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CUTOFF PHENOMENON FOR ASYMMETRIC ZERO RANGE PROCESS WITH
MONOTONE RATES

ONS RAMEH

ABSTRACT. We investigate the mixing time of the asymmetric Zero Range process on the seg-
ment with a non-decreasing rate. We show that the cutoff holds in the totally asymmetric case
with a convex flux, and also with a concave flux if the asymmetry is strong enough. We show
that the mixing occurs when the macroscopic system reaches equilibrium. A key ingredient of
the proof, of independent interest, is the hydrodynamic limit for irregular initial data.
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1. INTRODUCTION

1.1. Model. The Zero range process on IN = J1, NK is a model describing the evolution of
k ≥ 1 indistinguishable particles hopping on the lattice IN with a rate that depends on the
number of the particles at the departure site and the direction of the jump. This model was
introduced by Spitzer in 1970 [32] as a stochastic lattice gas with on-site interaction. Since
then, it has been widely studied (see [15, 27, 18] and the reference therein).
Let us now explicitly describe the process. Define

Ω0
N,k =

{
η ∈ NJ1,NK :

N∑
i=1

η(i) = k

}
. (1)

the space of configurations of k particles on IN .

Given p ∈ (1
2
, 1], q = 1 − p and a rate function by g : N 7→ [0,+∞) a non-decreasing

Lipschitz function such that g(0) = 0 < g(1), an Asymmetric Zero Range process (ZRP
(g, p)) is a continuous time Markov process on Ω0

N,k with the following generator:

ANJ(η) =
N−1∑
i=1

pg(η(i))
(
J(ηi,i+1)− J(η)

)
+

N∑
i=2

qg(η(i))
(
J(ηi,i−1)− J(η)

)
(2)
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where ηx,y is the configuration obtained when one particle from x jumps to the site y and
J : Ω0

N,k 7→ R is a test function.

1 2 3 4 5 6 7 8

pg(3)
(1− p)g(1)

(1− p)g(2)

FIGURE 1. A configuration of particles with k = 11 and N = 8. The crossed
red arrows correspond to forbidden jumps.

Remark 1. When g is linear, the dynamic describes the evolution of k independent particles.
Each particle jumps to the right with rate pg(1) and to the left with rate qg(1).

The process is irreducible and reversible with respect to its equilibrium measure

πN,k(η) =
1

ZN,k

N∏
y=1

(
p
q

)η(y)y
g(η(y))!

(3)

where g(k)! = g(k)g(k − 1) · · · g(1). In particular, when p = 1, the equilibrium measure is a
Dirac mass on the configuration ∨N,k = kδN .

1.2. Mixing time and Cutoff Phenomenon. Classical Markov process theory guarantees that
the process converges to its equilibrium measure πN,k starting from any configuration. This
article aims to estimate the speed at which the equilibrium is reached. The standard choice is
the total-variation distance, as it allows for uniform control, following Diaconis’ earlier work
[14, 1]. We denote the worst-case total-variation distance by:

dN,k(t) = max
η∈Ω0

N,k

∥P η
t (·)− πN,k∥TV (4)

where P η
t is the law of a ZRP at time t started at η.

For any level of precision θ > 0, we define the mixing time of ZRP :

TN,k
mix (θ) := inf{t ≥ 0; dN,k(t) ≤ θ}. (5)

In particular, we aim to describe the behaviour of the mixing time when the size of the system
and the number of particles diverge to infinity. In this article, we work in the natural setting for
a scaling limit, where k

N
converge to α ∈ R+, a macroscopic finite density.

Of particular interest, is the dependence of the mixing time on the precision ε. We say that
the system exhibits a Cutoff phenomenon if

∀θ ∈ (0, 1),
TN,k
mix (θ)

TN,k
mix (1/4)

−−−−→
N→+∞

1.

In other words, the distance to the equilibrium stays around 1 and drops abruptly to 0. This
remarkable phase transition was discovered in the context of card shuffling [14, 1]. We refer
the reader to [26, Chapter 18] for more background on the Cutoff Phenomenon.
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1.3. Previous Results. The Cutoff was investigated in various contexts, among which the sim-
ple exclusion process that describes the evolution of particles hopping on a lattice and con-
strained to not coexist on the same site. SEP’s mixing time has been studied in both symmetric
[34, 23, 22, 24] and (weakly) asymmetric [25, 8, 19, 20] settings. The articles [22, 19, 20, 21]
underlined a notable link between the macroscopic relaxation to equilibrium (the Hydrody-
namic limit) and the mixing time. In particular, it was proven that in the asymmetric setup,
the macroscopic equilibrium is reached in a finite time and it corresponds exactly to the mixing
time. This link was also emphasised for the symmetric SEP with reservoir [16] where the study
of hydrodynamic limit allows for a precise description of the Cutoff profile.

ZRP can be seen as a generalization of SEP as it can be mapped into a simple exclusion
process (SEP) when the rate function g is constant. Cutoff for ZRP was also shown when the
rate function is constant on the complete graph [29]. For more general rate functions, it was
only studied to the best of our knowledge on the complete graph [17, 33].

In the context of asymmetric ZRP, the hydrodynamic limit was thoroughly studied on Zd

[30] for regular initial data. It was also established in the non-conservative case [3] and in
a random environment [4]. In all these results the rate function is assumed nondecreasing to
guarantee the attractivity of the process and to avoid the condensation phenomena (see for
example [2]).

1.4. Our contribution. The main achievement of this paper is to prove that cutoff holds in
the totally asymmetric convex flux, and in the concave flux if the asymmetry is strong enough
(Theorems 2 and 3). Moreover, we show that it occurs exactly at the macroscopic equilibrium
time, which highlights once again the link between hydrodynamic limit and mixing times. Our
proof exploits the hydrodynamic limit of ZRP on the segment, which we generalise for irregular
initial data (Theorem 1). As far as we know, the hydrodynamic limit for irregular initial data
hasn’t been studied before. We also give a precise description of the evolution of the position
of the left-most particles and the stack of particles at position N .

1.5. Acknowledgment. The author warmly thanks Max Fathi for his advice throughout this
project and for thoroughly reading the drafts. The author also kindly thanks Christophe Ba-
hadoran, Cyril Imbert, Cyril Labbé, Hubert Lacoin, Fraydoun Rezakhanlou, Ellen Saada, Justin
Salez, Marielle Simon and Cristina Toninelli for helpful discussions. This work received fund-
ing from the Agence Nationale de la Recherche (ANR) Grant ANR-23-CE40-0003 (Project
CONVIVIALITY), as well as funding from the Institut Universitaire de France.

2. MAIN RESULTS

Before we state the main theorems, we introduce some notation. For any φ < φ⋆, we define:

Z(φ) =
∑
k≥0

φk

g(k)!
and ∀k ∈ N, ν̄φ(k) =

1

Z(φ)

φk

g(k)!

where φ⋆ is the radius of convergence of Z. Throughout the paper, we will always assume the
following:

Assumption.
• g is non–decreasing,
• g is Lipshitz :

g⋆ := sup
k≥0

|g(k + 1)− g(k)| < ∞,

• limφ↑φ∗ Z(φ) = ∞.
3



The first assumption ensures the attractivity of the process and avoids potential condensa-
tion phenomena that may arise. The family of measure (ν̄φ)φ can be thus parametrized by its
expectation:

∀α ∈ R+, ν(α) = ν̄Φ(α)

where Φ is the inverse function of φ → Eν̄φ (X) and corresponds to the macroscopic flux for a
density α. When Φ is convex, we also denote by Ψ its convex conjugate:

Ψ(x) = sup
α
(αx− Φ(α)).

If Φ is concave, Ψ denotes the convex conjugate of (−Φ) instead. We recall that the convexity
(resp. concavity) of g implies that Φ is strictly convex (resp. strictly concave) [5, Proposition
3.1].

Let M+([0, 1]) be the space of non–negative measure on [0, 1] endowed with the weak topol-
ogy. For any sequence of configurations (ηN,0)N ∈ Ω0

N,k , we define the empirical measure
associated with the process (ηN,t):

ρN,t(dy) =
1

N

∑
i∈IN

ηN,t(i)δi/N(dy) ∈ M+([0, 1])

where (ηN,t) is ZRP started at (ηN,0)N . Notice that (ρN,t)t belongs to the D(R+,M+([0, 1]))
the set of cadlag functions with values in M+([0, 1]) endowed with the Skorokhod topology.
This allows us to simultaneously embed the configurations with different sizes in a common
space.

In the context of ZRP , it is intuitively clear that the worst initial condition should correspond
to ∧N,k = kδ1 where all particles are on the first site. From a macroscopic scale, it corresponds
to imposing αδ0 as initial data where α would be the macroscopically observed mass. The
following theorem gives the hydrodynamic limit of ZRP on the segment for general irregular
initial data.

Theorem 1. Assume that Φ is either strictly convex or strictly concave. Given u0 ∈ M+([0, 1])
with total mass α, let U be the unique Barron–Jensen viscosity solution to

∂tU + Φ(∂xU) = 0, t ≥ 0, x ∈ R,

U(0, ·) =
∫
[0,·)

u0(dy).
(HJ)

For any p > 1
2
, if (ρN(0, dy))N weakly converge to u0(dx), the sequence (t → ρN, Nt

p−q
)N

converge in law in D(R+,M+(R)) to a measure-valued function t → v(t, dx). Moreover,

∀t > 0,∀x ∈ (0, 1], v(t, [0, x]) = max
(
U, α1R+×[1,+∞)

)⋆
.

Let us underline that we chose to speed up the process by N
p−q

to ensure the limit does not
depend on p. The precise definition of Barron–Jensen viscosity solution of the Hamilton–Jacobi
equation (HJ) is delayed to subsection 3.3. The limit is usually determined (see [31, 15]) as the
unique entropic solution to the scalar conservation law:{

∂tu+ ∂xΦ(u) = 0, t ≥ 0, x ∈ R,
u(0, ·) = u0.

(CL)

Both notions of solutions are equivalent when u0 ∈ L1 ∩ L∞ for convex or concave flux Φ
[28]. Beyond the difficulties raised by the presence of boundaries, the irregularity of initial
data with eventually non-bounded rate jumps required the use of Hamilton–Jacobi equations
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to uniquely identify the limit v. Note that although there exists a notion of measure-valued
solution of scalar conservation law, ensuring well-posedness in a more general framework (see
[13, 9, 10, 11]), adapting the uniqueness criterion to our situation seems more challenging. Re-
garding the boundary conditions, we extensively use the attractivity of the process and the fact
that the characteristics point towards the right.

