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Abstract (<250 words) 29 

 30 

While many ecology studies require estimations of species abundance, doing so for mobile 31 

animals in an accurate, non-invasive manner remains a challenge. One popular stopgap 32 

method involves the use of remote video-based surveys using several cameras, but abundance 33 

estimates derived from this method are computed with conservative metrics (e.g. maxN 34 

computed as the maximum number of individuals seen simultaneously on a single video). We 35 

propose a novel methodological framework based on a remote-camera network characterised 36 

by known positions and non-overlapping field-of-views. This approach involves a temporal 37 

synchronisation of videos and a maximal speed estimate for studied species. Such a design 38 

allows computing a new abundance metric called Synchronised maxN (SmaxN). We provide a 39 

proof-of-concept of this approach with a network of nine remote underwater cameras that 40 

recorded fishes for three periods of one hour on a fringing reef in Mayotte (Western Indian 41 

Ocean). We found that abundance estimation with SmaxN yielded up to four times higher 42 

values than maxN among the six fish species studied. SmaxN performed better with an 43 

increasing number of cameras or longer recordings. We also found that using a network of 44 

synchronised cameras for a short time period performed better than using few cameras for a 45 

long duration. The SmaxN algorithm can be applied to many video-based approaches. We 46 

built an open-sourced R package to encourage its use by ecologists and managers using 47 

video-based censuses, as well as to allow for replicability with SmaxN metric. 48 

 49 

 50 

 51 

  52 
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Introduction 53 

 54 
 Measuring the abundance of species and their size classes is the cornerstone of many      55 

ecological studies and management of protected areas and fisheries (Langlois, Harvey, and 56 

Meeuwig 2012). In fact, species abundance distribution provides insights into ecosystem 57 

functioning, as it underlies key ecological phenomena such as resource availability (Liu et al. 58 

2021), biotic interactions (Boulangeat et al. 2012) and colonisation capacities (Verberk 59 

2011). Counting individuals of a mobile species over a given area often presents challenges 60 

due to the inherent difficulty in detecting individuals as they move (Birt et al. 2012). In reef 61 

ecosystems, the abundance of mobile organisms is mostly estimated using Underwater Visual 62 

Census (UVC) by scuba divers (Brock 1954, Harmelin-Vivien et al. 1985). UVC data have 63 

been the core of worldwide conservation programs (Murphy and Jenkins 2010) and fish 64 

stocks management (Labrosse et al. 2002). Yet this method is not without problems, as the 65 

divers presence could affect species communities through sound (Radford et al. 2005) and 66 

visual stimuli (Dickens et al. 2011). Studies have indeed found lower fish richness and 67 

species abundance while using UVC compared to least invasive methods such as Remote 68 

Underwater Videos (RUVs) (Dearden et al. 2010; Zarco-Perello and Enríquez 2019). 69 

Moreover, RUVs can be set up in environments where divers are not able to perform long 70 

and numerous observations, such as on mesophotic reefs or in open water habitats (Mallet 71 

and Pelletier 2014).     72 

 However, estimating fish abundance is challenging because it is difficult to physically 73 

distinguish one individual fish from another. Hence, it is impossible to differentiate between 74 

a single individual passing multiple times in front of the camera and multiple individuals 75 

passing in front of the camera once (Cappo et al. 2003). To overcome this issue, the maxN 76 

metric, computed as the maximal number of individuals spotted simultaneously (Ellis and De 77 

Martini 1995), has been used by most RUV studies (e.g. 81% of baited RUV studies between 78 



 

4 
 

1950 and 2016 (Whitmarsh et al. 2017)). The maxN metric is thus conservative and provides 79 

a non-linear underestimation with true abundance (Schobernd et al. 2014; Campbell et al. 80 

2015). Other metrics have been proposed to estimate abundances such as the mean count over 81 

a time step (MeanCount, (Schobernd et al. 2014)) but they have also been shown to be non-82 

linearly related with true abundance (Kilfoil et al. 2017).  83 

 To improve the accuracy of maxN, it has been suggested to expand the filmed area 84 

