

(r)ha
µ = diag

(√
AG,−

1√
c1AG

,−r,−r

)
, (56a)

and

(r)h µ
a = diag

(
1√
AG

,−
√

c1AG,−
1

r
,−1

r

)
. (56b)

To calculate the spin connection appearing in equation (20) we require to calcu-

late the anholonomic coefficients (fa
bc (

(r)h)) associated with the reference tetrad,

namely

fa
bc (

(r)h) = (r)h µ
a

(r)h ν
b

(
∂ν

(r)hc
µ − ∂µ

(r)hc
µ

)
. (57)

Then, nonzero anholonomic coefficients fa
bc (

(r)h) and f b
a c (

(r)h) are

f0
01 (

(r)h) = −f0
10 (

(r)h) = −1

2

√
c1
AG

AG,r , (58a)

f2
12 (

(r)h) = −f2
21 (

(r)h) = f3
13 (

(r)h) = −f3
31 (

(r)h) =

√
c1AG

r
, (58b)

f 0
0 1 (

(r)h) = f 1
0 0 (

(r)h) = −1

2

√
c1
AG

AG,r , (58c)

and

f 1
2 2 (

(r)h) = −f 2
2 1 (

(r)h) = f 1
3 3 (

(r)h) = −f 3
3 1 (

(r)h) =

√
c1AG

r
. (58d)

The components of the spin connection
•
ωc

aµ that do not vanish can be obtained

from equation (20), namely

•
ω0

10 =
•
ω1

00 = −
√
c1
2

AG,r , (59a)

•
ω1

22 =
•
ω1

33 −
√
c1AG, (59b)
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and

•
ω2

12 =
•
ω3

13 =
√

c1AG. (59c)

Then, the torsion components
•
T c

µν in the covariance formulation are calculated

using equation (19). The torsion components
•
T c

µν that are not equal to zero are

given by

•
T 0

01 = −
•
T 0

10 =
1

2
√
A

(−A,r +AG,r ) , (60a)

and

•
T 2

12 = −
•
T 2

21 =
•
T 3

13 = −
•
T 3

31 =
1√
A

(
−
√
A+

√
AG

)
. (60b)

While the torsion components
•
Tα

µν ,
•
T µν

α , and
•
Tµν

α that are not equal to zero are

given by

•
T 0

01 = −
•
T 0

10 =
1

2A
(−A,r +AG,r ) , (61a)

•
T 2

12 = −
•
T 2

21 =
•
T 3

13 = −
•
T 3

31 = − 1

r
√
A

(
−
√
A+

√
AG

)
, (61b)

•
T 01

0 = −
•
T 10

0 =
c1
2
(−A,r +AG,r ) , (61c)

•
T 12

2 = −
•
T 21

2 =
•
T 13

3 = −
•
T 31

3 =
c1
√
A

r

(
−
√
A+

√
AG

)
, (61d)

•
T 00

1 =
1

2A2
(−A,r +AG,r ) , (61e)

•
T 01

0 =
c1
2
(−A,r +AG,r ) , (61f)

•
T 21

2 =
•
T 31

3 =
c1
√
A

r

(
−
√
A+

√
AG

)
, (61g)

and

•
T 22

1 =
•
T 33

1 =
1

r3
√
A

(
−
√
A+

√
AG

)
. (61h)

From the above expressions of the torsion, we can compute the superpotential

according to

•
S µν
α =

1

2

(
1

2

•
Tµν

α +
1

2

•
T νµ

α +
1

2

•
T µν

α + δµα
•
T βν

β − δνα
•
T βµ

β

)
. (62)

The nonzero superpotential components
•
S µν
α are given by

•
S 01
0 = −

•
S 10
0 =

c1
√
A

r

(
−
√
A+

√
AG

)
, (63a)
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and

•
S 12
2 = −

•
S 21
2 =

•
S 13
3 =

•
S 31
3 = − c1

4r

(
r
(
−
√
A+

√
AG

)
+2

√
A
(
−
√
A+

√
AG

))
. (63b)

According to equation (25), the torsion scalar
•
T is

•
T =− 2c1

r2
√
A

(
−
√
A+

√
AG

)(
r (−A,r +AG,r ) +

√
A
(
−
√
A+

√
AG

))
. (64)

Furthemore, the components of the contortion tensor
•
Kµν

α and
•
Kµ

να are calculated

using equation (8) and the nonvanishing components of contortion are

•
K01

0 = −
•
K10

0 = −c1
2
(−A,r +AG,r ) , (65a)

•
K12

2 = −
•
K21

2 =
•
K13

3 = −
•
K31

3 =
c1
√
A

r

(
−
√
A+

√
AG

)
, (65b)

•
K0

10 =
1

2A
(−A,r +AG,r ) , (65c)

•
K1

00 =
c1A

2
(−A,r +AG,r ) , (65d)

•
K1

22 =
•
K1

33 = −c1r
√
A
(
−
√
A+

√
AG

)
, (65e)

and

•
K2

12 =
•
K3

13 =
1

r
√
A

(
−
√
A+

√
AG

)
. (65f)

In this case, the curvature
•
Ra

bνµ of the spin connection does not vanish and its

non zero components are given by

•
R0

110 = −
•
R0

101 =
•
R1

010 = −
•
R1

001 = −
√
c1
2

AG,rr, (66a)

•
R0

220 = −
•
R0

202 =
•
R0

303 = −
•
R0

330 =
•
R2

020 = −
•
R2

002 =
•
R3

030 = −
•
R3

003 (66b)

= −c1
2

√
AGAG,r, (66c)

•
R1

212 = −
•
R1

221 =
•
R1

313 = −
•
R1

331 =
•
R2

121 = −
•
R2

112 =
•
R3

131 = −
•
R3

113 (66d)

= −1

2

AG,r√
c1AG

, (66e)

•
R2

323 = −
•
R2

332 =
•
R3

232 = −
•
R3

223 = −c1AG. (66f)

That the curvature of the spin connection
•
Ra

bνµ does not vanish can be explained

through the following spin connection transformation [44]

•
ωa

bµ 7→ •
ω

′a
bµ = Λa

c(x)
•
ωc

dµΛ
d

b (x) + Λa
c(x)∂µΛ

c
b (x). (67)
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Tetrad and spin connection variables come together with a Lorentz gauge symmetry.

The Lorentz gauge freedom is of particular relevance for metric teleparallelism,

with a flat, metric compatible spin connection [44]. In this case it is always possible

to choose the Weitzenböck gauge (locally) such that the spin connection vanishes

identically,
•
ωa

bµ = 0. It further follows from Equation (67) that in other gauge the

spin connection takes the simple form
•
ω

′a
bµ = Λa

c(x)∂µΛ
c

b (x). (68)

It is straightforwards to compute so that the curvature
•
R

′a
bνµ of the spin connection

•
ω

′a
bµ given in equation (68) vanishes [6].

However, other choice of gauges may lead to a non zero spin connection
•
ωa

bµ

which transforms to other spin connection
•
ω

′a
bµ according to Equation (67) whose

curvature does not vanish. That the curvature of the spin connection
•
ω

′a
bµ does not

vanish indicates that the geometry involved in this consideration is Riemann-Cartan

geometry instead of Weitzenböck geometry.