For any α ≥ 0, let Uα be the Barron–Jensen viscosity solution associated to uα
0 = αδ0. One

can in particular remark that the macroscopic system reaches equilibrium in finite time. We
define for any α ≥ 0 the macroscopic equilibrium time

Teq,p,α =
1

p− q
inf{t > 0, Uα(t, dx) ≤ α1x>1}. (6)

If the macroscopic system has not reached the equilibrium, the microscopic system is also still
far from it. Consequently, the macroscopic equilibrium time provides the following lower–
bound on the mixing time.

Theorem 2. Assume that Φ is either strictly convex or strictly concave. For any p > 1
2
,

∀α ∈ R+, ∀θ ∈ (0, 1), lim inf
N→∞
k/N→α

TN,k
mix (θ)

N
≥ Teq,p,α.

Our main result is that the lower–bound is sharp in the totally asymmetric convex case and
the concave setting if the asymmetry is strong enough.

Theorem 3.
1. For p = 1 and assuming that Φ is strictly convex and g⋆ = g(1),

∀α ∈ R+, ∀θ ∈ (0, 1), lim
N→∞
k/N→α

TN,k
mix (θ)

N
= Teq,1,α =

1

g(1)
.

2. Assume that Φ is strictly concave and bounded by ḡ. Assume p > 1
2
, α > 0 are such that

pg(1)− qḡ

p− q
> max

Φ
(
Ψ′
(
Ψ−1

(
α

Teq,1,α

)))
Ψ′
(
Ψ−1

(
α

Teq,1,α

)) ,Φ

(
(−Φ′)−1

( −1

Teq,1,α

)) . (7)

Then,

∀α ∈ R+, ∀θ ∈ (0, 1), lim
N→∞
k/N→α

TN,k
mix (θ)

N
= Teq,p,α.

Clearly, it implies that the ZRP in this framework exhibits a Cutoff since the limit does not
depend on θ. As was already the case in the ASEP [19], the hydrodynamic limit does not
provide precise enough information to prove the matching upper–bound. An easy way to see
it is by considering 1δ1 + (k − 1)δN as an initial condition where macroscopic equilibrium is
achieved and microscopically we need to wait for (p− q)g(1)N .
The main idea is to control precisely:

• LN,k: the position of the left-most particle
• SN,k: the number of particles at the position N

and prove that they do follow their macroscopic analogue
(
L α

p ,S
α
p

)
, predicted by the hydro-

dynamic limit. Once these two statistics reach their equilibrium state, the system rapidly mixes.
At this level of generality, πN,k, L α

p and S α
p are not explicit, making the problem delicate. We

also emphasise that ZRP do not have a particle-hole duality, unlike ASEP . Thus, the study of
5



LN,k and SN,k need to be conducted separately. The technical condition (7) is due to a com-
parison to ASEP case which lacks precision. Indeed, condition (7) requires that the maximum
macroscopic speed and flux achieved by the ZRP be below the critical level pg(1)− qḡ of the
ASEP , to which we are comparing (see remarks 9 and 10). We believe that the result should
hold in a more general context.

Remark 2. The condition (7) is verified on a wider class of ZRP than just for the constant
rate. Indeed, we observe that when α converge to 0, Φ

(
(−Φ′)−1

(
−1

Teq,1,α

))
→ 0. Hence, one

can fix αmax such that

Φ

(
(−Φ′)−1

( −1

Teq,1,α

))
< g(1).

Thus, when p = 1, the condition (7) is trivially fulfilled for any α ≤ αmax. Consequently,

∃αmax, ∀0 < α ≤ αmax, ∃pmin ∈ (1/2, 1), ∀p ≥ pmin such that the condition (7) is fulfilled.

2.1. Organisation of the paper. The rest of the article is organized as follows. In Subsections
3.1 and 3.2, we recall the attractivity property of ZRP and the mapping to the exclusion process
when the rate is constant. Then, we recall the definition of the Barron–Jensen viscosity solution
in Subsection 3.3 and generalize the hydrodynamic limit on Z with irregular initial data in
Subsection 3.4. In Section 4, we prove the hydrodynamic limit of ZRP on the segment. The
proof of Theorems 2 and 3 occupies the whole Section 5. Section 6 is devoted to the control of
the position of the left-most particle and the stack at position N when the flux is concave. A
list of symbols used is inducted at the end of the Appendix.

3. PRELIMINARIES

3.1. Coupling, attractivity, and orders. Throughout the article, we shall frequently need to
couple ZRP on different graphs and rate functions. For convenience, we introduce a generic
form that serves as a standard framework, to which all specific cases can be reduced. Given
g+, g− : N× Z 7→ R+ , we define the following generator:

Ag+,g−J(η) =
∑
i∈Z

g+(η(i), i)
(
J(ηi,i+1)− J(η)

)
+ g−(η(i), i)

(
J(ηi,i−1)− J(η)

)
, (8)

where g+ (resp. g−) is the rate of jumps to the right (resp. left) from position i. Let us mention
that any ZRP generator on any sub-graph of Z could be written in this generic form.

It can be more convenient to compare their evolution by representing a configuration η
through its height function. For any η ∈ NZ, we define the height function by

hη(j) =

j∑
i=1

η(i), ∀j ∈ Z. (9)

We denote by ΩZ the set of height functions corresponding to configurations on Z. It is endowed
with the order defined by {

h ≥ h̃
}
⇔
{
∀i ∈ Z, h(i) ≥ h̃(i)

}
.

As the asymmetry induces a bias to the right, we can understand this partial order as a compar-
ison of the evolution of the processes, where h is farther than h̃ from the equilibrium.

Remark 3. In the case of ZRP on the segment, we will denote the set of height functions by
ΩN,k = h(Ω0

N,k). In particular, the configuration ∨N,k = kδN is the minimal element and
∧N,k = kδ1 to the maximal element. Due to the bias to the right, the configuration ∧N,k

corresponds to the worst initial condition.
6



The following lemma provides a straightforward criterion to compare different processes,
which is a slight generalization of the usual attractive coupling.

Lemma 1 (Attractivity). Given g+, g−, g̃+, g̃− : N× Z 7→ R+ such that:

∀i ∈ Z, ∀l ≥ m, g̃+(l, i) ≥ g+(m, i) and g̃−(m, i) ≤ g−(l, i). (10)

For any h̃0 ≤ h0 ∈ ΩZ, there exists a coupling such that almost surely:

∀t ≥ 0, h̃t ≤ ht

where h (resp. h̃) follows the dynamic Ag+,g− (resp. Ag̃+,g̃−).

Proof. We introduce a coupling via the following Markov generator:

ÃJ(η, η̃) =
∑
i∈Z

Gi,+ + Gi,− (C )

where
Gk,±J(η, η̃) = (g±(η(i), i) ∧ g̃±(η̃(i), i))

(
J
(
ηi,i±1, η̃i,i±1

)
− J(η, η̃)

)
+ [g±(η(i), i)− g̃±(η̃(i), i)]+

(
J
(
ηi,i±1, η̃

)
− J(η, η̃)

)
+ [g̃±(η̃(i), i)− g±(η(i), i)]+

(
J
(
η, η̃i,i±1

)
− J(η, η̃)

)
.

As usual, we want particles for the two processes to jump simultaneously as much as possible.
We denote by

E = {(h, h̃) ∈ Ω2
Z, h ≥ h̃}.

It remains to show that if h ≥ h̃ then Ã1E(h, h̃) ≥ 0. We remark that the jump from i ∈ Z that
may contribute negatively are:

• A jump to the right of an η–particle without an η̃–particle jump when h(i) = h̃(i). In
such a case, η(i) ≤ η̃(i) which implies that g+(η(i), i) ≤ g̃+(η̃(i), i).

• A jump to the left of an η̃–particle without an η–particle jump when h(i−1) = h̃(i−1).
In such a case, η(i) ≥ η̃(i) which implies that g−(η(i), i) ≥ g̃−(η̃(i), i).

In both cases, the corresponding term in the generator is null which concludes the proof. □

Remark 4. As g is non–decreasing, we recover the attractivity of ZRP :
For any h̃0 ≤ h0, there exists a coupling such that almost surely for any t ≥ 0, h̃t ≤ ht.

One can see the attractivity as the analogue of the L1–contraction of entropy solution to (CL).
It can also be seen as a microscopic counterpart of the Hamilton–Jacobi’s maximum princi-
ple. The attractivity is the key argument in the proof of the hydrodynamic limit of the ZRP in
[30],[18, Chapter 6] and also for Theorem 1.

We will also seek to transfer information about the macroscopic behaviour of ZRP on Z to
the ZRP on subintervals. In the spirit of [19, Lemma 18] and [3, Lemma 3.3], the same coupling
(C ) guarantees a comparison of both processes for short times and far from the border. The
proof is identical that in the references but we include it for completeness.

Lemma 2 (Comparison far from borders). Given a < b ∈ Z∪ {±∞}, β ∈ R+, let η be a ZRP
(g, p) on Z and η̃ a ZRP (g, p) on JaN, bNK coupled according to (C ).
There exists a constant C > 0 such that for any a′, b′ ∈ R such that a < a′ < b′ < b

lim
N→∞

sup
η0=η̃0∈NZ∑
i η̃0(i)≤βN

sup
s∈[0,Cε]

E

[
1

N

b′N∑
i=a′N

∣∣∣η sN
p−q

(i)− η̃ sN
p−q

(i)
∣∣∣] = 0,

where ε = min(b− b′, a′ − a).

Proof of Lemma 2. Given such a′, b′ ∈ R. We introduce
7



• H : R 7→ [0, 1] smooth, non-increasing, equal to 1 on R−and to 0 on [1,∞).
• q : R 7→ [0, 1] equal to 0 on [a′, b′], to 1 on (−∞, a′ − 2ε

3
] ∪ [b′ + 2ε

3
,∞) and such that

∥q′∥∞ ≤ 3ε−1.

We denote by J(t, x) = H
(

6g⋆

(p−q)ε
t+ q(x)

)
. Then, there exists c, C > 0 such that J(t, x) > c

for any (t, x) ∈ [0, Cε]× [a′, b′] which implies:

E

(
1

N

b′N∑
i=a′N

∣∣∣η tN
p−q

(i)− η̃ tN
p−q

(i)
∣∣∣) ≤ E

(
1

cN

∑
i∈Z

J

(
t,

i

N

) ∣∣∣η tN
p−q

(i)− η̃ tN
p−q

(i)
∣∣∣) .