(Campbell et al. 2015). Indeed, Campbell et al. (2018) demonstrated that expanding the 85 

camera field of view from 90° to 360° allows the relationship between the maxN estimate to 86 

be linearly related to actual species abundance. It thus leads towards the use of several 87 

cameras instead of just one. In fact, using several cameras increases the chance of observing 88 

more individuals on a single frame (Schobernd et al. 2014). Using Baited RUV (BRUV) and 89 

four cameras facing different directions, Whitmarsh et al. (2017) highlighted the ability of 90 

several cameras to increase maxN estimates especially for highly abundant species.                     91 

Indeed, the use of a network of cameras has recently increased (Harvey et al. 2007,      92 

Widmer et al. 2019, Lopez-Marcano et al. 2021, Letessier et al. 2021). However, the 93 

abundance of a species is still estimated as the maximum number of individuals recorded 94 

within a specific time frame by a single camera. 95 

 In addition, extending the duration of video recordings enhances the probability of 96 

capturing all individuals within the spatial area in front of a camera at least once, thereby 97 

leading to more accurate estimates of abundance (Campbell et al. 2015). And yet, because 98 

analysing long-duration video data is a time-consuming process, a trade-off must be found 99 

between video-duration and the number of cameras to reduce individual counting time. 100 

Garcia et al. (2021), studied this trade-off effect on species number count (richness) with 46 101 

videos of 10 minutes. They found that a minimum of five videos was adequate to sample the 102 

majority of species richness, with most species recorded within the initial five minutes.     . 103 
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Nevertheless, to our knowledge, no study has explored the impact of the number of videos 104 

and extended recording duration on estimation of abundance of each species.       105 

 In the present study, we propose a novel methodological framework based on a 106 

network of synchronised remote cameras and we introduce a new metric for estimating 107 

species abundance, the Synchronised maxN (SmaxN). The SmaxN index considers the 108 

maximal speed of the studied species and the distances between the cameras. We proposed a 109 

proof-of-concept of this framework  for six reef fish species using a network of nine 110 

underwater cameras, each recording for one hour during three different time periods on a 111 

fringing reef in Mayotte (Western Indian Ocean). We specifically address the following 112 

questions: (i) How does using synchronised cameras and including species maximal speed 113 

influence the estimation of abundance? and (ii) How does the number of underwater cameras 114 

and recording duration influence the estimation of abundance? 115 

 116 
Materials and Procedures 117 
 118 
 119 
Computation of the SmaxN metric 120 

To implement the SmaxN framework, surveys should involve a set of at least two 121 

fixed cameras positioned at specified geographical coordinates within a habitat, with non-122 

overlapping fields of view (see Box 1- Step 1). All videos recorded by these cameras should 123 

be temporally synchronised at a given precision (e.g. same second). 124 

Once videos have been recorded in the field, abundances of the studied species 125 

through time should be assessed by experts. The frequency of time steps for which 126 

individuals are counted must align with the study's objectives and be greater than the 127 

precision of camera synchronisation. Therefore, for each species, there exists a matrix known 128 

as the camera time abundance matrix, which records the abundance for each time step (rows) 129 

across each camera (columns) (see Box 1 - Step 3). 130 
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Using camera positions, the distances d between each pair of cameras are computed. 131 

The maximal speed vmax of the studied species should then be determined by retrieving the 132 

critical swimming speed Ucrit established through laboratory experiments with velocity tests 133 

or based on field speed performance (Fulton 2007) which could also be estimated from 134 

present video measurements if stereo cameras are used (Satterfield et al. 2022). Then, the 135 

minimal time tmin needed for an individual to move from one camera to another is computed 136 

(see Box 1 - Step 2) as tmin =  d / vmax . Minimal times for each pair of cameras are gathered in 137 

the time-lag matrix.  138 

Since the cameras are synchronised, and their fields-of-view do not overlap, an 139 

individual can only be recorded by one camera at a given time. Abundance can thus be 140 

estimated using the instantaneous Synchronised maxN (iSmaxN) metric calculated as the 141 

maximum sum of abundances across all cameras for a specific time step. By definition, 142 

iSmaxN is at least equal to the maximum of the maxN estimates computed independently for 143 

each camera. However, the iSmaxN metric is still conservative as it only hypotheses that an 144 

individual cannot move instantaneously from one camera field-of-view to another. 145 