3.3. Singularities

Now, we discuss the singularities of our solution. It is well-known that the analysis

of singularities in Einstein’s general theory of relativity is made by involving the

Kretschmann scalar [45] which is calculated from the Riemannian curvature tensor

as given in equation (12). Therefore we need to calculate the Christoffel symbol

of Levi-Civita connection. The non vanishing Christoffel symbol of the Levi-Civita

connection are
◦
Γ0

01 =
◦
Γ0

10 =
A,r
2A

, (69a)

◦
Γ1

00 =
c1A

2
A,r , (69b)

◦
Γ1

11 = −A,r
2A

, (69c)

◦
Γ1

22 =
◦
Γ1

33 = −c1rA, (69d)

and

◦
Γ2

12 =
◦
Γ2

21 =
◦
Γ3

13 =
◦
Γ3

31 =
1

r
. (69e)

While the Riemannian tensor components
◦
Rρ

λνµ and
◦
Rρλνµ are calculated using the

Levi-Civita conection given in equation (69) whose non vanishing components are

given in equation (A.1). From the Riemannian curvature tensor given in equation

(A.1), we obtain three important scalars, namely

(a) the Kretschmann scalar
◦
Rρλνµ

◦
Rρλνµ =

c1
r4
(
r4A,rr +4r2(A,r )

2 + 4A2
)
, (70)
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(b) the scalar
◦
Rµν

◦
Rµν

◦
Rµν

◦
Rµν =

c 2
1

2r4

(
r2 (rA,rr +2A,r )

2
+ 4 (rA,r +A)

2
)
, (71)

and

(c) the Ricci scalar

◦
R =

c1
r2
(
r2Arr + 4rA,r +2A

)
. (72)

Equation (13) shows that the Riemannian curvature tensor can be obtained

from tetrads instead of from the metric. Therefore in the analysis of singularities

in teleparallel gravity, we can still apply the standard procedure of analysis of

singularities involving Kretschmann scalar

◦
Rρθµν

◦
Rρθµν =

•
Rρθµν

•
Rρθµν − 2

•
Rρθµν

•
Qρθµν +

•
Qρθµν

•
Qρθµν , (73)

without calculating the Riemannian curvatur tensor.

The analysis of singularities corresponding to our general solutions appearing

in equation (53) faces some very difficult calculations. Therefore, to analyze the

singularities of our solutions, we will firstly consider some special cases and then

use graphical methods.

3.3.1. Analysis with Kretshmann scalar

Firstly, we analyze the singularities of our solutions with Kretshmann scalars.

(1) Case 1: Schwarzschild-like black hole, i.e. A1(r) = A(r) and A(r) = 1− 2GM
r

In this case, AG(r) = 1. Therefore, the Kretschmann scalar (70), scalar
◦
Rµν

◦
Rµν

(71), and the Ricci scalar (72) are given respectively by

◦
Rρλνµ

◦
Rρλνµ =

1

r6

(
12 (GM)

2
+ 4 (r − 2GM)

2
)
, (74)

◦
Rµν

◦
Rµν =

2

r4
, (75)

and

◦
R =

2

r2
. (76)

The Kretschmann scalar (74), the scalar
◦
Rµν

◦
Rµν (75), and the Ricci scalar

(75) at r = 0 are clearly infinite. Whereas, at the horizon (rh = 2GM), the

Kretschmann scalar, the scalar
◦
Rµν

◦
Rµν , and the Ricci scalar are finite, namely

◦
Rρλνµ

◦
Rρλνµ =

1

2(GM)4
, (77)

◦
Rµν

◦
Rµν =

8

(GM)4
, (78)
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and

◦
R =

1

(GM)2
. (79)

Those the singularity at r = 0 is physical singularity and the singularity at

r = rh is a pseudo-singularity. This result remind us to the case of Schwarzschild

black holes with A1(ϱ) = A(ϱ) = 1 − 2GM
ϱ2 , where ϱ is the distance from the

origin in spherical coordinate system [46].

(2) Case 2: Schwarzschild-de-Sitter-like black hole, i.e. A1(r) = A(r) and A(r) =

1− 2GM
r − Λr2

3

In this case, AG(r) = 1− Λr2

3 so that the Kretschmann scalar
◦
Rρλνµ

◦
Rρλνµ, the

scalar
◦
Rµν

◦
Rµν , and the Ricci scalar

◦
R are given respectively by

◦
Rρλνµ

◦
Rρλνµ =

4

3r6

(
2Λ2r6 − 2λr4 + 3r2 − 12GMr + 36 (GM)

2
)
, (80)

◦
Rµν

◦
Rµν =

2

r6
(
2Λ2r6 − 2Λr4 + r2

)
, (81)

and

◦
R =

2

r2
(
−2Λr2 + 1

)
. (82)

It is clear that the three scalars appearing in Equation (80-82) at r = 0 are

infinite so that the singularity is physical. The other singularity is found at

r = rh, where rh is given by

rh =−

(
Λ +

(
3GMΛ2 +

√
−Λ3 + 9 (GMΛ2)

)2/3)
Λ

(
3GMΛ2 +

√
−Λ3 + 9 (GMΛ2)

2

)1/3
. (83)

It is straightforward to show that the values of the three scalars appearing in

equation (80-82) at r = rh are finite, so that it is a pseudo-singularity.

(3) Case 3: Reissner-Nordström-like black hole, i.e. A1(r) = A(r) dan A(r) =

1− 2GM
r + 4πGβ2

r2

Here, AG = 1 so that the Kretschmann scalar
◦
Rρλνµ

◦
Rρλνµ, the scalar

◦
Rµν

◦
Rµν ,

and the Ricci scalar
◦
R are

◦
Rρλνµ

◦
Rρλνµ =

1

r8

((
−4GMr + 24πGβ2

)2
+ 4

(
2GMr − 8πGβ2

)2
+4
(
r2 − 2GMr + 4πGβ2

)2)
, (84)

◦
Rµν

◦
Rµν =

1

2r8

((
8πGβ2

)2
+ 4

(
r2 − 4πGβ2

)2)
, (85)

and

◦
R =

2

r4
(
r2 + 4πGβ2

)
(86)
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respectively. The singularity at r = 0 is physical. The other singularities are

found at r = rh1 and at r = rh2 , where r = rh1 and r = rh2 are given

respectively by

rh1 =GM −
√

(GM)
2 − 4πGβ2 (87)

and

rh2
=GM +

√
(GM)

2 − 4πGβ2. (88)

It is also straightforward to show that the values of the three scalars appearing

in equation (84-86) at r = rh1
and at r = rh2

are finite, so that they are clearly

pseudo-singularities.

3.3.2. Analysis with the scalar
•
Tµνλ

•
Tµνλ, the scalar

•
Tµ

•
Tµ, and the torsion

scalar
•
T

Some researchers [24, 27, 47] involved the scalar
•
Tµνλ

•
Tµνλ, the scalar

•
Tµ

•
Tµ, and

the torsion scalar
•
T which can be obtained from equation (61) and (61b) to analyze

singularities in teleparallel gravity. Here the scalars
•
Tµνλ

•
Tµνλ and

•
Tµ

•
Tµ are

•
Tµνλ

•
Tµνλ = − c1

2r2A

(
r2 (−A,r +AG,r )

2
+ 8A

(√
A+

√
AG

)2)
(89)

and

•
Tµ

•
Tµ = − c1

4r2A

(
r (−A,r +AG,r ) + 4

√
A
(
−
√
A+

√
AG

))
, (90)

whereas the scalar torsion
•
T is given in equation (130). In this subsubsection, we

will calculate the scalar
•
Tµνλ

•
Tµνλ, the scalar

•
Tµ

•
Tµ, and the torsion scalar

•
T at

singular points for each case and then compare them to the results of analysis of

singularities obtained from the Kretschmann scalars.

(1) Case 1: Schwarzschild-like black hole i.e. A1(r) = A(r) dan A(r) = 1− 2GM
r2

For this case, the scalar
•
Tµνλ

•
Tµνλ (89), the scalar

•
Tµ

•
Tµ (90), and the
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torsion scalar
•
T (64) are given respectively by

•
Tµνλ

•
Tµνλ =− 1

r2 (2GM − r)

(
2 (GM)

2
+ 4r (r − 2GM)

×

(
−
√
1− 2GM

r
+ 1

))
, (91)

•
Tµ

•
Tµ =− 1

4r5 (r − 2GM)

(
4 (GM)

2
+ 4r3

√
1− 2GM

r

×

(
−
√

1− 2GM

r
+ 1

))
, (92)

and

•
T =− 2

r3
√
1− 2GM

r

(
−
√
1− 2GM

r
+ 1

)
(−2GMr

+r

√
1− 2GM

r

(
−
√

1− 2GM

r
+ 1

))
. (93)

The scalar
•
Tµνλ

•
Tµνλ (91), scalar

•
Tµ

•
Tµ (92), and scalar

•
T (93) at r = 0 are

infinite. Likewise, at the horizon (r = rh), all three values are infinite. These

results differ from those obtained from analyses (77-79).