Since η0 = η̃0, we have:∑
i∈Z

J

(
t,

i

N

) ∣∣∣η tN
p−q

(i)− η̃ tN
p−q

(i)
∣∣∣ = Mt + It (11)

where M is a martingale with M0 = 0 and

It =

∫ t

0

ds

[∑
i∈Z

∂tJ

(
s,

i

N

) ∣∣∣η sN
p−q

(i)− η̃ sN
p−q

(i)
∣∣∣+ N

p− q
J

(
s,

i

N

)
Ã
∣∣∣η sN

p−q
(i)− η̃ sN

p−q
(i)
∣∣∣] .

As J is equal to 0 as soon as x /∈ [a′ − 2ε
3
, b′ + 2ε

3
], we obtain:∑

i∈Z
J

(
s

N
,
i

N

)
Ã |ηs(i)− η̃s(i)|

≤
∑
i∈Z

p

[
J

(
s,
i+ 1

N

)
− J

(
s,

i

N

)] ∣∣∣η sN
p−q

(i)− η̃ sN
p−q

(i)
∣∣∣ ordi,i+1

+
∑
i∈Z

q

[
J

(
s,
i− 1

N

)
− J

(
s,

i

N

)] ∣∣∣η sN
p−q

(i)− η̃ sN
p−q

(i)
∣∣∣ ordi,i−1,

where ordi,j = 1(η(i)−η̃(i))(η(j)−η̃(j))≥0. Since the number of particles is bounded by βN and J
is smooth, there exists CJ,β > 0 such that for any t ≤ Cε

It ≤ CJ,β +

∫ t

0

ds
∑
i∈Z

(∂tJ +
2g⋆

p− q
|∂xJ |)

(
s

N
,
i

N

) ∣∣∣η sN
p−q

(i)− η̃ sN
p−q

(i)
∣∣∣.

Finally, we observe that ∂tJ + 2g⋆

p−q
|∂xJ | ≤ 0 which implies for any t ∈ [0, Cε]:

E

(
1

cN

∑
i∈Z

J

(
t,

i

N

) ∣∣∣η tN
p−q

(i)− η̃ tN
p−q

(i)
∣∣∣) ≤ CJ,β

N
,

and concludes the proof. □

3.2. Link with the exclusion process. Let us recall the generator of the asymmetric exclusion
process (ASEP ) on a segment:

Aex
N J(η) =

N−1∑
i=1

pη(i)[1−η(i+1)]
(
J(ηi,i+1)− J(η)

)
+

N∑
i=2

qη(i)[1−η(i−1)]
(
J(ηi,i−1)− J(η)

)
.

For any configuration ξ ∈ Ω0,ex
N,k =

{
ξ ∈ {0, 1}IN+k−1 ,

∑N+k−1
i=1 ξi = k

}
, we define E(ξ) ∈

Ω0
N,k according the following rules:

• Label (zi)Ni=1 the position of empty-sites on the configuration ξ. Fix z0 = 0 and zN =
N + k + 1

8



• On each site i, put zi − zi−1 − 1 particles.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

p q q

FIGURE 2. The exclusion configuration corresponding to the figure (Fig.1.1)

It is easy to see that E is a bijection from Ω0,ex
N,k to Ω0

N,k. Moreover, it is well-known that ZRP
is in bijection with ASEP on a segment IN+k−1 with k particles if the rate function is constant
[15, 12].

Lemma 3 (Link between ZRP and SEP). If (ηt)t≥0 is a ZRP with a rate function g = 1x≥1

started at η0, then process (E−1(ηt))t evolves according to Aex
N started at E−1(η0).

3.3. Hamilton Jacobi Equation. In this subsection, we recall uniqueness and stability prop-
erties of the Hamilton-Jacobi equation on Ω̄ = [0,+∞)× R{

∂tU + Φ(∂xU) = 0, t, x ∈ Ω
U(0, ·) = U0,

(HJ)

where Ω = (0,+∞)× R. Let us assume that Φ is strictly convex.
Barron and Jensen introduced in [7] a notion of viscosity solution adapted for discontinuous

initial data.

Definition 1. A bounded lower semicontinuous function is a Barron–Jensen solution (BJ) iff
for all φ ∈ C1(Ω̄) and at each maximum point (t0, x0) ∈ Ω of U − φ, we have

∂tφ(t0, x0) + Φ(∂xφ(t0, x0)) = 0. (BJ)

Remark 5. The Barron–Jensen notion of viscosity solution is also called the “bilateral so-
lution” and is equivalent to the Crandall–Lions viscosity solution if Φ is convex and U ∈
W 1,∞

loc (Ω) [7, Theorem 2.3].

This notion ensures the uniqueness of the solution to (HJ).

Theorem 4 ([6, Theorem 5.14]). Assume that U0 is a l.s.c bounded function. There exists at
most one l.s.c function U which satisfies both (BJ) and

u(x, 0) = u0 on RN .

It is also well-known that if the initial data U0 is Lipshitz, the viscosity solution is given by
the Hopf–Lax formula:

U(t, x) = inf
y∈R

(
U0(y) + tΨ

(
x− y

t

))
(12)

where we recall that Ψ is the convex conjugate function of Φ. Demengel and Serre proved in
[13] that the Hopf–Lax formula is stable.

Proposition 1 ([13, Proposition 4.1]). Given a sequence (u0,n) bounded in L1(R) and converg-
ing vaguely to a measure u0,∞, let

∀n ∈ N ∪ {∞}, Un(t, x) = inf
y∈R

(∫
(−∞,y)

u0,n(z)dz + tΨ

(
x− y

t

))
.

Then, for any t ≥ 0, x ∈ Cont(U(t)), (Un(t, x)) converge to U∞(t, x) defined by the Hopf–Lax
formula.

9



In the reference, the convergence is stated to be point-wise which is not the case even for
t = 0. Nonetheless, the proof yields the convergence at continuity points.
On the other hand, Barron and Jensen proved the stability of their solutions in [7, Corollary 3.9].
The proof is provided for a bounded Hamiltonian but can easily be extended to our framework.
Thus, we have the following corollary:

Corollary 1. Given u0 ∈ M+(R) with finite mass, the unique Barron–Jensen solution U is the
function given by the Hopf–Lax formula (12) where

U(0, x) =

∫
(−∞,x)

u0(dy) on R.

Since in our case Φ′ is non-negative, the characteristics always point towards the right direc-
tion. The uniqueness result can be generalized by specifying the influence domain.

Lemma 4. Assume that U0, V0 are l.s.c bounded functions and that there exists C > 0 such
that:

U0(x) = V0(x), ∀x ∈ (−∞, C]

then, U(t, x) = V (t, x) for all x < C + tΦ′(0).

Proof. For any t > 0, x ∈ R, we observe that if y is such that x−y
t

≥ Φ′(0) then Ψ
(
x−y
t

)
= 0.

So, the infimum can be taken on the smaller set y ∈ (−∞, x − Φ′(0)t]. This implies the
lemma. □

Remark 6. We emphasize that all these results can be adapted in the case of a strictly concave
flux by replacing l.s.c with u.s.c and maximum by minimum. It is sufficient to consider V (t, x) =
U0(∞)− U(t,−x). The Hopf-Lax formula becomes:

U(t, x) = sup
y∈R

(∫
(−∞,y]

u0(dz)− tΨ

(
x− y

t

))
, (13)

where Ψ is the convex conjugate of −Φ.

3.4. Hydrodynamic limit on Z. In this subsection, we consider the ZRP on Z. Let M+(R)
be the space of non–negative measures on R endowed with the weak topology.
We consider (ηN,0)N ∈ NZ a sequence of configurations and we define the empirical measure
associated with the process ηN,t:

ρN,t(dy) =
1

N

∑
i∈Z

ηN,t(i)δi/N(dy).

Note that we extended the empirical measure to the hole line Z.

Theorem 5 (Hydrodynamic limit on Z). Given u0 ∈ M+(R) with a finite mass, we consider
the Barron–Jensen viscosity solution to{

∂tU + Φ(∂xU) = 0, t, x ∈ Ω
U(0, ·) = U0,

(14)

where U0 is the cumulative distribution function of u0. Let (ρN(0, dy))N be a sequence weakly
convergent in law to u0(dx).
We assume that there exists A > 0 such that:

lim
N→∞

P (ρN(0,R \ [−A,A]) = 0) = 1. (15)

Then, the sequence (t → ρN, Nt
p−q

)N converge in law in D(R+,M+(R)) to a measure-valued
function t → u(t, dx). More over, for each t ≥ 0, the c.d.f of (ut(dx)) is (Ut)

⋆, the u.s.c
envelope of Ut.
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Rezakhanlou [30] has proved the hydrodynamic limit when the initial configuration is sam-
pled according to a local equilibrium ⊗i∈Zν (ui,N) where

lim
N→∞

∫
|x|≤ℓ

∣∣u[xN ],N − u0(x)
∣∣ dx = 0

and u0 has a bounded density with respect to the Lebesgue measure. Actually, in [30], g is
assumed to be bounded. We underline that one can adapt the proof [18, Theorem 0.3, Chapter
8] to generalise the result to non-bounded g when (ρN,0) are compactly supported. Our the-
orem generalizes the hydrodynamic limit to irregular initial data, as we want to consider the
macroscopic behaviour for u0 = δ0.

Let us denote QN the law of t 7→ ρN, Nt
p−q

. The proof is based on a tightness and uniqueness
argument.

Lemma 5 (Tightness). The sequence (QN)N is tight. Moreover, if Q is any limit point of
(QN)N , then for Q almost every u, u is weakly continuous in t.

The proof of this lemma is a standard argument similar to the tightness proof on the segment
(Lemma 6) and we omit it.

