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Introduction

Bayesian statistics is a framework in which our knowledge about unknown quantities of interest
(especially parameters) is updated with the information in observed data, though it can also be viewed
as simply another method to fit a statistical model. It has become popular in many branches of biology
[1-3]. For context, five of the ten most cited papers in Web of Science with keywords 'Bayesian
statistics' are related to biology (as of August 19, 2024). Bayesian statistics is particularly valuable for
biology because it allows researchers to incorporate prior knowledge, handle complex systems, and
work effectively with limited or messy data. However, most biologists are trained in frequentist
techniques, and the learning curve to become fluent in Bayesian statistics may be perceived as too
time-consuming to undertake, or the prospect of adopting an unfamiliar statistical framework can
simply appear too daunting.

We provide a list of 10 tips, summarized in Fig. 1, to help you get started with Bayesian statistics. You
can also refer to the Glossary for definitions of the technical terms. This paper isn’t just for newcomers;
even those with some experience in Bayesian methods may find it a useful roadmap to design,
conduct, and publish Bayesian analyses. We’ve drawn mainly on our experience teaching and working
with ecologists, but we hope these tips will be relevant to a broader audience of biologists. For those
seeking to deepen their understanding, we point to more comprehensive resources that offer in-depth
exploration of Bayesian statistics.

The purpose of our paper is not to persuade you to abandon frequentist methods in favor of Bayesian
methods. Instead, we advocate for a dual approach where you master both methods as part of your
analytical toolkit.
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Figure 1: A graphical summary of the 10 quick tips to get you started with Bayesian statistics and
how they fit into a larger view of an analytical workflow with Bayesian models.

1. Get a basic understanding of the ideas of Bayes

Bayesian statistics infers unknowns, such as model parameters, using conditional probability.
Probability in classical statistics describes the variability of observable data, treated as random
variables with distributions. In Bayesian statistics, however, probability quantifies our knowledge of
unobservable parameters. For example, we might say, “| am 99% certain it will rain.” This approach
allows for Bayes' rule to update prior knowledge (from independent data or assumptions) to a new
state of knowledge represented by a posterior distribution.

The likelihood function is defined by the statistical model; in a way, the likelihood function is the model
fitted to the data — here the information in the data enters the estimation. It underpins Bayesian and
frequentist methods alike. While frequentists rely solely on likelihood, Bayesians also incorporate
priors (Tip #2), allowing external information to influence estimation. A Bayesian model thus combines



a likelihood with priors, and the posterior distribution reflects our knowledge of a parameter as a
probability distribution. This can be summarized using metrics like the mean, median, or mode, and
uncertainty via standard deviation or percentiles.

Most Bayesian models require approximations to evaluate Bayes' rule, commonly through simulation
methods such as Markov chain Monte Carlo (MCMC). MCMC generates a sequence of random
values, converging on a stationary distribution that aligns with the desired posterior distribution. The
magic of MCMC simplifies the otherwise complex integrals involved in Bayes' rule by sampling values
proportional to their posterior density.

2. Think of your priors

In Bayesian statistics, the prior distribution is a fundamental part of the model. It delimits the parameter
space and can describe our expectations regarding the value of a parameter. This raises the
possibility of formally incorporating "prior information” in the analysis (informative prior), but most
analysts specify priors that express a lack of prior information (“vague” or “non-informative”) — or, as is
often said, to "let the data speak for themselves" — even if we do have actual prior information from
previous studies or expert opinion. There are some situations in which using informative priors is
reasonable [4,6]. For example if a similar study was done previously, then using the posterior of the
parameter estimate as the prior for the new study is an uncontroversial way to incorporate prior
information [5, chapter 20]. A second case is when a complex model has a known non-identifiable or
weakly identifiable parameter (Tip #6), then use of an informative prior might make this parameter
identifiable.

So exactly which prior distribution do we choose for a parameter? For vague priors, you want a
distribution that is i) "locally uniform" in the vicinity of the true value of the parameter and ii) covers the
range of permissible values of the parameter. For example, for regression parameters (intercept,
slopes), we could use a normal distribution with mean 0 and large variance, while for probabilities, we
would opt for a uniform distribution between 0 and 1. Others will recommend alternative default priors
[6]. The effect of the prior on inferences can be checked with a prior sensitivity analysis — when you
are concerned whether a specific prior is sufficiently vague compared to some other choice, test them
against each other by rerunning the analysis!