(2) Case 2: Schwarzschild-de Sitter-like black hole, i.e. A1(r) = A(r) dan A(r) =

1− 2GM
r2 − Λr2

3

In this case, the scalar
•
Tµνλ

•
Tµνλ, the scalar

•
Tµ

•
Tµ, and the torsion scalar

•
T ,

are

•
Tµνλ

•
Tµνλ =− 1

6r3 (3r − 6GM − λr3)

(
36 (GM)

2
+ 8

(
3r − 6GM − λr3

)
×
(
−
√
3r − 6GM − Λr3 +

√
3r − Λr3

)2)
, (94)

•
Tµ

•
Tµ =− 1

4r2 (3r − 6GM − Λr3)

(
−6GM + 4

√
3r − 6GM − Λr3

×
(
−
√
3r − 6GM − Λr3 +

√
3r − Λr3

))
, (95)

•
T =

2

3r3
√
3r − 6GM − Λr3

(
−
√
3r − 6GM − Λr3 +

√
3r − Λr3

)
×
(
−6GM +

√
3r − 6GM − Λr3

(
−
√
3r − 6GM − Λr3

+
√

3r − Λr3
))

. (96)

All such scalars are infinite at r = 0 and at the horizon r = rh. These results

are different from the analysis with the Kretschmann scalar.
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(3) Case 3: Reissner-Nordström-like black hole, i.e. A1(r) = A(r) dan A(r) =

1− 2GM
r2 − 4πGβ2

r2

In this case, the scalar
•
Tµνλ

•
Tµνλ,

•
Tµ

•
Tµ, and the torsion scalar

•
T are given

respectively by

•
Tµνλ

•
Tµνλ =

1

r4 (r2 − 2GMr + 4πGβ2)

((
2GMr − 8πGβ2

)2
+ 8

(
r2 − 2GMr

+4πGβ2
) (√

r2 − 2GMr + 4πGβ2 + r
)2)

, (97)

•
Tµ

•
Tµ =− 1

4r2 (r2 − 2GMr + 4πGβ2)

(
−
(
2GMr − 8πGβ2

)
+
√
r2 − 2GMr + 4πGβ2

(
−
√
r2 − 2GMr + 4πGβ2 + r

))
,

(98)

•
T =

2
(√

r2 − 2GMr + 4πGβ2 + r
)

r4
√
r2 − 2GMr + 4πGβ2

(
−
(
2GMr − 8πGβ2

)
+

+
√
r2 − 2GMr + 4πGβ2

(
−
√
r2 − 2GMr + 4πGβ2 + r

) )
.

(99)

The three scalars are infinite at r = 0 and at both horizons rh1 and rh2 . These

results also differ from results of the analysis with the Kretschmann scalar.

3.3.3. Analysis with the scalar
•
Qρλνµ

•
Qρλνµ and the scalar

•
Q

From equations (13) and (15), it is clear that the scalar
•
Qρλνµ

•
Qρλνµ is equal

to −
◦
Rρλνµ

◦
Rρλνµ whenever the curvature of the Weitzenböck connection vanishes.

Therefore, the analysis of the singularities by using both the scalars will yield the

same conclusions. However, although the curvature of the Weitzenböck connection

in our cases do not vanish we will show here that the values of the scalar
•
Qρλνµ

•
Qρλνµ

in our cases are consistent with the values of the Kretschmann scalar
◦
Rρλνµ

◦
Rρλνµ,

in the sense that the value of scalar
•
Qρλνµ

•
Qρλνµ at a point is infinite (or finite) if

the value of Kretschmann scalar
◦
Rρλνµ

◦
Rρλνµ is infinite (or finite) at that point. To

calculate the scalar
•
Qρλνµ

•
Qρλνµ we need to determine firstly the Weitzenböck con-

nection (
•
Γρ

νµ). Therefore, from equation (7) and equations (65c)-(65f) we obtain
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•
Γ0

01 =
A,r
2A

, (100a)

•
Γ0

10 =
AG,r
2A

, (100b)

•
Γ1

00 =
c1A

2
AG,r , (100c)

•
Γ1

11 = −A,r
2A

, (100d)

•
Γ1

22 =
•
Γ1

33 = −c1r
√

AGA, (100e)

•
Γ2

12 =
•
Γ3

13 =

√
AG

r
√
A
, (100f)

and

•
Γ2

21 =
•
Γ3

31 =
1

r
, (100g)

whereas the other components vanish.

Using equation (14), equations (65c)-(65f), and equation (100), we have non

vanishing components of the tensors
•
Qρ

λνµ and
•
Qρλνµ given in equation (B.1)

From the components of the tensor
•
Qρ

λνµ given in equation (B.1) we obtain

(a) the scalar
•
Qρλνµ

•
Qρλνµ

•
Qρλνµ

•
Qρλνµ =

c 2
1

4r2AGA

[
r4AGA (−A,rr +AG,rr )

2
+ 2r2AG

(
−
√
AA,r

+
√

AGAG,r

)2
+ 2r2A

(
−
√
AGA,r +

√
AAG,r

)2
+ 4AGA (A−AG)

2
]
, (101)

and

(b) the scalar
•
Q

•
Q =

c1

r2
√
AGA

[
r2
√
AGA (−A,rr +AG,rr ) + 2r

(
−2
√

AGAA,r

+(AG +A)AG,r )− 2
√

AGA(A−AG)
]
. (102)

Now, we consider every case discussed in the previous part by using the scalar
•
Qρλνµ

•
Qρλνµ and the scalar

•
Q.

(1) Case 1: Schwarzschild-like black hole, i.e. A1(r) = A(r) dan A(r) = 1− 2GM
r2

In this case, equation (101) and equation (102) yields

•
Qρλνµ

•
Qρλνµ =

48 (GM)
2

r6
, (103)
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and

•
Q =

4GM

r3
. (104)

At r = 0 where the Kretschmann scalars is infinite, the scalar
•
Qρλνµ

•
Qρλνµ and

the scalar
•
Q are clearly also infinite. While at the horizon (r = rh), where the

Kretschmann scalars is finite, the two scalars are finite and given by

•
Qρλνµ

•
Qρλνµ =

3

4 (GM)
4 , (105)

and

•
Q =

1

2 (GM)
2 , (106)

respectively.

(2) Case 2: Schwarzschild-de-Sitter-like black hole, i.e. A1(r) = A(r) dan A(r) =

1− 2GM
r2 − Λr2

3

In the same way, the scalar
•
Qρλνµ and the scalar

•
Q in this case are given

respectively by

•
Qρλνµ

•
Qρλνµ =

2

9r6 (3r − 6GM − Λr3) (3− Λr2)

(
216

(
3r − 6GM − Λr3

)
×
(
3− Λr2

)
+
(
3r − Λr3

) (
−
√
3r − 6GM − Λr3

(
6GM − 2Λr3

)
−2Λr7/2

√
3− Λr2

)2
+
(
3r − 6GM − Λr3

) (
−
√
3− Λr2

×
(
6GM − 2Λr3

)
− 2Λr5/2

√
3r − 6GM − Λr3

)2)
, (107)

and

•
Q =

4

3R3
√
3r − 6GM − Λr3

√
3− Λr2

(
6GM

√
3r − 6GM − Λr3

×
√

3− Λr2 −
(√

3r − 6GM − Λr3
√
3− Λr2

(
6GM − 2Λr3

)
−2r5/2

(
3r − 3GM − Λr3

)))
. (108)

Both scalars are infinite at r = 0, and finite at the horizon r = rh. These

results are consistent with that obtained from singularities analysis using the

Kretschmann scalars.