Proof of Theorem 5. Let Q⋆ be a limit point of QN . The idea is to trap the process η between
two processes with more regular initial data. For any ε > 0, we introduce the following func-
tions

U ε
0(x) = inf

y

{
U0(y) +

|x− ε− y|2
ε2

− ε

}
+

,

Ū ε
0 (x) = ιε(x) + sup

y

{
U0(y)−

|x+ ε− y|2
ε2

}
.

where ιε is a smooth function equal to 0 on (−∞,−A− 2] and ε on [−A− 1,∞). We denote
their associated unique viscosity solution by U ε and Ū ε. We also denote by

inf
ε
Ū ε = Ū et sup

ε
U ε = U

For any ε > 0, U ε
0 and Ū ε

0 are Lipschitz, non-decreasing, bounded, and converge to zero
when x goes to −∞. We can thus consider two ZRP with the following initial configurations:

ξ̄ε0 ∼ ⊗i∈Zν
(
N
[
Ū ε
0, i

N
+ 1

2N
− Ū ε

0, i
N
− 1

2N

])
and ξε

0
∼ ⊗i∈Zν

(
N
[
U ε

0, i
N
+ 1

2N
− U ε

0, i
N
− 1

2N

])
.

By [30, Theorem 1.3], the hydrodynamic limit of ξε (resp. ξ̄ε) corresponds to the solution of
HJ with initial data U ε

0 (resp Ū ε
0 ).

Let us denote by EN , the event where for any x ∈ R,

U0

(
x− ε

2

)
− ε

2
≤ h(Nx) ≤ U0

(
x+

ε

2

)
+

ε

2
;

h̄ε
0(Nx) ≥ Ū ε

0

(
x− ε

2

)
− ε

2
;

hε
0(Nx) ≤ U0

(
x+

ε

2

)
+

ε

2
.

By using the Levy distance, we obtain that QN(EN) converges to 1. Thanks to the choice of
Ū ε
0 , U

ε
0 and the assumption (15), we obtain on the event EN :

hε
0 ≤ h0 ≤ h̄ε

0.
11



A similar coupling as (C ) ensures for any t ≥ 0, ε > 0, and almost surely on EN ,

hε
t ≤ ht ≤ h̄ε

t .

By using the hydrodynamic limit of ξε and ξ̄ε, we obtain for any t ≥ 0,

Q⋆-a.s, ∀x ∈ Cont(Ut), U ε
t ≤ Ut ≤ Ū ε

t (16)

where Cont(Ut) are the continuity point of Ut. By making ε go to 0, we have for any t ≥ 0:

Q⋆-a.s, ∀x ∈ Cont(Ut), U t ≤ Ut ≤ Ūt. (17)

By Proposition 1, U(t, x) = Ū⋆(t, x) on their continuity point. Thus, we obtain ∀t ≥ 0,

Q⋆-a.s, ∀x ∈ Cont(Ut), Ut = U t

which uniquely determines Q⋆. □

4. HYDRODYNAMIC LIMIT ON THE SEGMENT

Let (ηN,0) ∈ ΩN,k such that the associated empirical measure (ρN,0) weakly converge to
u0 ∈ M+([0, 1]). The proof is also a tightness–uniqueness argument. We denote by QN the
law of t → ρN, N

p−q
t.

Lemma 6 (Tightness). The sequence (QN)N is tight. Moreover, if Q is any limit point of
(QN)N , then for Q–almost every u, u is weakly continuous in t.

The main argument is the point-wise convergence of the cumulative distribution functions.

Proposition 2 (Concentration on BJ solution). Given (ηN,0) ∈ ΩN,k such that the associ-
ated empirical measure ρN,0 weakly converge to u0 ∈ M+([0, 1]), we consider U the unique
Barron–Jensen viscosity solution associated to (HJ) where U0 is the c.d.f of u0.
For any t ≥ 0, δ > 0 and y ∈ (0, 1) ∩ Cont(Ut), we obtain

lim
N→∞

P
(∣∣∣∣ 1N hN, Nt

p−q
(yN)− U(t, y)

∣∣∣∣ ≥ δ

)
= 1.

The proof of Lemma 6 and Proposition 2 are deferred to the next subsections.

Proof of Theorem 1. Given Q⋆ a limit point of QN , the previous lemma implies that for any
t ≥ 0,

Q⋆ − a.s, y ∈ (0, 1) ∩ Cont(Ut),

∫ y

−∞
π⋆
t (dy) = U(t, y)

The total number of particles is conserved. Thus, for any t ≥ 0,

Q⋆ − a.s, π⋆
t ([0, 1]) = α

which uniquely determine Q⋆. □

4.1. Proof of Lemma 6: By [18, Proposition 1.7], it is sufficient to show that for any J ∈
C∞([0, 1]), the sequence (t → ⟨ρN, N

p−q
t, J⟩ is tight. Since the total mass of the empirical

measure is bounded, it remains to prove that for any T > 0:

lim
δ↓0

lim
N→∞

E

[
sup

s,t⩽T,|t−s|⩽δ

∣∣∣〈ρN, N
p−q

t − ρN, N
p−q

s, J
〉∣∣∣] = 0 (18)

Let f(η) = 1
N

∑N
x=1 J

(
x
N

)
η(x). We consider the associated martingale (MN,t) such that for

any t ≥ 0

f
(
ηNt, Nt

p−q

)
− f

(
ηN, Ns

p−q

)
=

∫ Nt
p−q

Ns
p−q

ANf (ηN,r) dr +MN, N
p−q

t −MN, N
p−q

s. (19)
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A direct computation shows that∣∣∣∣∣
∫ Nt

p−q

Ns
p−q

ANf (ηN,r) dr

∣∣∣∣∣
=

∣∣∣∣∣
∫ Nt

p−q

N
p−q

t

1

N

N−1∑
x=1

(pg(ηr(x))− qpg(ηr(x+ 1)))

(
J

(
x+ 1

N

)
− J

( x

N

))
dr

∣∣∣∣∣
≤ ∥∇J∥∞g⋆δ

k

N
. (20)

On the other hand, we obtain by Doob inequality:

E
(
sup
s≤T

M2
N, Ns

p−q

)
≤ E

(
M2

N, NT
p−q

)
= E

(∫ NT
p−q

0

ANf (ηN,r)
2 − 2f (ηN,r)ANf (ηN,r)

)

=
1

N2
E

(∫ NT
p−q

0

N−1∑
x=1

(pg(ηr(x)) + qg(ηr(x+ 1)))

(
J

(
x+ 1

N

)
− J

( x

N

))2
)

≤ kCJ,T,g

(p− q)N3
. (21)

Clearly, (20) and (21) imply (18). □

4.2. Proof of Proposition 2 (Lower bound). The idea is to compare the process on the seg-
ment to the process on Z through two different couplings.

Given t⋆, δ, ε > 0, we fix R = 6g⋆t⋆

p−q
. We denote by C the constant given by Lemma 2

for a = 0 and b = +∞. As the macroscopic comparisons are valid only over a period of
NCε
(p−q)

, we introduce a time subdivision (ti)i∈N = (Cε
2
i)i∈N. For convenience, let us denote

(Ti)i∈N = ( CNε
2(p−q)

i)i∈N.

We introduce a first process η̃ on the subgraph N started at η̃0 = η(· − ⌊2εN⌋) which we
couple with the ZRP process η on the segment following (C ). For any t ≥ 0,

h̃N,t ≤ hN,t, a.s. (22)

Then, we define η̂ a ZRP on Z coupled with η̃ according to (C ) on [Ti, Ti+1) and updated at
each Ti by imposing η̂ = η̃. We claim that for any t ≤ 2t⋆, the sequence (π̂(t, dy))N converge
in law for the weak topology to the measure ∂x[U

⋆
t (· − 2ε)].

Thanks to Theorem 5, it is sufficient to prove the claim for each update ti ≤ 2t⋆. We argue
by induction and we assume that the claim holds at ti−1.
Let us denote E = {∀s ≤ t⋆, h̃(s, RN) = k}. Thanks to Lemma 1, we can couple η̃ with k
independent particles jumping only to the right with rate pg⋆. Thus,

P (E) ≥ 1− P
(

max
i=1,··· ,k

Xi ≥ RN

)
,

where Xi are independent Poisson variables with parameters 2g⋆Nt⋆

p−q
. Lemma 13 implies that

r.h.s term converges to 1.
13



Given a bounded continuous test function J , we obtain on the event E by the triangular inequal-
ity:∣∣∣∣∣ 1N ∑

x∈Z
J
( x

N

)
η̂
(
[Ti]

+, x
)
−
∫

J(x+ 2ε)∂xU
⋆
ti
(dx)

∣∣∣∣∣ ≤ Ai,N +Bi,N + Ci,N +Di,N , (23)

where

Ai,N =
2∥J∥∞
N

NR∑
x=εN

∣∣η̃ (Ti, x)− η̂
(
[Ti]

− , x
)∣∣

Bi,N =
k

N
sup
x≤ε

|J(x)− J(0)|

Ci,N =

∣∣∣∣∣ 1N
RN∑

x=εN

J(x/N)η̂
(
[Ti]

− , x
)
−
∫ R−2ε

−ε

J(x+ 2ε)∂xU
⋆
ti
(dx)

∣∣∣∣∣
Di,N =J(0)

∣∣∣∣∣ 1N
RN∑

x=εN

η̂
(
[Ti]

− , x
)
− k

N

∣∣∣∣∣ .
First, (Ai,N) converges to 0 in expectation by Lemma 2. The second term vanishes by continu-
ity of J in 0. By the induction assumption, (Ci,N) and (Di,N) converge in probability to zero
which concludes the proof of the claim.

Consequently, for any t ≤ 2t⋆ and x ∈ R such that x− 2ε ∈ Cont(Ut):

P
(∣∣∣h̃ Nt

p−q
(Nx)− U(t, x− 2ε)

∣∣∣ ≥ δ

2

)
≤ P (Ec) +

16

ε
E

 1

N

∑
x∈JεN,RNK

|η̃ Nt
p−q

(x)− η̂ Nt
p−q

(x)|


+ P

(∣∣∣∣∣
RN∑
j=εN

η̂ Nt
p−q

(j)− α

∣∣∣∣∣ ≥ δ

8

)
+ P

(∣∣∣ĥ Nt
p−q

(Nx)− U(t, x− 2ε)
∣∣∣ ≥ δ

8

)
.

where Ec the complementary event. The third and fourth right-hand side terms converge to zero
thanks to the hydrodynamic limit of η̂. Lemma 2 guarantees the convergence of the second
term. Thus,

P
(∣∣∣h̃ Nt

p−q
(Nx)− U(t, x− 2ε)

∣∣∣ ≥ δ

2

)
−−−→
N→∞

0.

By (22), we obtain

lim
N→∞

P
(

1

N
hN,t(xN) ≥ U(t, x− 2ε)− δ

2

)
= 1.