3. Start simple, increase complexity little by little

Arguably, this is the most important general modeling tip. Sometimes people get into Bayesian
analysis because they are confronted with a complex modeling problem that cannot be
accommodated with a canned R, Python, or Julia package. Upon learning how to write models in one
of the languages compatible with Bayesian software, it is tempting to jump straight in and try to
implement that complex model in the Bayesian framework of your choice. Do not do that. Chances are
high that you will wait for half an eternity, only to be confronted with all kinds of arcane errors that you
cannot make sense of. You can avoid this by following one simple rule: always start from the simplest
possible version of your model! That is, you should take a modular, stepwise approach to model fitting
— this allows you to test whether "things are in order": your data are formatted properly, arrays,
matrices and vectors are all of the correct dimension, there are no strange data issues such as data
values out of range, or bad prior distributions that suggest inconsistent data. Doing the first analysis on
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the simplest model also gives you a sense of MCMC run-time. MCMC run-time scales with the size of
your data set and model complexity, so starting with a simple model allows you to benchmark the
run-time and to check that it's viable within the scope of your work plan. After you get this first, simple
model running well and the results are sensible, you should incrementally build your model up to be
more and more complex until arriving at your desired model.

4. Check model performance

Working with Bayesian statistics is an iterative process containing multiple rounds of building,
assessing, and revising models (Tip #3). Model assessment typically has several steps too, and most
focus on either MCMC performance or model goodness-of-fit (Tip #5). Obtaining reliable inferences
from a Bayesian model requires that we run multiple chains and confirm that they converge and mix
appropriately and consequently provide us with valid posterior samples.

“Convergence” implies the Markov chains have stabilized and samples are being generated from the
desired posterior distribution. This is a necessary condition for making inferences from the random
numbers produced by an MCMC algorithm. “Mixing” refers to the degree to which different MCMC
chains sample the same parameter space. Visualization is one of the best tools for Bayesian model
assessments in general [7] and visualizations of the trajectories of the MCMC chains (trace plots)
allow us to check convergence and mixing and subsequently adapt our model accordingly (Fig. 2).

Non-convergence can often be addressed by running the MCMC for more iterations. Poor mixing can
sometimes be improved by using different MCMC algorithms but can also suggest that there are
underlying issues with our model that need addressing, e.g. non-identifiable parameters (Tip #6) or
violated assumptions. There are also quantitative metrics for checking MCMC convergence and chain
mixing that you can use alongside visualizations; the most frequently used one is the potential scale
reduction statistic [8], which measures divergence in the behavior of different chains.
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Figure 2: Overview of commonly observed patterns in MCMC traceplots and how to interpret them for
diagnostics. Converged chains look like they are stable and fluctuating around the same average value. Well
mixing chains have a high degree of overlap with each other. Suboptimal mixing, chains converging to
different solutions, and chains that - after reaching convergence - still sample the entire parameter space
defined by the prior distribution can indicate problems with the model that warrant further investigation.

5. Evaluate model goodness-of-fit

How well a model fits the data is crucial for trusting the parameter estimates it produces.
Goodness-of-fit (GOF) tests are well-established in frequentist statistics [9], and many can be applied
to simple Bayesian models (e.g., residual analysis). However, Bayesian methods are often used for
more complex models, which lack simple off-the-shelf GOF tests (see review in [9]).
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Posterior predictive checks (PPCs), which simulate new datasets from the model’s posterior and
compare them to the original, are commonly used. The more similar the simulated datasets are to the
original, the more likely the model fits well; this can be assessed visually and using a ‘Bayesian
p-value’ [7,10]. Prior predictive checks, based on prior distributions alone (without using data from the
analysis), assess adequacy using biological knowledge [11]. Models predicting impossible data (e.g.
negative body weight, fewer animals alive than killed per year, etc.) are likely inadequate.

Expert knowledge is essential for model checking, starting with asking: “Do the estimates make
biological sense?” This is also key in model selection. Complex Bayesian models are not suited to
comparing hundreds of slight variations. Tools like WAIC and cross-validation (review in [12]) can
assist you with Bayesian model selection, but we should focus on a few biologically meaningful
models likely to solve the inference problem.