(3) Case 3: Reissner-Nordström-like black hole, i.e. A1(r) = A(r) and A(r) =

1− 2GM
r2 + 4πGβ2

r2

The scalar
•
Qρλνµ

•
Qρλνµ and the scalar

•
Q in this case are given respectively by

•
Qρλνµ

•
Qρλνµ =

1

r8

(
48 (GM)

2
r2 − 384πG2Mβ2r + 896

(
πGβ2

)2)
, (109)
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and

•
Q =0. (110)

The scalar
•
Qρλνµ

•
Qρλνµ is infinite at r = 0 and finite at both horizons rh1

and rh2 . These results are also consistent with the values of the Kretschmann

scalar whose values are infinite at r = 0 and finite at both horizons rh1
and

rh2
. While the scalar

•
Q vanishes at r = 0 and at both horizons rh1

and rh2
.

The analysis of singularities using the Kretschmann scalar
◦
Rρλνµ

◦
Rρλνµ shows

that the physical singularity exists only at r = 0. The values of the scalar
•
Qρλνµ

•
Qρλνµ calculated above lead to the same conclusion. However, when we ap-

ply the scalars derived from the torsion tensor to analyze the singularities as in

[24, 27, 47] we obtain the different results. For the three cases the values of the

scalar
•
Tµνλ

•
Tµνλ,

•
Tµ

•
Tµ and

•
T are infinite at r = 0 as well as at horizon r = rh.

The author in [24] have analyzed the singularities of their solution using such scalars

obtained in non-covariant formulation in which the scalars
•
Tµνλ

•
Tµνλ and

•
Tµ

•
Tµ are

infinite at the horizon. They argued that the values of the scalars at r = rh are due

to the fact that the scalars are not covariant under local Lorentz transformations.

However in our covariant formulation, the values of the three scalars remains infi-

nite at the horizon. Therefore, it can be concluded that the analysis of singularities

in teleparallel gravity using the scalars
•
Tµνλ

•
Tµνλ,

•
Tµ

•
Tµ, and

•
T is not appropriate.

Fig. 1. The scalar
•
Rρλνµ

•
Rρλνµ, the scalar

•
Tµνλ

•
Tµνλ, and the scalar

•
Qρλνµ

•
Qρλνµ with respect

to r, with M = 1030 kg and β = 1015.
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Now, consider again the case were A1(r) = A(r) = 1− 2GM
r + 4πGβ2

r2 − Λr2

3 . In

this case, the values of the Kretschmann scalar
•
Rρλνµ

•
Rρλνµ, the scalar

•
Tµνλ

•
Tµνλ,

and the scalar
•
Qρλνµ

•
Qρλνµ as functions of r are calculated through computations

and their graphs are depicted in Fig. 1. It is clear that the Kretschmann scalar
•
Rρλνµ

•
Rρλνµ and the scalar

•
Qρλνµ

•
Qρλνµ are infinite at r = 0. While at all three hori-

zons (namely the cosmological horizon rh1, the event horizon rh2, and the Cauchy

horizon rh3), both scalars are finite. Furthermore, the scalar
•
Tµνλ

•
Tµνλ is infinite

at Cauchy horizon rh3 and finite at cosmological horizon rh1. It is however un-

defined between Cauchy horizon rh3 and event horizon rh2. Therefore, the result

of the analysis with the scalar
•
Tµνλ

•
Tµνλ is incompatible with the analysis of the

Kretschmann scalar
•
Rρλνµ

•
Rρλνµ especially between the Cauchy horizon rh3 and

the event horizon rh2.

Fig. 2. The effect of the magnetic charge value β on the black hole mass and the cosmological

horizon, the horizon event, and the Cauchy horizon.

The dependence of the three horizons on the magnetic charge β and on the

black hole mass are shown in Fig. 2. The variation of the value of the magnetic

charge β as well as the variation of the black hole mass effects only very small

variation in the cosmological horizon, so that the cosmological horizon can be said

to be constant around ≈ 1026 m. While, the event and Cauchy horizons varies with

respect to the black hole mass variation. For the same mass, the event horizon

increases as the magnetic charge β increases. However, for the same mass, the

increase of the magnetic charge β, leads to the decrease of the Cauchy horizon. The

value of magnetic charge β also affects the minimum allowable mass value for black

holes. The smaller the value of magnetic charge β, the smaller the minimum mass
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limit a black hole can have, and vice versa. This minimum black hole mass limit is

indicated by the point where the Cauchy horizon meets the equatorial horizon.

3.4. Gravitoelectromagnetism

Now, we calculate here the gravitoelectric and gravitomagnetic fields associated

with the tetrad (37) according to equation (35). Therefore, we need to obtain the

expression of the torsion tensor
•
T ′a

µν in Cartesian coordinate system (τ, x, y, z′)

through the following coordinate transformation, namely

•
T ′a

αβ =
∂xµ

∂x′α

•
T a

µν

∂xν

∂x′β = AT
αµ

•
T a

µνAνβ , (111)

where
•
T a

µν are the components of the torsion tensor in cylinder coordinate system

(t, r, ϕ, z) and Aµν is the coordinate transformation matrix given by

Aµν =


∂t
∂τ

∂t
∂x

∂t
∂y

∂t
∂z′

∂r
∂τ

∂r
∂x

∂r
∂y

∂r
∂z′

∂ϕ
∂τ

∂ϕ
∂x

∂ϕ
∂y

∂ϕ
∂z′

∂z
∂τ

∂z
∂x

∂z
∂y

∂z
∂z′

 =


1 0 0 0

0 cosϕ sinϕ 0

0 − sinϕ cosϕ 0

0 − z cosϕ
r − z sinϕ

r
1
r

 . (112)

The torsion tensor
•
T ′a

µν is related to gravitoelectric and gravitomagnetic fields

trough equation (35) so that

•
T ′0

αβ =


0 (−A,r+AG,r)

2
√
A

cosϕ (−A,r+AG,r)

2
√
A

sinϕ 0

− (−A,r+AG,r)

2
√
A

cosϕ 0 0 0

− (−A,r+AG,r)

2
√
A

sinϕ 0 0 0

0 0 0 0



=


0 E0

x E0
y E0

z

−E0
x 0 −B0

z B0
y

−E0
y B0

z 0 −B0
x

−E0
z −B0

y B0
x 0

 ,

•
T ′1

αβ =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 =


0 E1

x E1
y E1

z

−E1
x 0 −B1

z B1
y

−E1
y B1

z 0 −B1
x

−E1
z −B1

y B1
x 0

 , (113a)

•
T ′2

αβ =


0 0 0 0

0 0
(−

√
A+

√
AG)√

A
0

0 − (−
√
A+

√
AG)√

A
0 0

0 0 0 0

 =


0 E2

x E2
y E2

z

−E2
x 0 −B2

z B2
y

−E2
y B2

z 0 −B2
x

−E2
z −B2

y B2
x 0

 ,

(113b)
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and

•
T ′3

αβ =


0 0 0 0

0 0 0
(−

√
A+

√
AG)√

A r
cosϕ

0 0 0
(−

√
A+

√
AG)√

A r
sinϕ

0 − (−
√
A+

√
AG)√

A r
cosϕ − (−

√
A+

√
AG)√

A r
sinϕ 0



=


0 E3

x E3
y E3

z

−E3
x 0 −B3

z B3
y

−E3
y B3

z 0 −B3
x

−E3
z −B3

y B3
x 0

 . (113c)

From equations (113) we conclude that

E0
x =

(−A,r +AG,r )

2
√
A

cosϕ, (114a)

E0
y =

(−A,r +AG,r )

2
√
A

sinϕ, (114b)

B2
z′ = −

(
−
√
A+

√
AG

)
√
A

, (114c)

B3
x = −

(
−
√
A+

√
AG

)
√
A r

sinϕ, (114d)

and

B3
y =

(
−
√
A+

√
AG

)
√
A r

cosϕ. (114e)

Whereas the other component of the gravitoelectric and the gravitomagnetic fields

vanish. Thus, the gravitoelectric and the gravitomagnetic fields are given by

E⃗0 =
(−A,r +AG,r )

2
√
A

r̂, (115a)

E⃗1 = E⃗2 = E⃗3 = 0⃗, (115b)

B⃗0 = B⃗1 = 0⃗, (115c)

B⃗2 = −

(
−
√
A+

√
AG

)
√
A

k̂, (115d)

and

B⃗3 =

(
−
√
A+

√
AG

)
√
A r

ϕ̂. (115e)

Therefore, the gravitoelectric field that does not vanish is only the gravitoelectric

field in sector a = 0, namely E⃗0. The gravitoelectric field E⃗0 is radial and its
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magnitude depends only on r. At r = 0, the magnitude of E⃗0 tends to infinity.