Finally, Cont(Ut) is dense and for any x ∈ Cont(Ut), we can choose ε > 0 such that

x− 2ε ∈ Cont(Ut) and U(t, x− 2ε) ≥ U(t, x)− δ

2
.

Thus,

lim
N→∞

P
(

1

N
hN,t(xN) ≥ U(t, x)− δ

)
= 1, ∀δ > 0.

□
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4.3. Proof of Proposition 2 (Upper bound). The proof follows a similar approach to the
lower bound proof, but we need to be cautious at the boundary at N . Thanks to Lemma 1, it is
sufficient to prove the same result on the subgraph J−∞, NK.

Lemma 7. Let η̃N a ZRP on J−∞, NK started at ηN,0. For any t, δ > 0 and y ∈ (0, 1) ∩
Cont(Ut):

lim
N→∞
k/N→α

P
(

1

N
h̃N, Nt

p−q
(yN) ≤ U(t, y) + δ

)
= 1.

Proof of Lemma 7. Given δ, t⋆ > 0 and ε > 0. We fix R = 6g⋆t⋆

p−q
and C the constant pro-

vided by the Lemma 2 for a = −∞ and b = 1. As above, we introduce a time subdivision
(ti)i∈N = (Cε

2
i)i∈N and (Ti)i∈N = ( CNε

2(p−q)
i)i∈N.

Whenever we use Lemma 2, we lose information about the density profile between (1−ε)N
and N . Unlike the lower bound, this part may contain a non-negligible number of particles.
To get around this, we introduce a delayed version at each ti where we gather the particles at a
well-chosen point before N(1−ε). This is still sufficient as we are looking for an upper bound.
More precisely, let us define the function V d by:

• For any t ∈ [t0, t1), V d
t = Ut where Ut is the Barron–Jensen viscosity solution to (HJ)

with U0 as initial condition.
• For any i ∈ N, there exists yi ∈ ContV d(t−i ) ∩ (1− 2ε, 1− ε){

V d(x, ti) = V d(x, t−i ) if x ≤ yi,
V d(x, ti) = α if x > yi.

For any t ∈ (ti, ti+1], V d is equal to the Barron–Jensen viscosity solution started at
V d(ti).

As the updates at each ti affect only the function on a support [1− 2ε,+∞), Lemma 4 implies
that V d = U for any t ≥ 0 and x ≤ 1− 4ε.

We also define the microscopic analog η̃d to V d on K −∞, NJ

• For any t ∈ [0, T1), η̃d is set to be equal to η̃.
• For any i ∈ N, conditionally on σ (η̃(s), s ≤ Ti)

η̃d (x, Ti) = η̃d(x, T−
i ) if x < ⌊Nyi⌋,

η̃d(x, Ti) =
∑N

y=⌊Nyi⌋ η̃
d(y, T−

i ) if x = ⌊Nyi⌋,
η̃d(x, Ti) = 0 if x > ⌊Nyi⌋.

This modification delays the evolution. More precisely, h̃d(T+
i , ·) ≥ h̃(T+

i , ·). For any
t ∈ (Ti, Ti+1], both processes evolve according to (C ) to respect the order of height
functions.

We finally introduce a ZRP η̂d evolving on Z coupled with η̃d according to C and updated on
each Ti as for η̂d. We claim that

Lemma 8. For any t ≤ 2t⋆, the sequence
(
π̂d
(

Nt
p−q

, dy
))

N
converges in law (in the weak

topology) to the measure ∂xV
⋆
t .

15



We defer the proof of this lemma to the end of this sub-section. For any t ≤ 2t⋆, x ∈
Cont (Ut) ∩ (−∞, 1− 4ε):

P
(∣∣∣h̃d

Nt
p−q

(Nx)− U(t, x)
∣∣∣ ≥ δ

)
≤ P

(
h̃d

Nt
p−q

(−RN) ≥ δN

3

)

+
3

δ
E

 1

N

∑
j∈J−RN,N(1−ε)J

|η̃dNt
p−q

(j)− η̂dNt
p−q

(j)|

+ P
(∣∣∣π̂d

Nt
p−q

(J−NR,NxK)− U(t, x)
∣∣∣ ≥ δ

3

)
.

The second right-hand side term vanishes as N goes to infinity thanks to Lemma 2 and Lemma
8 implies the convergence to zero of the third term.
By Lemma 1, we can couple the process η̃d with a process of k independent particles that jumps
only to the left with a rate qg⋆. Thanks to this coupling, we obtain for any s ≤ 2t⋆

p−q
,

P
(
h̃d
sN(−RN) ≥ 1

)
≤ P

(
max
i=1,·,k

Xi ≥ RN

)
, (24)

where (Xi)
k
=1 are independent Poisson variables with parameter 2qg⋆Nt⋆

p−q
. Lemma 13 implies

for any t ≥ 0 and x ∈ Cont (Ut) ∩ (−∞, 1− 4ε):

lim
N→∞

P
(∣∣∣h̃d

Nt
p−q

(Nx)− U(t, x)
∣∣∣ ≥ δ

)
= 0.

Since h̃d ≥ h̃, we conclude the proof, up to Lemma 8. □

We turn to prove the last lemma.

Proof of Lemma 8. We first recall that for any i ≤ i⋆, {h̃d
T+
i

(−RN) ≥ 1} occurs with proba-
bility converging to one. Thanks to Theorem 5, it remains to prove the convergence for each
update ti ≤ 2t⋆.

As above, we argue by induction and we assume that the lemma holds at ti−1. Given a
bounded continuous test function J , we obtain almost surely on {h̃d

T+
i

(−RN) ≥ −RN}:∣∣∣∣∣ 1N ∑
x∈Z

J
( x

N

)
η̂d (Ti, x)−

∫
J(x)∂xV

⋆
ti
(dx)

∣∣∣∣∣ ≤ Ai,N +Bi,N + Ci,N +Di,N , (25)

where

Ai,N =
2∥J∥∞
N

∑
x∈J−RN,N(1−ε)K

∣∣η̃d ([Ti]
− , x

)
− η̂d

(
[Ti]

− , x
)∣∣

Bi,N =

∣∣∣∣J (⌊Nyi⌋
N

)
k

N
− J(yi)α

∣∣∣∣
Ci,N =

∣∣∣∣∣ 1N
yiN∑

x=−NR

J(x/N)η̂d
(
[Ti]

− , x
)
−
∫ yi

−R

J(x)∂xV
⋆
t−i
(dx)

∣∣∣∣∣
Di,N =

∣∣∣∣∣∣
J
(

⌊Nyi⌋
N

)
N

yiN∑
x=−NR

η̂d
(
[Ti]

− , x
)
− J(yi)

∫ yi

−R

∂xV
⋆
t−i
(dx)

∣∣∣∣∣∣ .
First, (Ai,N) converges to 0 in expectation by Lemma 2. The second term converges to 0 by
continuity of J . By the induction assumption and Theorem 5, we obtain the convergence in
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law of
(
π̂d
(
T−
i , dy

))
N

to ∂xVt−i
. Thus, (Ci,N) and (Di,N) converge to 0 in probability as Vt−i

is
continuous in yi and −R. □

5. PROOF OF LOWER AND UPPER BOUNDS ON THE MIXING TIME

In this section, we prove the main theorems on the mixing time.
Let us recall that ∧N,k = kδ1 and ∨N,k = kδN . For the sake of clarity, we will omit the

indices when it is clear from the context. As mentioned, ∧ corresponds to the configuration
farthest from the equilibrium. By Theorem 1, its macroscopic density evolution is described
by Uα the unique Barron–Jensen solution of (HJ) and its macroscopic equilibrium time Teq,p,α

corresponds to the mixing time.

5.1. Lower bound of the mixing time. The proof of the lower bound relies on the hydro-
dynamic limit of the ZRP on the segment and uses the position of the left-most particle as a
distinctive statistic.
Given a configuration η ∈ Ω0

N,k, we denote by ℓ(η) the position of the left-most particle. The
following lemma controls ℓ(η) when η is sampled according to the equilibrium measure πN,k.
The proof is the analogue of [19, Lemma 11] and [25, Proposition 11].

Lemma 9 (Concentration of ℓ(η)). There exists Cg depending on g, p such that for any N, k, δ ∈
N:

πN,k (ℓ(η) ≤ N − δ) ≤ Cgg(k)

(
p

q

)−δ

. (26)

Proof. We observe that

πN,k(η
i,N)

πN,k(η)
=

(
p

q

)N−i
g(η(i))

g(η(N) + 1)
≥ g(1)

g(k)

(
p

q

)N−i

,

where ηi,N is the configuration obtained by moving a particle from a position i is moved to the
position N . Thus,

πN,k(ℓ(η) = i) =
∑

η,ℓ(η)=i

πN,k(η) ≤
g(k)

g(1)

(
p

q

)−(N−i) ∑
η,ℓ(η)=i

πN,k(η
i,N) ≤ g(k)

g(1)

(
p

q

)−(N−i)

.

We obtain the lemma by summing over i ≤ N − δ. □

We can now prove Theorem 2.

Proof of Theorem 2. As mentioned above, it is natural to consider as initial condition ∧. We
obtain for any δ > 0,

dN,k ((Teq,p,α − δ)N) ≥ ∥P∧
(Teq,p,α−δ)N − πN,k∥TV

≥ P∧
(Teq,p,α−δ)N (ℓ (η) ≤ N − εN)− πN,k (ℓ(η) ≥ N − εN) .

where P∧
t is the law of the process started at ∧. Since

Teq,p,α =
1

p− q
inf{t > 0, Uα(t, dx) ≤ α1x>1}, (27)

the hydrodynamic limit on the segment (Theorem 1) implies that for any δ > 0, there exists
ε ∈ (0, 1),

lim
N→∞
k/N→α

P∧
(Teq,p,α−δ)N (ℓ (η) ≤ N − εN) = 1.

Lemma 9 concludes the proof. □
17



Remark 7. Let us emphasise that the same method would apply for g of polynomial growth if
the hydrodynamic limit holds.

5.2. Upper bound: totally asymmetric jumps and convex flux. Let us first observe that as
p = 1, the system is mixed when it reaches the configuration ∨. Thanks to the attractivity, we
have in particular

∀t ≥ 0, dN,k(t) = P∧
t (h(N − 1) > 0) .