Therefore, we propose to expand the concept of non-duplicity of individuals across      146 

both space and time, that is: individuals from a given species recorded by different cameras 147 

are different individuals if they are seen during a time span shorter than the time required to 148 

move between those cameras, considering species’ maximal speed and the distances between 149 

cameras. Hence, abundance can be more accurately estimated with the SmaxN metric 150 

computed as the maximum number of individuals recorded during a time span defined 151 

according to species’ maximal speed and the distances between cameras. The challenge of the 152 

SmaxN approach is to find the maximum abundance possible within the camera×time 153 

abundance matrix, given the distance between cameras and species’ maximal speed. The 154 

number of combinations possible increases with the number of cameras and the distance 155 
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between them for a given speed, and it increases with decreasing speed for a given survey 156 

design. 157 

To reduce computation time, we designed an iterative pipeline which prevents 158 

exploring time steps that have no chance to provide an estimate higher than the iSmaxN 159 

metric, or no chance to increase estimates computed for previous time steps (see details in 160 

Box 1 - Step 4 to 7). 161 

 For the same sampling effort, the SmaxN metric equals the maxN metric when the 162 

maximal number of individuals across all cameras and time steps is obtained on a single 163 

camera on a timestep surrounded by the absence of the studied species. In any other cases, 164 

SmaxN is higher than maxN, for instance in Box 1 SmaxN equals 9 and maxN equals 6.      165 

SmaxN increases with the number of cameras as the chance of observing more individuals 166 

increases with the recorded area. SmaxN also varies with species maximal speed as the 167 

possible paths vary with different maximal speeds. 168 

     SmaxN, maxN and iSmaxN were computed using the SmaxN R package currently 169 

available on Github (https://github.com/CmlMagneville/SmaxN). 170 

  171 
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BOX 1: STEPS TO COMPUTE THE SMAXN METRIC  172 

173 

We illustrate in the figure below the computation of SmaxN for a simple case with only three 174 

cameras and six time steps. 175 
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In the camera×time abundance matrix, cameras are ordered with the first column 176 

being the most central camera (lowest mean distance to others according to their position; 177 

step 1) and then with increasing distances to the central camera (step 3).  178 

To look for the maximum abundance possible given the camera×time abundance 179 

matrix, we propose an algorithm exploring “paths” for each time step. A “path” is defined for 180 

a given time step as a combination of time steps for all cameras except the central one,      181 

that checks the condition that these time steps are less distant than the time required by the 182 

studied species to move between cameras (given species’ maximal speed and the distances 183 

between cameras). Hence, the number of paths increases with an increasing number of 184 

cameras, time steps and distances between cameras for a given species’ maximal speed. 185 

To reduce computation time, all paths are not computed. We first define for each time 186 

step T, a downward-moving window called the small block , which span is defined given 187 

species’ maximal speed and the minimum distance between cameras (step 2) represented as 188 

[T; T + min(time-lag matrix)] (step 4a). For each time step T, the SmaxSmallBlockT  is 189 

computed as the sum of the maximal abundance value of each camera in the small block of 190 

the time step T (step 4a). The maximum value of the SmaxSmallBlockT, computed for all time 191 

steps, represents the minimum abundance estimate considering species speed and the 192 

minimum distance between the synchronised cameras (that is a conservative estimate as 193 

actually some cameras are more distant to each other than the minimum distance). Then, we 194 

define for each timestep a Frame Of Possible (FOP) (step 4b) gathering the abundance values 195 

which can be chosen given the distance between the central camera and the other cameras 196 

and species’ maximal speed. FOP span is defined for each timestep T and each non-central 197 

camera j as spanFOP t, camj = [T - tcam1-camj ; T+ tcam1-camj] where tcam1-camj is the minimal time it 198 

takes for an individual of the studied species to go from the central camera (the first camera 199 

in the camera×time abundance matrix) and the camera j. We then compute for each timestep 200 
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T, SmaxNFOP, T defined as the sum of the maximal abundance value of each camera in the 201 