6. Beware of model non-identifiability

The Bayesian approach and MCMC methods enable the construction of complex models, but this risks
over-parameterization and non-identifiable parameters—those that are confounded and not
independently estimable [13]. Models with non-identifiable parameters often show poor MCMC mixing
and may converge slowly. However, detecting non-identifiability can be challenging, as parameters
may seem estimable from available data even when they are not [13].

To diagnose non-identifiability, simulations can be useful (Tip #7). If true parameter values cannot be
recovered from simulated data, it suggests potential non-identifiability. Comparing posteriors from
different models can reveal discrepancies, indicating non-identifiability. Examining the overlap between
prior and posterior distributions is also useful; non-identifiable parameters typically show substantial
overlap and limited ‘Bayesian learning’ [14]. However, large overlap may also result from an
informative prior aligning with the posterior, so it alone does not confirm non-identifiability. Frequentist
methods can also help. For instance, profiling the likelihood [15] involves maximizing the likelihood
with respect to all parameters except one, held constant at various values. A flat profile likelihood
indicates non-identifiability for that parameter. Other methods using symbolic algebra can diagnose
non-identifiability but require advanced expertise and may become impractical with many parameters
[13].

To address non-identifiability, first ask yourself whether your data is adequate in both quantity and
quality, and simplify your model (Tip #3) until the issue is resolved. If the problem persists, consider
using informative priors to provide additional information for non-identifiable parameters [16—19].
Second, consider reparameterizing your model or employing other techniques to improve MCMC
chain mixing [16,20].

7. Use simulated data sets
Data analysis and data simulation are almost the same thing, but use a model in different directions:

analysis takes data and models and estimates parameters, while simulation assumes parameter
values and a model and generates potential data sets.
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The first goal of data simulation is to enforce an understanding of a model: if you are unable to
simulate data under a model, you probably haven't fully understood it. Similarly, computer code for
data simulation under a model is arguably one of the best ways to explain or define a statistical model
for non-statisticians.

Additional advantages of data simulation include: (1) Truth is known, hence, you can validate your
model or your code to fit it. (2) It may help you understand complicated statistical concepts. For
instance, if you don't understand what a standard error is, you can repeatedly simulate a data set,
estimate some parameter and realize that the standard error is simply the standard deviation of these
estimates over replicates. (3) You can evaluate bias and precision of your estimators. (4) Power
analysis evaluates the probability with which you can detect a non-zero parameter in a significance
test, and data simulation is the most general manner of evaluating power. (5) Study design (e.g.,
what's the minimum required sample size) is also best approached with simulated data. (6) To check
the robustness of a model to assumption violations, we can simulate data under a more general model
and then fit a simpler model that lacks crucial assumptions.

8. Know your tools

Just as you wouldn’t typically write iterative optimization code from scratch in the frequentist
framework, we recommend using established software for reliable, well-tested, and optimized MCMC
algorithms. We focus on free options, and there are numerous choices for Bayesian statistics available
in R, Python and Julia [21].

Selecting software based solely on speed and efficiency is challenging [22], as it involves more than
just measuring raw computation time, which is complex in itself. You also need to factor in your
experience level and (un)familiarity with a modeling language. The ideal choice should balance your
specific needs, programming experience, user-friendliness, efficiency, available documentation, and
the size and helpfulness of the user community.

Bayesian software generally falls into two categories: general-purpose model-fitting engines requiring
coding such as JAGS [23], Stan [24], or Nimble [25] and those with built-in models such as JASP [26],
PyMC3 [27] or brms [28]. Coding offers theoretically unlimited flexibility for custom models, but
non-coding options can handle many tasks with minimal effort. Prioritize getting your code to work
before optimizing for performance.

For a beginner, it may be wise to pick a software and stick with it, as familiarity helps with debugging,
useful tricks, and implementing advanced techniques. However, as you gain confidence, consider
diversifying your toolkit to tackle tasks that may be challenging with your default software.