On the other hand, the Hopf–Lax formula written (12) as:

Uα(x, t) = inf{ inf
z≤x

t

[α + tΨ(z)]; inf
z≥x

t

[tΨ(z)]}

implies that the macroscopic equilibrium is reached at

Teq,1,α =
1

Φ′(0)
=

1

g(1)
.

As Teq,1,α depends only on the value of g in 1, the idea is to couple through (C ) with the linear
rate function, the simplest and slowest convex rate function.

We consider a ZRP (ηind) started at ∧ and a linear rate function gind : x → g(1)x. Since
g ≥ gind, we couple both processes according to (C ) to obtain almost surely for any t > 0:

hind
t ≥ ht.

We recall that ZRP with a linear rate corresponds to independent random walks. Consequently,
we obtain for any t ≥ 0,

dN,k(t) = P (ht(N − 1) > 0) ≤ P
(
hind
t (N − 1) > 0

)
= 1− P (P(tg(1)) ≥ N)k .

If t is fixed to N
(

1
g(1)

+ ε
)

, the limit is zero, which yields the first assertion of Theorem 3.

5.3. Upper-bound: Concave flux. In this subsection, we will work within the framework of
Theorem 3.2. The main idea is to show that the leftmost particle and the number of particles at
position N approach their equilibrium state around NTeq,p,α. Once there, the system will mix
rapidly. Let us denote by:

LN,k = ℓ(∧t), and SN,k = ∧t(N), (28)

where (∧t)t is a ZRP(g, p) started from the configuration ∧. We also introduce their macro-
scopic analogue:

∀t ≥ 0,
L α

p (t) = inf{x ∈ R, Uα((2p− 1)t, x) > 0},

S α
p (t) = α− Uα((2p− 1)t, 1−).

(29)

The macroscopic equilibrium time could be written as:

Teq,p,α =
(
L α

p

)−1
(1) =

(
S α

p

)−1
(α).

The following lemma ensures that the microscopic behaviour corresponds to the expected
macroscopic behaviour.

Proposition 3 (Macroscopic behaviour of LN,k and SN,k). For any t ≤ Teq,p,α, we have the
following convergence in probability:

1

N
SN,k(Nt) −−−−→

N→∞
k/N→α

S α
p (t) and

1

N
LN,k(Nt) −−−−→

N→∞
k/N→α

L α
p (t).

18



The proof of this lemma is deferred to Section 6. As in the case of the exclusion process [19,
Proposition 9], we emphasise that the hydrodynamic limit of (∧t) provides only the upper–
bound on LN,k and SN,k: For any δ > 0

∀t ≤ Teq,p,α, lim
N→∞

P
(
SN,k(Nt)

N
≤ S α

p (t) + δ and lim
N→∞

LN,k(Nt)

N
≤ L α

p (t) + δ

)
= 1.

Let us focus on the proof of the second statement of 3.

Proof of Theorem 3.2. By triangular inequality, we have for any t ≥ 0:

dN,k(t) ≤ 2max
h,h′

∥∥∥P h
t − P h′

t

∥∥∥
TV

.

The attractivity of the ZRP permits a first simplification. Indeed, starting for any h, h′, we can
trap their evolution between (∧t) and (∨t) thanks to a similar coupling to (C ):

dN,k(t) ≤ 2max
h,h′

∥∥∥P h
t − P h′

t

∥∥∥
TV

≤ 2P (∧t ̸= ∨t) .

Then, once the process (∧t) reaches the minimal state ∨, the processes (∧s)s and (∨s)s become
identical:

dN,k(t) ≤ 2P (∀s ≤ t, ∧s ̸= ∨) .
For any ε > 0, we define

Eε
N,k =

{
η ∈ Ω0

N,k, ℓ(η) ≥ N(1− ε) and η(N) ≥ (1− ε)k
}
.

We also denote by ∧ε the maximal element of the set Eε
N,k. For any δ > 0, we obtain

dN,k(N [Teq,p,α + δ])

≤ 2P (∀t ≤ N [Teq,p,α + δ] , ∧t ̸= ∨)
≤ 2P

(
∀t ≤ N [Teq,p,α + δ] , ∧t ̸= ∨&∧NTeq,p,α ∈ Eε

N,k

)
+ 2P

(
∧NTeq,p,α /∈ Eε

N,k

)
≤ 2P (∀t ≤ δN, ∧ε

t ̸= ∨) + 2P
(
∧NTeq,p,α /∈ Eε

N,k

)
,

where (∧ε
t) is a ZRP started at ∧ε.

Since Teq,p,α = (L α
p )

−1(1) = (S α
p )

−1(α), Proposition 3 implies that

P
(
∧NTeq,p,α /∈ Eε

N,k

)
−−−−→
N→∞
k/N→α

0.

We compare the system to an exclusion process to control the last term. We denote by ḡ =
maxk g(k). Let us introduce two ZRP (∧̃ε

t) (resp. (∨̃t)) with a modified rate function g̃ =

(pg(1) + qḡ)1·≥1 and a bias p̃ = pg(1)
pg(1)+qḡ

started at ∧ε (resp. ∨). We couple these three
processes with (C ):

∀t ≥ 0, h∧̃t
≥ max(h∧t , h∨̃t

) a.s.
We obtain that:

P (∀t ≤ δN, ∧ε
t ̸= ∨) ≤ P

(
∀t ≤ δN, ∧̃ε

t ̸= ∨
)

≤ P
(
∧̃ε

δ
2
N ̸= ∨̃ δ

2
N

)
+ P

(
∀t ∈

[
δ

2
N, δN

]
, ∨̃t ̸= ∨

)
.

We recall that Lemma 3 implies that the processes (E−1(∨̃t)) and (E−1(∧̃ε
t)) evolve according

to an accelerated exclusion process. So, we can use the same argument as in [19, Theorem 2]
and [20, Lemma 12] since we are reduced to an exclusion process.

In particular, there exists an increasing function fN,k on ΩN,k and such that:

E [fN,k (h
′
t)− fN,k (ht)] ≤ e−ϱt (fN,k (h

′)− fN,k(h)) ,
19



where h, h′ are ZRP (g̃, p̃) coupled according to (C ) and ϱ is a constant (see [20, Equation 45]).
We obtain by Markov’s inequality and [20, Lemma 12]:

P
(
∧̃ε

δ
2
N ̸= ∨̃ δ

2
N

)
≤

E
(
fN,k

(
h∧̃ε

δ
2N

)
− fN,k

(
h∨̃ δ

2N

))
minh≤h′ [(fN,k (h′)− fN,k(h))]

≤ CN

[
pg(1)

qḡ

]εN
e−

δ
2
ρN .

Thus, for a fixed δ > 0, we can choose ε small enough to obtain:

P
(
∧̃ε

δ
2
N ̸= ∨̃ δ

2
N

)
−−−−→
N→∞
k/N→α

0.

Finally, the Markov inequality implies:

P
(
∀t ∈

[
δ

2
N, δN

]
, ∨̃t ̸= ∨

)
≤ 2E∨(τ̃∨)

δN
=

2

δNπ̃N,k(∨)
,

where τ̃∨ an excursion’s duration from the configuration ∨ and π̃N,k the equilibrium measure
of ZRP (g̃, p̃). It is then sufficient to lower–bound π̃N,k(∨) by a constant. For any η ∈ Ω0

N,k,
we have

π̃N,k(∨) ≥ π̃N,k(η)

Thus, for any ∆ > 0,

π̃N,k(∨)#
{
η ∈ Ω0

N,k, ℓ(η) + η(N) ≥ N + k −∆
}
≥ π̃N,k (ℓ(η) + η(N) ≥ N + k −∆)

Due to [19, Lemma 11], we can choose ∆ independent from N, k such that

π̃N,k (ℓ(η) + η(N) ≥ N + k −∆) ≥ 1

2
.

We conclude by observing that

#
{
η ∈ Ω0

N,k, ℓ(η) + η(N) ≥ N + k −∆
}
≤

∆∑
i=1

(
∆

i

)
.

□

Remark 8 (Pre–Cutoff). We emphasise that by using the same approach, we obtain the pre–
cutoff for asymmetric ZRP as long as pg(1) > qḡ and Φ strictly concave (see [26, Chapter 18]
for more background on the Pre–Cutoff). Indeed, we can couple the ZRP to ZRP (g̃, p̃) where
g̃ = (pg(1) + qḡ)1·≥1 and p̃ = pg(1)

pg(1)+qḡ
. By using Lemma 3 and [19, Proposition 9], we have

for any ε > 0:

P
(
∧NT̃eq,p,α

/∈ Eε
N,k

)
−−−−→
N→∞
k/N→α

0,

where T̃eq,p,α is associated to ZRP (g̃, p̃). Then, the same method yields for any θ > 0,

Teq,p,α ≤ lim inf
N→∞
k/N→α

TN,k
mix (θ)

N
≤ lim sup

N→∞
k/N→α

TN,k
mix (θ)

N
≤ T̃eq,p,α
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6. EVOLUTION OF THE LEFT–MOST PARTICLE AND THE STACK AT N

In the sequel, we prove Proposition 3 and assume that the flux Φ is strictly concave and
bounded by ḡ. We recall that

LN,k = ℓ(∧t) and SN,k = ∧t(N) (30)

where (∧t)t is a ZRP(g, p) started from the configuration ∧.
Let us first describe the behaviour of L α

p and S α
p . Thanks to the Hopf–Lax formula (13),

we can explicitly compute Uα.

Uα(t, x) =

{
max

(
0, α− tΨ

(
−x

t

))
if x ≤ g(1)t,

α if x > g(1)t.
(31)

This implies that L α
p (t) = αL

(
(2p−1)t

α

)
and S α

p (t) = S ((2p− 1)t) where

L (t) =

{
0 if t ≤ 1

Ψ(0)
,

−tΨ−1
(
1
t

)
otherwise

, S (t) =

{
0 if t ≤ 1

g(1)
,

tΨ
(
−1

t

)
otherwise.

(32)

These functions are continuous, increasing and strictly convex. Indeed, we can easily compute
their derivatives:

L ′(t) =
Φ (Ψ′ (Ψ−1(1/t)))

Ψ′ (Ψ−1(1/t))
, ∀t ≥ 1

Ψ(0)
, S ′(t) = Φ

(
Ψ′
(−1

t

))
, ∀t ≥ 1

g(1)
.

The proof is now divided into two subsections: 6.1 for the lower–bound on (LN,k) and 6.2 for
the lower–bound on (SN,k). Unlike for the exclusion process, we do not have a particle-hole
symmetry, so we need to prove both estimates.