FOP (step 4b). SmaxNFOP, T  represents, for each time step, the potential highest sum of 202 

abundance possible, given species speed and distance to the central camera. Only the time 203 

steps for which SmaxNFOP, T ≥ max(SmaxSmallBlockT) are retained kept for subsequent      204 

steps (step 5) as they have the potential to yield an abundance estimate equal to or higher than      205 

the smallest abundance estimate achievable in the camera×time abundance matrix (step 5). 206 

For each of the selected time steps, paths within the FOP are computed iteratively and 207 

conditionally to further reduce computation time (step 6). A path is defined by starting from 208 

the central camera and selecting a possible cell for the next camera based on the time-lag 209 

matrix (step 6). 210 

For each path, SmaxNpath is computed as the sum of the abundance values along the 211 

path (step 6). After each addition of a cell within a path, the maximum possible value of      212 

SmaxNpath, considering selected cells and those remaining for other cameras, is computed and 213 

compared to SmaxNpath computed for previous time steps. If this potential maximum value is 214 

lower than an observed one, the path is abandoned. 215 

Lastly, the SmaxN metric of the abundance matrix is computed as the maximal 216 

SmaxNpath value found among all complete paths (see Box 1 - Step 7).  217 

 218 

Application of the SmaxN metric to a reef fishes case study 219 

The SmaxN framework was applied to estimate the abundance of six species of fishes 220 

over a coral reef in Mayotte (Western Indian Ocean) (see Supplementary Figure 1 and 2). The 221 

studied fringing reef was located in the Marine Protected Area of N’Gouja (-12.96° lat ; 222 

45.08° long) and consisted of a mix of branching and star living corals, along with turf and 223 

detritic substrates, with an average depth of 3m. A network of nine GoPro Hero 5 (GoPro Inc, 224 

United States) in waterproof housings was set up on the 08th of November 2020. Six cameras 225 
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were paired, and each pair of cameras recorded in opposite directions. Cameras recorded 226 

high-definition videos (1920 by 1080 pixels at 25 frames per second) and were synchronised 227 

with a one second precision. Synchronisation was achieved using a watch passed in front of 228 

each camera, establishing a link between camera time and real time. Each camera has a 90° 229 

field-of-view and was mounted on a 20 cm high tripod. Immediately after the start of the 230 

recording, a 2m² quadrat was placed in front of each camera for 30 seconds and subsequently 231 

removed to avoid the disturbance of fish behaviour. This quadrat deployment allowed us to 232 

measure fish abundance over this standardised area (Longo et al. 2014) by marking the 233 

quadrat shape on the computer interface. 234 

 Distances between quadrats spanned between one meter (between two cameras 235 

mounted on the same tripod) and 110 meters for the most distant cameras (see Supp Info 236 

Table 1 for distances between cameras). The cameras recorded for about two hours during      237 

three time slots, and we retained only videos starting 45 minutes after the divers left the 238 

surveyed area and finishing 15 minutes before divers returned near the camera: this was done 239 

to reduce the impact of divers on fish detection. Overall, one hour of recording was thus used 240 

for the three time slots: 7:30 - 8:30 ; 11:30 - 12:30 ; 15:30 - 16:30. We studied six species 241 

representing five combinations of gregariousness and mobility: Chaetodon trifasciatus, 242 

Gomphosus caeruleus, Parapercis hexophtalma, Parupeneus macronemus, Thalassoma 243 

hardwicke and Ctenochaetus striatus (see Supplementary Table 2 for their traits).   244 

For each species, the number of individuals present above the 2m² surveyed area was 245 

counted on each frame (1s precision). The maximal swimming speeds of the five species was 246 

estimated to be 0.5 m.s-1, that is a conservative estimate since most of the critical speeds 247 

reported in Fulton (2007) for seven reef fish families were below this value.  248 