9. Embrace reproducibility

Awareness of reproducibility's importance is growing in the biological sciences [29,30], with publishers
and funders emphasizing the publication of well-documented data and code [31]. Considering
reproducibility from the start—not just as an afterthought—uwill become a superpower for your work
with Bayesian models. Modern research workflows begin with data collection and end with presenting
results, and ensuring reproducibility increases the quality and credibility of your work, enhances
efficiency in debugging and re-running analyses, and enables broader use of your model (Tip #10).
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Four pillars support reproducibility in your workflow: (1) Control of randomness: Specifying seeds for
random number generators when simulating data, setting initial values and running MCMC ensures
consistent results. This not only enhances reproducibility but also simplifies debugging, especially with
a complete set of initial values. (2) Clean coding [32]: Adopting best practices for writing code [33]
helps others and yourself understand and re-run analyses later. Clean coding is also the first step in
automating your workflow and facilitates running code on high-performance computing setups. (3)
Good documentation means thoroughly annotating your code and documenting workflow steps, which
benefits others and increases potential for broader impact. (4) Version control involves using git
repositories (GitHub/GitLab), which facilitates code development and management and can transform
research collaborations [34].

10. Learn and get help from others

Learning Bayesian statistics can be daunting. Fortunately, you are not alone in this journey. We
recommend you engage with the Bayesian community within your field of research by leveraging
available resources, such as online forums, workshops, and textbooks.

A good starting point is to identify an introductory textbook relevant to your field of biology that covers
Bayesian statistics. To build confidence in your skills, consider conducting side-by-side analyses using
both frequentist and Bayesian approaches [5,35,36]. This comparative practice can help you
appreciate that the results often align. Begin with a simple project of your own or replicate a past
analysis from your work or published studies.

If you have questions about Bayesian statistics, don't hesitate to seek help from forums such as Cross
Validated or Stack Overflow or more specialized, subject-matter lists. For software-specific inquiries,

consider reaching out through mailing lists, and best include a small, reproducible example to illustrate
your problem. The feedback you receive can be invaluable and often benefits other beginners as well.

Attending workshops can be an excellent way to learn under the guidance of experienced teachers.
These events also offer excellent opportunities to network with others. As you become more
advanced, workshops provide avenues to master new methods and further enhance your skills.

Remember, modern science is a collaborative effort, and Bayesian statistics is no exception. If a task
feels beyond your current expertise, seek collaboration to learn from others and achieve your research
goals.

Conclusions

Learning a new skill can be challenging and time-consuming. While the material we discussed is not
entirely new and has been explored by others [3,37,38], our tips aim to offer a quick and practical
guide to help you get started. These insights are designed to support your journey through Bayesian
analysis in biological research, regardless of your specific field.

Finally, remember that general statistical principles still apply [39,40] [appendix B in 41]: always clarify
your modeling goals (whether to describe, understand, explain, or predict), show/visualize your data
and more [7], check assumptions, plan your study design carefully [42], report effect size, etc.
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Glossary

Random variable (RV)

Usually defined as a real-valued function
defined on the outcome of a random
experiment. In practice, something unknown
that we want to estimate or the probability of
which we want to evaluate in a statistical
analysis. Continuous random variables (RVs)
include measurements of durations, lengths,
weights and (in Bayes) the values of most
parameters, while discrete RVs include counts
or labels such as dead/alive, red/blond/brown,
and (in Bayes) the values of discrete latent
parameters such as abundance or
presence/absence.

Probability density function (PDF)

Probability distribution for a continuous RV. It
gives the probability density for any possible
value x of the continuous RV, which
corresponds to the area under the curve of a
rectangle with basis (x-d, x+d) as d goes
towards zero. Typical examples: normal (or
Gaussian), exponential.

Probability mass function (PMF)

Probability distribution for a discrete RV. It
gives the probability of every possible value
that the RV can take. Typical examples:
Poisson, Binomial.

Probability distribution

Mathematical function that assigns a
probability (for the PMF) or a probability
density (for the PDF) to all possible values of a
RV. Sums to 1 for a PMF and integrates to 1
for a PDF.

Random experiment

Taking a measurement or observation that has
some stochasticity associated. E.g., tossing a
coin, capturing an animal and measuring its
mass.

Outcome

A possible value of the result of a random
experiment, e.g., the numbers 1-6 when
tossing a die.
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Probability function

Function that assigns a probability, or a value
between 0 and 1, to any outcome of a random
experiment. Values 0 and 1 denote
respectively an impossible and a certain
outcome.