6.1. Convergence to L α
p . Let us start by noting that the fastest density is the null density.

Thus, if we suppose that a few particles are left behind ⌊NL α
p ⌋, they will travel at a higher

speed and eventually catch up. The proof will rely on this observation. We first prove a partial
version of the Proposition.

Lemma 10. Given ε > 0, let t⋆(ε) =
(
L α

p

)−1
(6g⋆qε). For any κ ∈ N such that t⋆(ε) + (κ−

1)ε ≤ Teq,p,α and any γ > 0,

lim
N→∞
k/N→α

P
(
LN,k[Nt⋆(ε) + κεN ] ≥ N

[
L α

p

(
(κ− 1)ε+

α

λ2(2p− 1)

)
− γ

])
= 1 (Hκ,1)

where λ2 = Ψ(0).

Proof. Given ε > 0, we introduce the associated time subdivision Tκ = N [t⋆(ε) + κε]. For
convenience, we denote Wκ,ε = L α

p

(
κε+ α

λ2(p−q)

)
and Rκ,ε = L α

p (t
⋆(ε) + κε).

We will prove (Hκ,1) by induction on κ. Let us sketch the idea of the proof. At Tκ, the
hydrodynamic limit implies that there are only o(N) particles between NWκ,ε and NRκ,ε. In
the totally asymmetric case, we can follow the same approach as in the convex case. Indeed, let
us remark that when density converges to zero, the asymptotic speed is g(1). So, we can com-
pare to a ZRP with a constant jump rate fixed at g(1) and use the analogous result proven by
Labbé & Lacoin [19, Proposition 9] for ASEP using the bijection between the two processes.
If p ̸= 1, strict concavity of Φ allows for an improvement of the result.
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0 1Rκ,εWκ−1,εWκ,ε

βN

FIGURE 3. The configuration η̃ at t = Tκ zoomed out by a factor N . The red
dashed line corresponds to the added wall.

For κ = 1, the result is trivial. Assume (Hκ,1) holds and that t⋆(ε) + κε ≤ Teq,p,α. Given
γ > 0, we introduce three parameters γ1, γ2, β > 0 that we will choose later.
We define a process η̃ (figure 6.1) initialized at time Tκ by

η̃Tκ (x) =

 0 if x ≤ ⌈NRκ,ε −Nγ2⌉ &x ̸= ⌈NWκ−1,ε −Nγ1⌉ ,
βN if x = ⌈NWκ−1,ε −Nγ1⌉ ,
∧Tκ(x) if x > ⌈NRκ,ε −Nγ2⌉ .

Regarding the dynamics, we impose that no particles cross through the site ⌊NWκ,ε⌋. The
evolution on the sites after ⌊NWκ,ε⌋ will follow a ZRP(g, p) dynamics. However, the particles
on the sites before ⌊NWκ,ε⌋ evolve with a modified rate function g̃ = (pg(1) + qḡ)1·≥1 and a
bias p̃ = pg(1)

pg(1)+qḡ
. Let us remark that the generator could be written in the generic form (8). For

convenience, (ht) (resp.(h̃t)) denotes the height function associated to (∧t) (resp. (η̃t)).
We denote by

E = {LN,k(Tκ) ≥ N [Wκ−1,ε − γ1]} ∩ {hTκ (⌈NRκ,ε −Nγ2⌉) ≤ βN}.
Thanks to Theorem 1 applied to (∧t), we have:

lim
N→+∞

P (hTκ (⌈NRκ,ε −Nγ2⌉) ≤ βN) = 1.

Therefore, the induction assumption (Hκ,1) implies that E occurs with probability converging
to one.

On the event E , we observe that the height functions are ordered:

h̃Tκ ≥ hTκ .

Since p̃g̃ ≤ pg and q̃g̃ = qḡ ≤ qg, the processes (η̃t) and (∧t) coupled through (C ) verify
almost surely on E

∀τ ≥ t ≥ Tκ, h̃t ≥ ht,

where
τ = inf {s ≥ Tκ, η̃s (⌈NWκ,ε⌉+ 1) ≥ 1} ,

the first time that the η̃-particles beyond the wall attempt to cross it.

We obtain the following inequality

P (LN,k (Tκ+1) ≤ N [Wκ,ε − γ])

≤ P ({ℓ(η̃) (Tκ+1) ≤ N [Wκ,ε − γ]} ∩ E) + P (Ec) + P (τ ≤ Nε) .
(33)

Regarding the third term of (33), we couple through (C ) to a process where the particles on
sites i > ⌈NRκ,ε⌉ jump to the left independently from each other with rate qg(1). If τ ≤ Nε,
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at least one of the particles had jumped more than ⌊NRκ,ε −Nγ2⌋ − ⌈NWκ,ε⌉ − 1. We obtain
that

P (τ ≤ ε) ≤ P
(
max

k
Xi ≥ ⌊NRκ,ε −Nγ2⌋ − ⌈NWκ,ε⌉ − 1

)
,

where (Xi)
k
i=1 are independent Poisson variable with parameter qg⋆εN . As L α

p is convex,

Rκ,ε −Wκ,ε ≥ R0,ε −W0,ε ≥ 6εg⋆q.

If we fix γ2 ≤ εg⋆q, Lemma 13 implies that P (τ ≤ Nε) converge to zero.

It remains to control the first term of (33). The process restricted to I⌈NWκ,ε⌉ behaves like a
ZRP(g̃, p̃) on a segment with the following features:

Ñ = ⌈NWκ,ε⌉ , k̃ = βN,

and initialised by ξ = βNδ⌈NWκ−1,ε−Nγ1⌉. Thanks to Lemma 3 and [19, Proposition 13], we
obtain

∀t ≥ (
√
β +

√
Wκ,ε −Wκ−1,ε + γ1)

2

pg(1)− qḡ
, lim

N→∞
P (ℓ(η̃) (Nt+ Tκ) ≥ N [Wκ,ε − γ]) = 1.

To conclude, we should choose β, γ1 verifying:

ε ≥ (
√
β +

√
Wκ,ε −Wκ−1,ε + γ1)

2

pg(1)− qḡ
. (34)

As L α
p is convex, we have

Wκ,ε −Wκ−1,ε ≤ ε(L α
p )

′(Teq,p,α) = ε(p− q)L ′(L −1(1/α))

and since we assumed
pg(1)− qḡ

p− q
> L ′(L −1(1/α)),

we can choose β, γ1 small enough to verify (34) which concludes the proof. □

Remark 9. The condition (7) is due to the comparison to the exclusion process, which lacks
precision. Indeed, we require that the maximal speed attained (L α

p )
′(Teq,p,α) is less than the

highest speed reachable by ZRP (g̃, p̃). The same method would imply a more general solution
if one could control LN,k for small densities.

We can now finish the proof of the lower–bound on LN,k.

Proof of Proposition 3 (Part 1). Given t ≤ Teq,p,α and ε, γ > 0, we fix

κ =

⌊
t− t⋆(ε)

ε
+ 1

⌋
− 1.

As L α
p is non–decreasing,

L α
p

(
(κ− 1)ε+

α

λ2(p− q)

)
≥ L α

p

(
t− t⋆(ε)− 2ε+

α

λ2(p− q)

)
.

Since t⋆(ε) converge to α
λ2(p−q)

and L α
p is continuous, there exist ε1(γ) such that for all ε <

ε1(γ),

L α
p

(
(κ− 1)ε+

α

λ2(p− q)

)
≥ L α

p (t)− γ/3.
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It follows from the previous lemma that:

lim
N→∞
k/N→α

P
(
LN,k(t

⋆(ε)N + κεN) ≥ N
[
L α

p (t)− 2γ/3
])

= 1.

Finally, we observe that
t− ε ≤ t⋆(ε) + κ⋆ε ≤ t.

During N(t−t⋆(ε)+κ⋆ε), LN,k cannot move any further than Nγ/3. Indeed, between t⋆(ε)N+
κεN and t, we couple (∧t) by (C ) to the process where particles jump independently to the left
with rate qg(1). Thus,

P
(
LN,k(tN) ≥ N

[
L α

p (t)− γ
])

≥ P
(
LN,k(t

⋆(ε)N + κεN) ≥ N
[
L α

p (t)− 2γ/3
])

− P
(
max

k
Xi ≥

Nγ

3

)
,

where (Xi)
k
i=1 are independent Poisson variable with parameter N(t⋆(ε) + κ⋆ε − t). Lemma

13 implies the result once ε is small enough. □

6.2. Convergence to S α
p . Let us start with a lemma that guarantees a partial result.

Lemma 11. Given ε > 0 , let t⋆(ε) =
(
S α

p

)−1
(6ḡqε). For any κ ∈ N such that t⋆(ε) + (κ −

1)ε ≤ Teq,p,α and any γ > 0,

lim
N→∞
k/N→α

P
(
SN,k[Nt⋆(ε) + κεN ] ≥ N

[
S α

p

(
(κ− 1)ε+

1

g(1)(2p− 1)

)
− γ

])
= 1 (Hκ,2)

Using the same argument as in Lemma 10 to derive the convergence of LN,k, one can show
that Lemma 11 implies the convergence of SN,k in probability.

Proof. Given ε > 0, we introduce the associated time subdivision Tκ = N [t⋆(ε) + κε]. For
convenience, we denote Wκ,ε = S α

p

(
κε+ α

λ2(p−q)

)
and Rκ,ε = S α

p (t
ε(ε) + κε).

We also prove (Hκ,2) by induction on κ. Let us sketch the proof. The hydrodynamic limit
on the segment implies that on a o(N) window near N , there are NRκ,ε. The strategy consists
of slowing down the NWκ,ε first particles by comparing them to a ZRP with a constant rate.
Consequently, we can use the analogous result proven by Labbé & Lacoin [19, Proposition 9]
to control the flux through N .

For κ = 1, the result is trivial. Assume (Hκ,2) holds and that t⋆(ε) + κε ≤ Teq,p,α. Given
γ > 0, we introduce three parameters γ1, γ2, β > 0 that we will choose later.
We define a coloured process η̃ = η̃b + η̃w (figure 6.2) where we denoted the black particles

0 1β

Wκ−1,ε

Wκ,ε

−Wκ−1,ε

FIGURE 4. The configuration η̃ at Tκ zoomed out by a factor N .
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by η̃b and η̃w the white particles. We initialize them at time Tκ by:

η̃b (x, Tκ) =

 ∧Tκ(x) if x ≤ x ≤ N − ⌈Nβ⌉,
k − hTκ(N − ⌈Nβ⌉ − 1)−NWκ,ε if x = N − ⌈Nβ⌉,
0 otherwise.

and

η̃w (x, Tκ) =


0 if x ≤ x ≤ N − ⌈Nβ⌉,
N [Wκ,ε −Wκ−1,ε + γ1] if x = N − ⌈Nβ⌉,
N(Wκ−1,ε − γ1) if x = N,
0 otherwise.