     SmaxN, iSmaxN and maxN metrics were computed for each camera's tuple going 249 

from one camera to nine cameras to test the effect of an increase in camera number on 250 
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abundance estimates, using the SmaxN R package. The maxN metric was computed as the 251 

maximal number of individuals on a given time step from a given camera over all cameras 252 

and timesteps. The iSmaxN and SmaxN metrics were computed as detailed above. The three 253 

metrics were also computed using the set of nine cameras for an increasing amount of time, 254 

ranging from ten minutes to one hour, to assess the effect of recording duration. These time 255 

sequences started at the beginning of each recording period and thus overlapped. Lastly, the 256 

three metrics were computed for a 1 m.s-1 swimming speed to test for the effect of species 257 

speed on abundance estimates.  258 

To test the effect of the number of cameras and recording duration on SmaxN and      259 

the difference between the SmaxN and the maxN metrics, we used Generalised Linear Models 260 

(GLMM) with Negative Binomial and Quasi Poisson distributions for the number of cameras      261 

and recording duration, respectively. Species identity and recordings were used as random 262 

effects. The three camera recording periods were used as replicates. GLMM were computed 263 

using the glmm R package and checked using the performance R package.  264 

All data were analysed using R 4.1.2 and analysis are available on Github 265 

(https://github.com/CmlMagneville/SmaxNanalysis). 266 

 267 

Assessment 268 

 269 

Influence of using a network of synchronised cameras and species maximal speed to 270 

estimate the abundance of a given species 271 

The SmaxN and the maxN metrics were significantly positively correlated (Spearman’s 272 

correlation coefficient = 0.74, p-value < 0.05). The SmaxN metric was 1.3 to 4 times higher 273 

than the maxN metric (Figure 1A) with a mean SmaxN/maxN value of 2.58 ± 0.94 (mean ± 274 

sd) across all species and recordings. SmaxN was equal or up to three times higher than the 275 
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iSmaxN metric (Figure 1B) with a mean SmaxN/iSmaxN value of 1.77 ± 0.42 (mean ± sd) 276 

across all species and recordings. SmaxN and the iSmaxN were significantly correlated 277 

(Spearman’s correlation coefficient = 0.82, p-value < 0.05).  278 

      279 

Figure 1: Ratios of SmaxN/maxN (A) and SmaxN/iSmaxN (B) for the set of six species 280 

across the three recordings (colours): SmaxN takes into account species maximal speed and 281 

distances between the synchronised cameras, iSmaxN takes only into account synchronised 282 

cameras and maxN is the maximal abundance retrieved on a single camera. 283 

 284 

A significant positive correlation was found between the SmaxN metrics computed at 285 

different fish maximal speed (0.5m.s-1 and 1m.s-1) (Spearman’s correlation coefficient = 0.92, 286 

p-value < 0.05). The SmaxN metric computed with the lowest fish speed was up to 1.5 higher 287 

than the SmaxN metric computed with the highest fish speed (Figure 2) across the five 288 

species (mean value of 1.12 and standard deviation of 0.16). However, SmaxN was not 289 

affected by fish speed in 10 out of the 18 combinations of Species×Recordings. 290 
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      291 

Figure 2: Variation of SmaxN for two different fish speeds (0.5m.s-1 on the y-axis and 292 

1 m.s-1 on the x-axis) for the set of six species (shapes) and the three recordings (colours). 293 

 294 

  295 
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Effect of the number of recording cameras on SmaxN and maxN metrics 296 

The SmaxN metric was significantly affected by the number of cameras with differences 297 

between species (GLMM results - Supp. Table 3). SmaxN increased with the number of 298 

cameras (Figure 3) with a mean increase of 72.83% from one camera to nine cameras over all 299 

species and all recordings. For 78% of all species × recordings combinations, SmaxN stopped 300 

increasing before nine cameras. 301 

The difference between the SmaxN and maxN metrics was significant among camera numbers 302 

and species (GLMM results - Supp. Table 4). For most species, it increased with the number 303 

of cameras (Figure 3). The two metrics showed no difference for one camera, a mean 304 

advantage of SmaxN over maxN of 39.85% for five cameras and a mean advantage of SmaxN 305 

over maxN of 56.02 % for nine cameras. 306 

 307 

 308 

 309 
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      310 

Figure 3: maxN (grey) and SmaxN (blue) evolution across an increasing number of 311 

cameras for six species. The lines are local polynomial regression fitting (2 degrees) 312 

estimations surrounded by their confidence interval. 313 

 314 

The minimal number of cameras needed to obtain the highest SmaxN value with a 315 

one-hour recording was highly variable between species and between recordings for four out 316 

of six species (Figure 4).  317 
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 318 