There are two sectors, namely a = 2 and a = 3 in which the gravitomagnetic

fields do not vanish. The gravitomagnetic field in sector a = 2 is parallel to the

z-axis, whose magnitude also depends on r. At r = 0, the gravitomagnetic field B⃗2

is finite. Whereas the gravitomagnetic field lines in sector a = 3 form concentric

circles around the z-axis. The magnitude of the gravitomagnetic field in this sector

depends on r. At r = 0, the gravitomagnetic field B⃗3 is infinite. From the equations

(115), we see that the gravitoelectric and gravitomagnetic fields depend with the

mass and the magnetic charge of the black hole as well as the cosmological constant.

4. Electric Black Hole

In this section, we consider a charged black hole. In General Relativity, the black

hole is describe by Reissner–Nordström metric [27],

ds2 = Y (r) dt2 − 1

Y (r)
dr2 − r2

(
dθ2 + sin2 θdϕ2

)
, (116)

with

Y (r) = k − 2GM

r
+

G

4π

Q2

r2
− Λ

3
r2, (117)

where k = −1, 0, 1 are the curvature of the spherical, hyperbolic, or plane cross

sections respectively. Furthemore Q is the electric charge of the black hole. The

tetrad chosen is the diagonal tetrad

haµ = diag

(√
Y (r),

1√
Y (r)

, r, r sin θ

)
, (118)

with the various index variations being

ha
µ = diag

(√
Y (r),− 1√

Y (r)
,−r,−r sin θ

)
, (119a)

and

h µ
a = diag

(
− 1√

Y (r)
,
√
Y (r),−1

r
,− 1

r sin θ

)
. (119b)

The tetrad determinant of equation (118) is clearly

dethaµ =
√
−g = r2 sin θ. (120)

4.1. The covariant formulation

Now we will apply the Krššák procedure to obtain the covariant formulation. The

first step of the covariant formulation is to determine the reference tetrad from the

tetrad given in equation (118). A reference tetrad is a tetrad in which the parameter
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governing the gravitational field strength, namely the universal gravitational con-

stant, is set to be equal to zero (G = 0). Therefore, the reference tetrad associated

to the tetrad given in equation (118) is

(r)haµ = diag

(√
YG,

1√
YG

, r, r sin θ

)
, (121)

with

YG =

√
k − Λ

3
r2. (122)

The references tetrad with varying indices are

(r)ha
µ = diag

(√
YG,−

1√
YG

,−r,−r sin θ

)
, (123a)

(r)haµ = diag

(
1√
YG

,
√

YG,
1

r sin θ

)
, (123b)

and

(r)h µ
a = diag

(
1√
YG

,−
√

YG,−
1

r
,− 1

r sin θ

)
. (123c)

From by equations (123)-(123c), the anholonomic coefficients fa
bc (

(r)h) that are

not equal to zero are explicitly given by

f0
01 (

(r)h) = −f0
10 (

(r)h) = − 1

2
√
YG

YG,r , (124a)

f2
12 (

(r)h) = −f2
21 (

(r)h) =

√
YG

r
, (124b)

f3
13 (

(r)h) = −f3
31 (

(r)h) =

√
YG

r
, (124c)

and

f3
23 (

(r)h) = −f3
32 (

(r)h) =
1

r
cot θ. (124d)

Furthemore, the nonvanishing anholonomic coefficients f b
a c (

(r)h) are

f 0
0 1 (

(r)h) = f 1
0 0 (

(r)h) = − YG,r

2
√
YG

, (125a)

f 1
2 2 (

(r)h) = −f 2
2 1 (

(r)h) = f 1
3 3 (

(r)h) = −f 3
3 1 (

(r)h) =

√
YG

r
, (125b)

and

f 2
3 3 (

(r)h) = −f 3
3 2 (

(r)h) =
1

r
cot θ. (125c)
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Therefore, from the above obtained anholonomic coefficients, the components

of the spin connection
•
ωc

aµ that are not equal to zero are

•
ω0

10 =
•
ω1

00 = −YG,r
2

, (126a)

•
ω1

22 = − •
ω2

12 = −
√
YG, (126b)

•
ω1

33 = −
√
YG sin θ, (126c)

•
ω2

33 = − cos θ, (126d)
•
ω3

13 = sin θ
√

YG, (126e)

and

•
ω3

23 = cos θ. (126f)

Furthemore, the torsion components
•
T c

µν that are not equal to zero are

•
T 0

01 = −
•
T 0

10 =
−Y,r + YG,r

2
√
Y

, (127a)

•
T 2

12 = −
•
T 2

21 =
−
√
Y +

√
YG√

Y
, (127b)

and

•
T 3

13 = −
•
T 3

31 =
sin θ√
Y

(
−
√
Y +

√
YG

)
. (127c)

Whereas, the nonzero torsion components
•
Tα

µν are

•
T 0

01 = −
•
T 0

10 =
−Y,r + YG,r

2Y
, (128a)

and

•
T 2

12 = −
•
T 2

21 =
•
T 3

13 = −
•
T 3

31 = −−
√
Y +

√
YG

r
√
Y

, (128b)

The superpotential components
•
S µν
α are calculated using equation (62). The

nonvanishing superpotential components
•
S µν
α are

•
S 01
0 =

•
S 10
0 =

−Y +
√
YGY

r
, (129a)

and

•
S 12
2 =

•
S 21
2 = − 1

4r

(
r (−Y,r +YG,r ) + 2

√
Y
(
−
√
Y +

√
YG

))
. (129b)



October 10, 2024 22:40 WSPC/INSTRUCTION FILE Yasrina-Uddarojad-
Hermanto-Rosyid-article

32 A. Yasrina, A. A. R. Uddarojad, A. Hermanto, M. F. Rosyid

According to equation (25), the scalar torsion
•
T is given by

•
T =

2

r2
√
Y

(
−
√
Y +

√
YG

)(
r (−Y,r +YG,r ) +

√
Y
(
−
√
Y +

√
YG

))
. (130)

The electric field produced by electrical charged of the black hole is radial. The

electric field is of the form

F = Er e1 ∧ e0. (131)

where Er is the radial component of electric field. Therefore, the component of the

electromagnetic field that is not equal to zero (Fµν) is

F10 = −F01 = Er. (132)

The components of the contortion tensor
•
Kµν

α and
•
Kµ

να are calculated using

equation (8) and the nonvanishing components of contortion are

•
K01

0 = −
•
K10

0 = −1

2
(−Y,r +YG,r ) , (133a)

•
K12

2 = −
•
K21

2 =
•
K13

3 = −
•
K31

3 =

√
Y

r

(
−
√
Y +

√
YG

)
, (133b)

•
K0

10 =
1

2Y
(−Y,r +YG,r ) , (133c)

•
K1

00 =
A

2
(−A,r +AG,r ) , (133d)