In particular, on the event

E = {SN,k(Tκ) ≥ N [Wκ−1,ε − γ1]} ∩ {k − hTκ (N − ⌈βN⌉⌉) ≥ N(Rκ,ε − γ2)},
the height functions are ordered

h̃b
Tκ

+ h̃w
Tκ

≥ hTκ ,

where h̃b, h̃w, hTκ are the corresponding height functions.

Regarding the dynamics, the white particles evolve only on JN −⌈Nβ⌉, NK with a modified
rate function g̃ = (pg(1) + qḡ)1·≥1 and a bias p̃ = pg(1)

pg(1)+qḡ
. The black particles evolve only

on IN−⌈Nβ⌉ according to a ZRP (g, p). Let us emphasise that the black and white particles
coexist only on the site N − ⌈Nβ⌉. For this particular site, the jump rate for η̃b to the left is
qg(η̃(N − ⌈Nβ⌉)). In other words, only black particles can see the white ones. We claim the
following:

Lemma 12. There exists a coupling which ensures almost surely on E:

∀τ ≥ t ≥ Tκ, h̃b
t + h̃w

t ≥ ht,

where
τ = inf

{
s ≥ Tκ, η̃bs (N − ⌈Nβ⌉) ≤ 1

}
.

The exact form of the generator of (η̃b, η̃w) and the proof of this lemma are delayed to the
appendix.
From now on, the proof is similar to its counterpart (Lemma 10). We obtain the following
inequality:

P (SN,k (Tκ+1) ≤ N [Wκ,ε − γ])

≤ P
({

η̃wTκ+1
(N) ≤ N [Wκ,ε − γ]

}
∩ E
)
+ P (Ec) + P ({τ ≤ Nε} ∩ E) . (35)

The hydrodynamic limit of (∧t) ensures that

lim
N→+∞

P (k − hTκ (N − ⌈βN⌉⌉) ≥ N(Rκ,ε − γ2)}, ) = 1.

Thus, thanks to the induction assumption Hκ,2, the event E occurs with probability converging
to one.
If τ ≤ Nε on E , there was at least NRκ,ε − Nγ2 − NWκ,ε − 1 jump to the left from the site
N − ⌈Nβ⌉. Thus

P ({τ ≤ Nε} ∩ E) ≤ P (P(Nεḡ) ≥ NRκ,ε −Nγ2 −NWκ,ε − 1) .

By using the convexity of S α
p ,

Rκ,ε −Wκ,ε ≥ R0,ε −W0,ε ≥ 6εḡq.
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If we fix γ2 ≤ εḡq, P ({τ ≤ Nε} ∩ E) converges to zero.

Regarding the third term of (35), we remark that η̃w behaves like a ZRP (g̃, p̃) on a segment
of size βN and with NWκ,ε particles. By mapping the process into an ASEP (Lemma 3), [19,
Proposition 13] implies:

∀t ≥ (
√
β +

√
Wκ,ε −Wκ−1,ε + γ1)

2

pg(1)− qḡ
, lim

N→∞
P (η̃w (Nt+ Tκ, N) ≥ N [Wκ,ε − γ]) = 1.

As S α
p is convex, we have

Wκ,ε −Wκ−1,ε ≤ ε(S α
p )

′(Teq,p,α) = ε(p− q)Φ

(
(−Φ′)−1

( −1

Teq,1,α

))
and we assumed

pg(1)− qḡ > (p− q)Φ

(
(−Φ′)−1

( −1

Teq,1,α

))
.

We can choose β, γ1 small enough to verify

ε ≥ (
√
β +

√
Wκ,ε −Wκ−1,ε + γ1)

2

pg(1)− qḡ
, (36)

which concludes the proof up to Lemma 12. □

Remark 10. We observe that the flux of ZRP (g, p) when density blows up converges to (p −
q)ḡ. By slowing down the white particles, the maximal flux reachable is the maximal flux of
a ZRP (g̃, p̃), that is pg(1) − qḡ. So, (7) means that we impose to the highest flux reached at
(S α

p )
′(Teq,p,α) to be below the critical level pg(1)− qḡ.

APPENDIX A. PROOF OF LEMMA 12

Let us first make explicit the generator of the process (η̃w, η̃b):

AcJ(η̃w, η̃b) =

N−⌈Nβ⌉−1∑
i=1

pg(ηbi )
[
J(ηw, (ηb)i,i+1)− J(ηw, ηb)

]
+

N−1∑
i=N−⌈Nβ⌉

pg(1)1ηwi >1

[
J((ηw)i,i+1, ηb)− J(ηw, ηb)

]
+

N−⌈Nβ⌉−1∑
i=2

qg(ηbi )
[
J(ηw, (ηb)i,i−1)− J(ηw, ηb)

]
+ qg(ηwN−⌈Nβ⌉ + ηbN−⌈Nβ⌉)1ηb

N−⌈Nβ⌉≥1

[
J(ηw, (ηb)N−⌈Nβ⌉,N−⌈Nβ⌉−1)− J(ηw, ηb)

]
+

N∑
i=N−⌈Nβ⌉+1

qḡ1ηwi >1

[
J((ηw)i,i−1, ηb)− J(ηw, ηb)

]
.

Proof of Lemma 12. In order to justify the existence of the coupling, we compare the rate jumps
that may inverse the order of the height functions.

• The departure site i < N − ⌈Nβ⌉, only black particle can jump.
– A jump to the right of a black particle when h̃b(i) = h(i). In such case, η̃bi ≤ ηi

which implies that g(η̃bi ) ≤ g(ηi).
– A jump to the left of (∧t)-particle when h̃b(i− 1) = h(i− 1). In such case, η̃bi ≥ ηi

which implies that g(η̃bi+1) ≥ g(ηi+1).
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• When i = N − ⌈Nβ⌉,
– A jump to the right of a white particle when h̃b(i) + h̃w(i) = h(i). In such case,
η̃wi ≤ η̃wi + η̃bi ≤ ηi which implies that g(1)1η̃wi >1 ≤ g(ηi).

– A jump to the left of (∧t)-particle when h̃b(i − 1) = h(i − 1). In such case,
η̃wi + η̃bi ≥ ηi which implies that g(η̃wi + η̃bi ) ≥ g(ηi). Moreover, the stopping
time ensures the presence of a black particle on this site. Thus, this jump cannot
occur.

• The departure site i > N − ⌈Nβ⌉, only black particle can jump.
– A jump to the right of a black particle when h̃b(i) + h̃w(i) = h(i). In such case,
η̃wi ≤ ηi which implies that g(1)1η̃wi >1 ≤ g(ηi).

– A jump to the left of (∧t)-particle when h̃b(i− 1) + h̃w
t (i− 1) = h(i− 1). In such

case, η̃wi ≥ ηi which implies that ḡ1η̃wi >1 ≥ g(ηi+1).
From this discussion, we conclude the existence of a coupling analogous to C and we omit its
tedious expression. □

APPENDIX B. A TECHNICAL LEMMA

For the sake of completeness, we provide proof of the concentration of Poisson variables that
we used on multiple occasions.

Lemma 13. Given any α > 0 and C > 0, let (Xi) a sequence of independent variable dis-
tributed according to P(αN), then

lim
N→∞

P
(
max
i≤CN

Xi ≥ 3αN

)
= 0.

Proof. Let γ = ln
[
lnN
Nα

+ 1
]
, Markov’s inequality implies

P
(
max
i≤CN

Xi ≥ 3αN

)
≤ E

(
eγmaxi≤CN Xi

)
e3γαN

≤ CN
E
(
eγX1

)
e3γαN

≤ CN
eαN(eγ−1)

e3γαN

≤ CN2e−3αN ln[ lnN
Nα

+1].

which converges to zero. □

LIST OF SYMBOLS

N : The size of the segment.
k: The number of paricles.
g: The rate function of the ZRP
AN : Generator of the ZRP on the segment J1, NK.
Ω0

N,k: The space of configurations of k particles on the segment J1, NK.
ΩN,k: The space of height functions of configurations in Ω0

N,k.
πk
N : The equilibrium measure of the ZRP on the segment with k particles.

α: An asymptotic density.
Φ: The asymptotic flux function.
Ψ: The convex conjugate of Φ if it is convex and of −Φ if Φ is concave.
dN,k: The worst–case total–variation distance of ZRP to the equilibrium.
TN,k
mix : Mixing time of the ZRP on the segment with k particles on the segment J1, NK.

Uα: The Barron–Jensen solution to (HJ).
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Teq,p,α: The macroscopic equilibrium time of Uα.
∧N,k: The configuration where all particles are localized at position 1.
∨N,k: The configuration where all particles are localized at position N .
ℓ(η): The position of the left–most particle in a configuration η.
LN,k: The position of the left-most particle for ZRP started from ∧N,k.
SN,k: The mass accumulated at the position N for ZRP started from ∧N,k.
L α

p : The left-most position where a macroscopic mass is observed starting from αδ0.
S α

p : The macroscopic mass accumulated at the position 1 starting from αδ0.
P(α): A Poisson distribution of parameter α.
Cont: The set of continuity point of a given function.
f ⋆: The upper semi–continuous envelope of a given function f .
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[2] I. Armendáriz, S. Grosskinsky, and M. Loulakis. Zero-range condensation at criticality. Stochastic Process.

Appl., 123(9):3466–3496, 2013.
[3] C. Bahadoran. Hydrodynamics and hydrostatics for a class of asymmetric particle systems with open bound-

aries. Comm. Math. Phys., 310(1):1–24, 2012.
[4] C. Bahadoran, T. S. Mountford, K. Ravishankar, and E. Saada. Zero-range process in random environment.

In From particle systems to partial differential equations, volume 352 of Springer Proc. Math. Stat., pages
51–77. Springer, 2021.

[5] M. Balazs and T. Seppalainen. A convexity property of expectations under exponential weights. arXiv
Preprint, 2007.
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