Figure 4: Minimal number of cameras needed to achieve the maximal SmaxN value 319 

(numbers in barplots) for each species and each recording (colours) with a recording time of 320 

one hour and a maximal number of nine cameras.      321 

 322 

Effect of the recording duration on the SmaxN and the maxN metrics 323 

The SmaxN metric was significantly different among recording durations and species 324 

(GLMM results - Supp. Table 5). The SmaxN metric increased with the recording duration 325 

(Figure 5) with a mean increase of 36.78% between 10 minutes and one hour over all species 326 

and all recordings.  327 
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The difference between the SmaxN and maxN metrics was significant among recording 328 

durations and species (GLMM results - Supp. Table 6). The deviation between SmaxN and 329 

maxN increased with the recording duration (Figure 5), showing a mean increase across 330 

species and recordings of 48.16% at 10 minutes, a mean increase of 55.58% at 30 minutes 331 

and a mean increase of 56.01% at one hour. 332 

      333 

Figure 5: Abundance estimates of six fish species according to maxN (grey) and 334 

SmaxN (blue) indices across an increasing recording duration with nine cameras for three 335 

recordings (shapes and line types).  336 

 337 

The minimal recording duration needed to obtain the highest SmaxN value with nine cameras 338 

was variable between species and among recordings for four out of six species (Figure 6). 339 
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      340 

Figure 6: Minimal recording duration to the maximal SmaxN value in seconds 341 

(numbers in barplots) for each species and each recording (colours) with a network of nine 342 

cameras and a maximal recording duration of one hour. 343 

 344 

  345 
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Discussion 346 

 347 

 We developed a reproducible framework to quantify species abundance based on a 348 

network of synchronised cameras and an associated open-source algorithm. We then provided 349 

a proof-of-concept of this framework based on a network of nine remote underwater cameras 350 

deployed along Mayotte’s fringing reef (Western Indian Ocean) for estimating the abundance 351 

of six fish species. 352 

 353 

 The SmaxN framework can be applied to all remote video-based surveys provided that 354 

cameras are synchronised, the distance between them is known, and their field-of-view do not 355 

overlap. Camera timestamping can be achieved through embedded softwares or by physically 356 

showing the same watch in front of each camera during recording. As for computing the 357 

distances between cameras, they could be measured either as geographical distances using 358 

GPS coordinates when cameras are positioned at significant distances and at the same depth, 359 

or directly measured on the field when cameras are positioned at small distances and/or at 360 

different depths. Cameras field-of-view should be selected as a trade-off between coverage 361 

and ability to identify species on video given its resolution: a large field-of-view allows to           362 

detect elusive species (e.g., large predators), yet it reduces apparent object size which could 363 

prevent the identification of small species. In addition, the filmed area can be standardised by 364 

placing a quadrat in front of each camera and subsequently removing them to minimise 365 

disturbance to the animals (Longo et al. 2014). Such area-based surveys allow computing 366 

abundance-based indices of biodiversity with a standardised protocol.  367 

Our framework can also be applied with baited or unbaited stereo-cameras that allow 368 

for measuring individual sizes per unit area as well as their distance from the cameras, thus 369 

providing abundance estimates per class of size for each species. When designing a camera 370 
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network, it is important to consider the ecology of the studied species, their mobility and the 371 

micro habitat distribution. For instance, if the studied species is solitary and highly mobile, 372 

placing cameras in close proximity may result in a low probability of detecting multiple 373 

individuals. If the species is known to undertake diel migration -- changing habitats between 374 