•
K1

22 = −r
√
Y
(
−
√
Y +

√
YG

)
, (133e)

•
K1

33 = −r sin2 θ
√
Y
(
−
√
Y +

√
YG

)
(133f)

and

•
K2

12 =
•
K3

13 =
1

r
√
Y

(
−
√
Y +

√
YG

)
. (133g)

In this case, the curvature
•
Ra

bνµ also does not vanish. Where the non-vanishing
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components of the curvature
•
Ra

bνµ are given by

•
R0

110 = −
•
R0

101 =
•
R1

010 = −
•
R1

001 = −
√

YG,rr

2
, (134a)

•
R0

220 = −
•
R0

202 =
•
R2

020 = −
•
R2

002 = −
√
YG

2
YG,r, (134b)

•
R0

303 = −
•
R0

330 =
•
R3

030 = −
•
R3

003 = − sin θ

2

√
YGYG,r, (134c)

•
R1

212 = −
•
R1

221 =
•
R2

121 = −
•
R2

112 = − YG,r

2
√
YG

, (134d)

•
R1

313 = −
•
R1

331 =
•
R3

131 = −
•
R3

113 = − sin θ

2
√
YG

YG,r, (134e)

•
R2

323 = −
•
R2

332 =
•
R3

232 = −
•
R3

223 = − sin θ (−1 + YG) . (134f)

Since, the curvature
•
Ra

bνµ does not vanish the geometry of the space time involved

here are also the Riemann-Cartan geometry instead of the Weitzenböck geometry.

4.2. Singularities

Capozziello et. al. have analyzed the electric black hole singularities using two

approaches. In their first approach, they used the scalar torsion
•
T calculated from

the tetrad and Weitzenböck connections. In their second approach, they used the

Ricci scalar
◦
R and the Kretschmann scalar

◦
Rρλνµ

◦
Rρλνµ corresponding to the Levi-

Civita connection. The metric considered by Capozziello et. al. is more general than

the metric given in equation (116), i.e. g00 ̸= g11 but their singularity analysis can

be applied to special case, where g00 = g11. In the first case (Y (r) = k − 2GM
r ),

the Kretschmann scalar and the torsion
•
T are infinite only at r = 0 [27]. Therefore,

the singularity at r = 0 is the only physical singularity. In the first case, there is a

horizon rh = 2GM where the Kretschmann scalar is finite. Now, we calculate the

scalar
•
Tµνλ

•
Tµνλ, the scalar

•
Tµ

•
Tµ, and the scalar

•
T respectively as follows

•
Tµνλ

•
Tµνλ =− 1

r3 (r − 2GM)

(
4 (GM)

2
+ 8 (r − 2GM)

×
(
−
√
r − 2GM +

√
r
)2)

, (135)

•
Tµ

•
Tµ =− 1

4r2 (r − 2GM)

(
−2GM + 4

√
r − 2GM

×
(
−
√
r − 2GM +

√
r
))2

, (136)

and

•
T =− 2

r3
√
r − 2GM

(
2r
√
r − 2GM + 2GM

√
r −

√
rr
)
, (137)
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with k = 1. It is clear that all three scalars are infinite at the horizon r = rh. Since

the physical singularity exists only at r = 0, therefore, the singularity analysis using

the three scalars is not in accordance with the analysis using the Kretschmann

scalar.

Likewise for the second case (Y (r) = k − 2GM
r − Λr2

3 ), the physical singularity

exists only at r = 0. Both the Kretschmann scalar
◦
Rρλνµ

◦
Rρλνµ and the scalar

•
T are

infinite at = 0 [27]. The Kretschmann scalar
◦
Rρλνµ

◦
Rρλνµ is finite at the horizon.

rh = −
Λ +

(
3GMΛ2 +

√
−Λ3 + (3GMΛ2)

2

) 2
3

Λ

(
3GMΛ2 +

√
−Λ3 + (3GMΛ2)

2

) 1
3

.

In this second case, the scalar
•
Tµνλ

•
Tµνλ, the scalar

•
Tµ

•
Tµ, and the torsion scalar

•
T are given respectively by

•
Tµνλ

•
Tµνλ =

1

2r3
(
r − 2GMr − Λr3

3

) (36 (GM)
2
+

16

9
λ2r6 +

44

3
GMΛr3

−48GMr − 32

3
Λr4 + 16r2

)
, (138)

•
Tµ

•
Tµ =− 1

4r2
(
r − 2GM − Λr3

3

) (6GM − 4r +
4

3
Λr3 + 4

√
1− Λr3

3

×
(
r − 2GM − Λr3

3

))2

, (139)

and

•
T =

2

r3
√
r − 2GM − Λr3

3

(√
r − 2GM − Λr3

3
+

√
r − Λr3

3

)

×

(
−2GM +

√
r − 2GM − Λr3

3

(√
r − 2GM − Λr3

3
+

√
r − Λr3

3

))
,

(140)

with k = 1. All three values are infinite at horizon r = rh, where the Kretschmann

scalar is finite. Therefore, the singularity analysis using the three scalars obtained

from the torsion is also not in accordance with the analysis using the Kretschmann

scalar.

In the third case (Y (r) = k − 2GM
r + GQ2

4π ), the physical singularity exists only

at r = 0. But at horizon r = rh, the Kretschmann scalar is finite, while the torsion

scalar
•
T is infinite [27]. In the fourth case, the singularity analysis using both

approaches yield the same conclusion that the only physical singularity is at r = 0

[27].
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Now, as in the case of magnetic black hole, we calculate here also the scalar
•
Qρλνµ

•
Qρλνµ from the Weitzenbock connection

•
Γρ

νµ. The non-vanishing components

of the Weitzenbock connection are given by

•
Γ0

01 =
Y,r
2Y

, (141a)

•
Γ0

10 =
YG,r
2Y

, (141b)

•
Γ1

00 =
Y

2
YG,r , (141c)

•
Γ1

11 = −Y,r
2Y

, (141d)

•
Γ1

22 = −r
√

YGY , (141e)
•
Γ1

33 = −r sin2 θ
√
YGY , (141f)

•
Γ2

12 =
•
Γ3

13 =

√
YG

r
√
Y
, (141g)

and

•
Γ2

21 =
•
Γ3

31 =
1

r
. (141h)

From equation (141) we obtain

(a) the scalar
•
Qρλνµ

•
Qρλνµ:

•
Qρλνµ

•
Qρλνµ =

1

r4YGY

[
r4YGY

2 (−Y,rr +YG,rr )
2
+ r2YGY

(
−
√
Y Y,r

+
√
YGYG,r

)2
+ 2r2Y 2

(
−
√

YGY,r +
√
Y YG,r

)2
+r2YG

(
Y Y,r −

√
YGY YG,r

)2
+ 4YGY

2 (Y − YG)
2

]
. (142)

and

(b) the scalar
•
Q:

•
Q =

1

r2
√
YGY

[
r2
√
YGY (−Y,rr +YG,rr )− 4r

√
YGY Y,r + 2r (Y + YG)YG,r

+2
√

YGY (−Y + YG)
]
. (143)

For the first case, the scalars
•
Qρλνµ

•
Qρλνµ and

•
Q are

•
Qρλνµ

•
Qρλνµ =

48 (GM)
4

r6
, (144)

and

•
Q = 0. (145)
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The scalar
•
Qρλνµ

•
Qρλνµ is infinite at r = 0, and finite at r = rh which is consistent

with the values of the Kretschmann scalar
◦
Rρλνµ

◦
Rρλνµ. However, the scalar

•
Q is

constant for any r.

For the second case, the scalars
•
Qρλνµ

•
Qρλνµ and

•
Q are

•
Qρλνµ

•
Qρλνµ =

1

r6

(
44 (GM)

2
+

20

9
Λ2r6 − 8

3
GMΛr3

)
, (146)

and

•
Q =

1

r3

(
−2GM +

10

3
Λr3

)
(147)

respectively. Both scalars are infinite at r = 0 and finite at r = rh. Thus the value

of the scalar
•
Qρλνµ

•
Qρλνµ at r = 0 and at r = rh is in accordance with the values

of the Kretschmann scalar
◦
Rρλνµ

◦
Rρλνµ.