Conditional probability

The probability of one RV given (‘conditioned
on') the known value of another RV, e.g.
P(mass = 700 | sex = male), which gives the
probability density of the mass of an animal of
700 g, given that it is a male. In general,
written as P(A|B) for 'probability of A given B'.
This is defined as P(A and B) / P(B), i.e., as
the joint probability of A and B, divided by the
marginal probability of B.

Joint probability

The probability of a combination of two (or
more) RVs.

Marginal probability

The probability of a random variable averaging
over (or integrating over all possible values of)
another random variable.

Joint density of a data set under a model

The joint density of obtaining the observed
values of all data (and possibly random effects
in the case of random-effects models) under a
statistical model. Expressed in terms of the
PDFs or PMFs of the model.

(Parametric) statistical model

A set of PDFs/PMFs for all observed random
variables (i.e., data) or unobserved random
variables (i.e., random effects, latent
variables).
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Bayes' rule

A derivation of the definition of the conditional
probability, which in general can be written as
P(A[B) = P(B|A)P(B) / P(B) and which can be
used for non-Bayesian calculations when
applied to observable quantities, e.g. in clinical
testing. In Bayesian statistics, Bayes' rule is
used for inferences about unknown,
unobservable quantities, and especially for
parameters of a statistical model. Denoting
parameters theta and a data set as y, Bayes'
rule can then be written as P(thetaly) =
P(y|theta)P(theta) / P(y). Ignoring the constant
in Bayes' rule, we can also write this as
P(thetaly) prop. P(y|theta)P(theta), i.e., the
posterior is proportional to the product of the
likelihood and the prior. Evaluation of P(y)
often requires intractable integrals over all
parameters and didn’t allow application of
Bayes’ rule for most practical applications for
centuries. The discovery of simulation
algorithms (MCMC; see below) circumvented
this impasse and led to the great advance of
Bayesian statistics observed during the last 30
years.

Prior, also prior distribution

A statement of how likely different values are
for a parameter in a Bayesian model before
any information in a data set to be analyzed is
incorporated, P(theta). This is a probability
distribution, thus it integrates/sums to 1 over
the entire parameter space.

Likelihood function

Joint density function of all data under a
model, when viewed as a function of the
parameters. Represents the formal connection
between data and parameters or loosely also
the statistical model fitted to a data set.

Maximum likelihood

A principle that says that the best possible
'guess' for a parameter is that value which
maximizes the likelihood function when
evaluated for the observed data set.
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Posterior, also posterior distribution

A statement of how likely different values are
for a parameter in a Bayesian model when we
incorporate the information in our data set, i.e.
P(theta | y). This is another proper probability
distribution that integrates to 1 over the
parameter space.

Prior predictive distribution

This is P(y) in Bayes' rule and is the probability
distribution when averaged over all possible
values of the priors. When evaluated for a
given data set, also called the 'normalizing
constant' since it ensures that the integral of
P(theta | y) becomes equal to 1. The value of
the normalizing constant is obtained by
integration over all parameters of the model,
which in practice can hardly ever be done.
MCMC algorithms circumvent this.

Bayesian model

A statistical model for a data set in which we
combine a likelihood with priors that we chose
for each parameter. Note that a Bayesian
model is not fundamentally different from its
corresponding non-Bayesian analog except for
the priors. Thus a linear regression model (in
terms of its likelihood) is the same whether we
fit it using least-squares, maximum likelihood
or Bayesian posterior inference.

Bayesian statistics, also Bayesian
inference or Bayesian posterior inference

The use of conditional probability, via Bayes'
rule, to update one state of knowledge using
the information contained in some data set and
embodied by the likelihood function and to
arrive at a new state of knowledge, usually
with reduced uncertainty about parameter and
other estimated quantities.

Markov chain Monte Carlo (MCMC)
algorithm

A vast family of iterative algorithms that are
typically used to fit Bayesian models. In
essence, they function like random number
generators (RNGs) for the posterior
distributions that arise from Bayes' rule when
combining the likelihood of the data under a
model and the priors chosen for the model's
parameters. These distributions can be
approximated to an arbitrary degree of
accuracy by drawing increasing samples of all
parameters.

14