day and night (Hitt et al. 2011; Courbin et al. 2019; Juby et al. 2021) --, placing cameras at 375 

the boundary between the two habitats could increase the detection of individuals in the 376 

studied area.   377 

 378 

Another aspect to take into consideration is that computing SmaxN requires 379 

knowledge of the maximal speed of the species under study, which can be challenging to 380 

measure (Gilbert et al. 2021). In the work of Fulton (2007), captive fish individuals were 381 

exposed to an increasing water flow, and their maximum swimming speed was estimated as 382 

the current velocity when the fish became exhausted and stopped swimming. Data on 383 

maximal swimming speed are only available for a limited number of species (e.g., 117 coral 384 

reef fish species belonging to 10 families (Fulton 2007), 474 terrestrial and aquatic species 385 

(Hirt et al. 2017)). If data on maximal speeds are missing, we recommend using conservative 386 

estimates, such as the maximal speed of the fastest species within the same clade (e.g., family 387 

or order). Moreover, habitat characteristics that could affect travel time between cameras, and 388 

hence distort Smax computation, should be recorded during fieldwork. For instance, strong 389 

current could increase actual fish swimming speed. In such cases, we advocate for a 390 

conservative approach to avoid double counting. Therefore we suggest adding current speed 391 

to the maximal swimming speed of the fish when computing SmaxN. 392 

 393 

 In our study case, the network of synchronised cameras and the associated SmaxN 394 

metric yielded higher estimates of species abundance than maxN for the same level of 395 

sampling effort. In fact, the SmaxN metric counted up to four times more individuals than the 396 
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maxN metric, which does not account for speed and camera network. In fact, maxN does not 397 

differentiate between individuals recorded with slight temporal spacing on distant cameras, 398 

whereas SmaxN do confirm that these are different individuals. The gain of using SmaxN over 399 

maxN increased non-linearly with the number of cameras and recording durations. Indeed, for 400 

the same recording effort, the maxN metric only takes into account the highest abundance 401 

value across all cameras and time steps, whereas the SmaxN metric considers the sum of the 402 

highest abundance values across all cameras within a given time span. This difference in 403 

abundance estimation between maxN and SmaxN affects the estimated distribution of 404 

abundance among species assemblages. For instance, with a network of nine cameras 405 

recording for one hour, the maxN metric estimated that there were twice as many individuals 406 

of the butterflyfish Chaetodon trifasciatus compared to the surgeonfish Ctenochaetus 407 

striatus, while the SmaxN metric estimated that there were four times as many individuals of 408 

C. trifasciatus compared to individuals of C. striatus. Our metric will thus improve relative 409 

abundance estimates that are key to understand the drivers of assemblage diversity (e.g., 410 

relative strength of abiotic constraints and biotic interactions) as well as impact of species on 411 

ecosystem functioning (e.g., control of trophic network and nutrient fluxes). 412 

 413 

      The SmaxN estimates increased with the number of cameras in the network.      414 

Using a network of nine cameras captured over three times as many individuals as using a 415 

single camera for the same total recording time of one hour. Such a marked increase in 416 

abundance estimates with increasing cameras' total field of view has been documented in 417 

both terrestrial and marine ecosystems (O’Connor et al. 2017; Campbell et al. 2018), and is 418 

expected because the addition of view points increases the detection probability and thus the 419 

abundance estimation. The impact of increasing the number of cameras varied among 420 

species, with some species exhibiting a more pronounced effect (Ctenochaetus striatus, 421 

Gomphosus caeruleus, Thalassoma hardwicke) compared to others (Parapercis hexophtalma, 422 

Parupeneus macronemus). In fact, C. striatus, G. caeruleus and T. hardwicke were recorded 423 

mostly swimming across camera field of views while P. hexophtalma and P. macronemus 424 

were frequently observed foraging or remaining stationary in front of the cameras. Some 425 
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SmaxN values computed with one or two cameras were equal to zero, underscoring the 426 

stochastic nature of species detection when observation effort is low. Therefore, using a 427 

network of cameras optimises the detection probability by covering different habitats 428 