For the third case, the scalar
•
Qρλνµ

•
Qρλνµ and the scalar

•
Q are given respectively

by

•
Qρλνµ

•
Qρλνµ =

1

r8

(
48 (GM)

2
r2 +

7

2

(
GQ2

π

)2

− 24

π
G2MQ2r

)
, (148)

and

•
Q =0. (149)

The value of the scalar
•
Qρλνµ

•
Qρλνµ is infinite at r = 0 and finite at r = rh. It is

in accordance with the value of the Kretschmann scalar
◦
Rρλνµ

◦
Rρλνµ at the same

place.

The values of the scalars
•
Qρλνµ

•
Qρλνµ and

•
Q in the fourth case are

•
Qρλνµ

•
Qρλνµ =

1

r8

(
44 (GM)

2
r2 +

13Q2

4π2
+

16

9
Λ2r8 − 52

4π
G2MQ2r

−8

3
GMΛr5

)
, (150)

and

•
Q =

10Λ

3
(151)

respectively. The scalar
•
Qρλνµ

•
Qρλνµ is infinite at r = 0, and finite at r = rh. It is

in accordance with the value the Kretschmann scalar
◦
Rρλνµ

◦
Rρλνµ at r = 0 and at

r = rh.
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4.3. Gravitoelectromagnetism

The Cartesian components of torsion
•
T ′a

µν in Catersian coordinate system are

obtained through coordinate transformation given by the following matrix trans-

formation

Aµν =


∂t
∂τ

∂t
∂x

∂t
∂y

∂t
∂z

∂r
∂τ

∂r
∂x

∂r
∂y

∂r
∂z

∂θ
∂τ

∂θ
∂x

∂θ
∂y

∂θ
∂z

∂ϕ
∂τ

∂ϕ
∂x

∂ϕ
∂y

∂ϕ
∂z

 =


1 0 0 0

0 sin θ cosϕ sin θ sinϕ cos θ

0 r cos θ cosϕ r cos θ sinϕ −r sin θ

0 − sinϕ cosϕ 0

 . (152)

The torsion tensor
•
T ′a

µν is related to gravitoelectric and gravitomagnetic fields

through equation (35), namely

•
T ′0

αβ =


0 (−Y,r+YG,r)

2
√
Y

sin θ cosϕ

− (−Y,r+YG,r)

2
√
Y

sin θ cosϕ 0

− (−Y,r+YG,r)

2
√
Y

sin θ sinϕ 0

− (−Y,r+YG,r)

2
√
Y

cos θ 0

(−Y,r+YG,r)

2
√
Y

sin θ sinϕ (−Y,r+YG,r)

2
√
Y

cos θ

0 0

0 0

0 0



=


0 E0

x E0
y E0

z

−E0
x 0 −B0

z B0
y

−E0
y B0

z 0 −B0
x

−E0
z −B0

y B0
x 0

 , (153a)

•
T ′1

αβ =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 =


0 E1

x E1
y E1

z

−E1
x 0 −B1

z B1
y

−E1
y B1

z 0 −B1
x

−E1
z −B1

y B1
x 0

 , (153b)

•
T ′2

αβ =


0 0 0 0

0 0 0 − (−
√
Y+

√
YG)√

Y
r cosϕ

0 0 0 − (−
√
Y+

√
YG)√

Y
r sinϕ

0
(−

√
Y+

√
YG)√

Y
r cosϕ

(−
√
Y+

√
YG)√

Y
r sinϕ 0



=


0 E2

x E2
y E2

z

−E2
x 0 −B2

z B2
y

−E2
y B2

z 0 −B2
x

−E2
z −B2

y B2
x 0

 , (153c)
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and

•
T ′3

αβ =


0 0

0 0

0 − (−
√
Y+

√
YG)√

Y
sin2 θ

0 − (−
√
Y+

√
YG)√

Y
sin θ cos θ sinϕ

0 0
(−

√
Y+

√
YG)√

Y
sin2 θ

(−
√
Y+

√
YG)√

Y
sin θ cos θ sinϕ

0 − (−
√
Y+

√
YG)√

Y
sin θ cos θ cosϕ

(−
√
Y+

√
YG)√

Y
sin θ cos θ cosϕ 0



=


0 E3

x E3
y E3

z

−E3
x 0 −B3

z B3
y

−E3
y B3

z 0 −B3
x

−E3
z −B3

y B3
x 0

 . (153d)

From equations (153) we conclude that

E0
x =

(−Y,r +YG,r )

2
√
Y

sin θ cosϕ, (154a)

E0
y =

(−Y,r +YG,r )

2
√
Y

sin θ sinϕ, (154b)

E0
z =

(−Y,r +YG,r )

2
√
Y

cos θ, (154c)

B2
x =

(
−
√
Y +

√
YG

)
√
Y

r sinϕ, (154d)

B2
y = −

(
−
√
Y +

√
YG

)
√
Y

r cosϕ, (154e)

B3
x =

(
−
√
Y +

√
YG

)
√
Y r

sin θ cos θ cosϕ, (154f)

B3
y =

(
−
√
Y +

√
YG

)
√
Y r

sin θ cos θ sinϕ, (154g)

and

B3
z =

(
−
√
Y +

√
YG

)
√
Y r

sin2 θ. (154h)
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Whereas the other components of the gravitoelectric and the gravitomagnetic fields

vanish. Thus, the gravitoelectric and the gravitomagnetic fields are given by

E⃗0 =
(−Y,r +YG,r )

2
√
Y

r̂, (155a)

E⃗1 = E⃗2 = E⃗3 = 0⃗, (155b)

B⃗0 = B⃗1 = 0⃗, (155c)

B⃗2 = −

(
−
√
Y +

√
YG

)
√
Y

r θ̂, (155d)

and

B⃗3 =

(
−
√
Y +

√
YG

)
√
Y

sin θ cos θ
(
sin θ r̂ + cos θ ϕ̂

)
. (155e)

The gravitoelectric field that does not vanish is only the gravitoelectric field in

sector a = 0, namely E⃗0. The gravitoelectric field E⃗0 is radial and its magnitude

depends only on r. At r = 0, the magnitude of E⃗0 tends to infinity. There are two

sectors, namely a = 2 and a = 3, in which the gravitomagnetic fields do not vanish.

The gravitomagnetic field in sector a = 2 is tangent to meridian, whose magnitude

also depends on r. At r = 0, the gravitomagnetic field B⃗2 is finite. Furthermore,

the gravitomagnetic field in sector a = 3 has non zero radial component as well as

non zero azimutal component. The magnitude of the gravitomagnetic field in this

sector depends not only on r but also depends on θ. From the equations (155),

we see that the gravitoelectric and gravitomagnetic fields depend with the mass

and the electric charge of the black hole as well as the cosmological constant. If we

assume the black hole is a charged sphere with the cosmological constant assumed

to be zero (the case of the Reissner–Nordström black hole) and the mass containing

term considered to be very small, then the gravitoelectric field (equation (155a))

reduces to Coloumb’s law for a charged sphere.

5. Conclusion

We have derived non-covariant and covariant field equations involving the cosmo-

logical constant and electromagnetic field in TEGR, namely equation (34) and (33),

which differs by the appearance of the spin connection
•
ωα

µν . The solution of the

field equation in this case of magnetic black hole given equation (47-51).

The covariant formulation of teleparallel gravity for magnetic and electric black

hole are reflected by the appearance of the spin connection in the expressions of the

torsion, the superpotential, the contorsion, and of the curvatures. In this case, the

curvature of the spin connection does not vanish. The analysis of the singularities

of the solution by using the corresponding Kretschmann scalars as well as the

scalars given in equation (101) and equation (142) leads to the conclusion that the

singularity at r = 0 is physical and the singularity at horizon is a pseudo-singularity.
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The analysis of the singularity by using the scalar obtained from the torsion is not

consistent.

The gravitoelectric and gravitomagnetic fields are obtained from the torsion

tensors after the components of the torsion tensor in Cartesian coordinate system

are obtained. The gravitoelectric and gravitomagnetic fields in some sectors vanish.

Those fields depend with the mass and the charge of the black hole as well as the

cosmological constant.
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Appendix A. The non zero component of the Riemannian

curvature tensor concerning the magnetic black hole:

◦
R0

101 = −
◦
R0

110 = −A,rr
2A

, (A.1a)

◦
R0

202 = −
◦
R0

220 =
◦
R0

303 = −
◦
R0

330 =
◦
R1

212 = −
◦
R1

221 =
◦
R1

313 = −
◦
R1

331 =
◦
R2

002 = −
◦
R2

020 =
◦
R3

113 = −
◦
R3

131 = −c1r

2
A,r , (A.1b)

◦
R1

001 = −
◦
R1

010 =
◦
R3

003 = −
◦
R3

030 = −c1A

2
A,rr , (A.1c)

◦
R2

112 = −
◦
R2

121 = − A,r
2rA

, (A.1d)

◦
R2

323 = −
◦
R2

332 = −c1A, (A.1e)
◦
R3

223 = −
◦
R3

232 = c1A, (A.1f)

◦
R0101 = −

◦
R0110 = −A,rr

2
, (A.1g)

◦
R0202 = −

◦
R0220 =

◦
R0303 = −

◦
R0330 = −−c1rA

2
A,r , (A.1h)

◦
R1001 = −

◦
R1010 =

A,rr
2

, (A.1i)

◦
R1212 = −

◦
R1221 =

◦
R1313 = −

◦
R1331 =

r

2A
A,r , (A.1j)

◦
R2002 = −

◦
R2020 =

◦
R3003 = −

◦
R3030 =

−c1rA

2
A,r , (A.1k)

◦
R2112 = −

◦
R2121 =

◦
R3113 = −

◦
R3131 = − r

2A
A,r , (A.1l)

◦
R2323 = −

◦
R2332 = c1r

2A, (A.1m)
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and

◦
R3223 = −

◦
R3232 = −c1r

2A. (A.1n)

Appendix B. The non zero components
•
Qρ

λνµ and
•
Qρλνµ

concerning the magnetic black hole:

•
Q0

101 = −
•
Q0

110 = − 1

2A
(−A,rr +AG,rr ) , (B.1a)

•
Q0

202 = −
•
Q0

220 =
•
Q0

303 = −
•
Q0

330 = − c1r

2
√
A

(
−
√
AA,r +

√
AGAG,r

)
, (B.1b)

•
Q1

001 = −
•
Q1

010 = −c1A

2
(−A,rr +AG,rr ) , (B.1c)

•
Q1

212 = −
•
Q1

221 =
•
Q1

313 = −
•
Q1

331 = − c1r

2
√
AG

(
−
√

AGA,r +
√
AAG,r

)
, (B.1d)

•
Q2

002 = −
•
Q2

020 =
•
Q3

003 = −
•
Q3

030 = −c1
√
A

2r

(
−
√
AA,r +

√
AGAG,r

)
, (B.1e)

•
Q2

112 = −
•
Q2

121 =
•
Q3

113 = −
•
Q3

131 =
1

2rA
√
AG

(
−
√
AGA,r +

√
AAG,r

)
, (B.1f)

•
Q2

323 = −
•
Q2

332 =
•
Q3

232 = −
•
Q2

223 = c1 (A−AG) , (B.1g)
•
Q0101 = −

•
Q0110 = −1

2
(−A,rr +AG,rr ) , (B.1h)

•
Q0202 = −

•
Q0220 =

•
Q0303 = −

•
Q0330 = −c1r

2

(
−AA,r +

√
AGAAG,r

)
, (B.1i)

•
Q1001 = −

•
Q1010 = −1

2
(−A,rr +AG,rr ) , (B.1j)

•
Q1212 = −

•
Q1221 =

•
Q1313 = −

•
Q1331 =

r

2
√
AGA

(
−
√

AGA,r +
√
AAG,r

)
, (B.1k)

•
Q2002 = −

•
Q2020 =

•
Q3003 = −

•
Q3030 =

c1r
√
A

2

(
−
√
AA,r +

√
AGAG,r

)
, (B.1l)

•
Q2112 = −

•
Q2121 =

•
Q3113 = −

•
Q3131 = − r

2
√
AGA

(
−
√

AGA,r +
√
AAG,r

)
,

(B.1m)

and

•
Q2323 = −

•
Q2332 =

•
Q3232 = −

•
Q2332 = −c1r

2 (A−AG) . (B.1n)
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[33] E. Ayón-Beato and A. Garćıa, The Bardeen Model as a Nonlinear Magnetic

Monopole, (2000), arXiv:gr-qc/0009077 [gr-qc].

[34] E. Ayón-Beato and A. Garćıa, Four Parametric Regular Black Hole Solution,

(2005), arXiv:hep-th/0403229 [hep-th]

[35] P. Huang and F. F. Yuan, Generalized Hodge Dual for Torsion in Teleparallel

Gravity. International Journal of Geometric Methods in Modern Physics (2016)

13 (9):1–11.

[36] B. Mashhoon, Gravitoelectromagnetism: A Brief Review, (2008), arXiv:gr-

qc/0311030 [gr-qc].

[37] E. P. Spaniol and V. C. De Andrade, Gravitomagnetism in Teleparallel Gravity,



October 10, 2024 22:40 WSPC/INSTRUCTION FILE Yasrina-Uddarojad-
Hermanto-Rosyid-article

44 REFERENCES

International Journal of Modern Physics D 19(4) (2010), 489–505.

[38] K. Ming, Triyanta, J. S. Kosasih, Gravitoelectromagnetism in Teleparallel

Equivalent Of General Relativity: A New Alternative, International Journal

of Modern Physics D 26(9) (2017), 1-16.

[39] V. C. de Andrade and J. G. Pereira, Gravitational Lorentz force and the de-

scription of the gravitational interaction, Physical Review D - Particles, Fields,

Gravitation and Cosmology 56(8) (1997), 4689–4695.

[40] D. Astefanesei, R. B. Mann, E. Radu, Reissner-Nordström-de Sitter black hole,

planar coordinates and dS/CFT, Journal of High Energy Physics 8(1) (2003),

777-805.

[41] S. Bhattacharya, Black holes and the positive cosmological constant, Ph.D.

Thesis, University of Jadavpur, 2013.

[42] F. Ahmed, Cylindrical symmetric, non-rotating and non-static or static black

hole solutions and the naked singularities, European Physical Journal C, 79(6)

(2019), 1–11.

[43] G. G. L. Nashed and S. Nojiri, Black Holes with Electric and Magnetic Charges

in F(R)Gravity (2022), arXiv:2206.04836 [gr-qc].

[44] S. Bahamonde, K. F. Dialektopoulos, C. Escamilla-Rivera, G. Farrugia, V.

Gakis, M. Hendry, M. Hohmann, J. L. Said, J. Mifsud, E. D. Valentino, Telepar-

allel Gravity: from Theory to Cosmology (2022), arXiv:2106.13793v4 [gr-qc].

[45] Ø. Grøn, S. Hervik, Einstein’s General Theory of Relativity: with Modern Ap-

plications in Cosmology (Springer, New York, 2007).

[46] O. C. Stoica, Schwarzschild’s singularity Is Semi-Regularizable. European

Physical Journal Plus 127(7) (2012). 1–8.

[47] J. Aftergood, A. Debenedictis, Matter conditions for regular black holes in f

(T) gravity. Physical Review D - Particles, Fields, Gravitation and Cosmology

90(12) (2014). 1–16.