(Verberk 2011). Moreover, since the SmaxN estimate varied across the number of cameras, 429 

when comparing multiple sites with the SmaxN, it is advisable to use the same number of 430 

cameras in each environment, with comparable distances between them, and in front of the 431 

same type of microhabitats. 432 

 433 

As for recording duration, the performance of SmaxN improved with longer recording 434 

durations, although the magnitude of this improvement varied among species. A recording 435 

duration of 10 minutes captured on average about four individuals, whereas a recording 436 

duration of one hour captured on average about six individuals. In fact, recording for a longer 437 

period helps to detect more individuals of the studied species (Campbell et al. 2015). Yet, the 438 

six species studied in this environment were found to be common, with an average presence 439 

ranging from 12% to 98% of the recording time. It would thus be informative to test whether 440 

the abundance of rare species also increases with recording duration. As recording durations 441 

increase, the SmaxN may also increase. Therefore, it is essential to maintain consistent 442 

recording durations when assessing the abundance of a species across different environments. 443 

If subsampling is employed, it must be ensured that subsampled recordings share the same 444 

overall duration across various environments.  445 

 446 

Overall, only one third of the species×recordings combinations reached the maximal 447 

SmaxN value after more than 30 minutes (1800s) of recording and about half of the 448 

species×recordings combinations reached the maximal SmaxN value with more than four 449 

cameras. Because frame or video analysis is time-consuming, we recommend to set up a 450 

network of many (i.e. more than five) cameras filming for a short amount of time (i.e. about 451 

30 minutes) on a given habitat, rather than using a single camera or a small number of 452 

cameras filming for an extended duration to estimate species abundance using the SmaxN 453 

framework.  454 
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 455 

Establishing a network of cameras following SmaxN requirements is not demanding, 456 

especially in shallow environments. In our underwater case study, it took two divers less than 457 

15 minutes to set up the network of nine cameras. A similar camera network could be 458 

employed with baited cameras dropped from a boat, either to record pelagic or benthic 459 

habitats, and which are usually set hundreds of meters from each other (Whitmarsch et al. 460 

2017). The SmaxN framework can be applied to a continuous recording of biodiversity with 461 

camera videos or to a punctual recording of biodiversity with camera traps. We here provide 462 

an open-source R package to ensure a reproducible use of this framework 463 

(https://github.com/CmlMagneville/SmaxN).  464 

 465 

The use of a punctual recording is common in terrestrial environments, where camera 466 

traps are often used in numbers exceeding 50 (78 cameras on each site on average as reported 467 

in a compilation of about 100 papers by Steenweg et al. (2017)), while in the marine 468 

environment the use of continuous recording has become increasingly popular (Tebbett et al. 469 

2020; Marques et al. 2021; Magneville et al. 2022). In both cases, counting individuals on 470 

video frames is a time-consuming process. This process could be sped up by using annotation 471 

software such as the Behavioral Observation Research Interactive Software (BORIS) (Friard 472 

and Gamba 2016). In this study, the occurrence of individuals of six species were annotated 473 

on 27 hours of videos, which took about 150 hours on a similar annotation software. 474 

Reducing the annotation frequency could help to decrease the annotation time. However, to 475 

prevent double-counting individuals on different cameras, it is crucial to keep a frequency 476 

higher than the ratio between minimal distance between cameras and fish maximal speed. If 477 

cameras are positioned at a distance (e.g., with BRUVs for large marine predators), a lower 478 

frequency (e.g., every 5 seconds) could be considered. However, this may result in missed 479 
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occurrences of fast-moving individuals, particularly if the field of view is too narrow. In our 480 

study, we could have reduced the annotation frequency to two images per second because      481 

it takes two seconds for an individual swimming at 0.5m.s-1 to pass between our closest 482 

cameras (1 meter). The rise of deep-learning algorithms to automatically detect individuals of 483 

some species would thus be a milestone to speed up processing video to get abundance 484 

through time data (Ditria et al. 2020). 485 

 486 

 487 

 488 

 489 

 490 

 491 

 492 

 493 

 494 

 495 

 496 

 497 

 498 
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