N

N

Hardware Implementation and FPGA Prototyping of an
Expectation Propagation-based Receiver
Ian Fischer Schilling, Serdar Sahin, Camille Leroux, Antonio Maria Cipriano,

Christophe Jego

» To cite this version:

Ian Fischer Schilling, Serdar Sahin, Camille Leroux, Antonio Maria Cipriano, Christophe Jego. Hard-
ware Implementation and FPGA Prototyping of an Expectation Propagation-based Receiver. (ICECS
2024) 31st IEEE International Conference on Electronics Circuits and Systems, Nov 2024, Nancy,
France. hal-04731226

HAL Id: hal-04731226
https://hal.science/hal-04731226v1
Submitted on 10 Oct 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04731226v1
https://hal.archives-ouvertes.fr

Hardware Implementation and FPGA Prototyping of
an Expectation Propagation-based Receiver

Ian Fischer Schilling”, Serdar Sahin, Camille Leroux”, Antonio Maria Cipriano®, Christophe Jégo"
*University of Bordeaux, Bordeaux INP T Thales
IMS Lab, UMR CNRS 5218, France Gennevilliers, France
firstname.last-name @ims-bordeaux.fr

Abstract—This paper presents a hardware implementation and
FPGA prototyping of a flexible pipelined Expectation Propa-
gation (EP)-based receiver that can handle QPSK, 8-PSK and
16-QAM constellations. The receiver implements a Frequency
Domain (FD) Self-Iterated Linear Equalizer (SILE) based on EP
to approximate the true posterior distribution of the transmitted
symbols by a simpler distribution. Analytical approximations for
the EP feedback generation process and the three constellations
are applied to reduce the hardware complexity of the soft map-
per/demapper architectures. The implementation results show a
significant reduction in clock cycles due to the pipeline and an
efficient usage of FPGA resources, underscoring the effectiveness
of the proposed architecture.

Index Terms—Expectation Propagation, Frequency Domain
Self-Iterated Linear Equalizer, Hardware Implementation, Ar-
chitecture Design, FPGA prototyping, Pipelined Architecture

I. INTRODUCTION

In digital communication systems, achieving minimal error
rates in data detection and/or decoding requires the resolution
of a Maximum A Posteriori (MAP) or Maximum Likelihood
(ML) problem [1]. However, the computational complexity
of resolving such criteria is often prohibitive, particularly in
real-world frequency selective channels. In this context, the
number of computations increases exponentially with factors
such as data length, modulation order and channel memory.
As a result, practical receiver design often involves the ap-
plication of simplifying hypotheses and approximations. One
promising approach in the context of Frequency Domain (FD)
Linear Equalization (LE) is equalizers designed with Expec-
tation Propagation (EP). Indeed, they have demonstrated an
appealing trade-off between performance and computational
complexity [2].

The implementation of a simplified EP receiver for mul-
tiple antenna receivers has been reported in [3], and a low
complexity EP detector for sparse code multiple access was
also proposed in [4]. Furthermore, simplified EP-based FD
equalization is studied in [5]. However, these studies only
provided a computational complexity assessment.

A comprehensive study and implementation of an EP-
based receiver for communication over frequency-selective

This work has been funded by the French National Research Agency
under grant number ANR-20-CE25-0008-01 (EVASION Project: https://anr-
evasion.ims-bordeaux.fr/).

firstname.last-name @thalesgroup.com

channels with standard Phase-Shift Keying (PSK) or Quadra-
ture Amplitude Modulation (QAM) constellations was given
in [6]. This receiver implements an FD Self-Iterated Linear
Equalizer (SILE), where EP is applied to approximate the true
posterior distribution of the transmitted symbols by a simpler
distribution that can be easily manipulated.

Building on previous work [6], a hardware implementation
of a flexible pipelined EP-based receiver is detailed in this
paper. To the best of our knowledge, this is the first EP-based
FD-SILE architecture that can accommodate three different
constellations.

II. SIMPLIFIED EP-BASED FD-SILE
A. General Structure

Expectation Propagation (EP) is a powerful technique ex-
ploited in statistical inference to approximate complex proba-
bility distributions by simpler distributions from the exponen-
tial family through moment matching. The Frequency Domain
(FD) Self-Iterated Linear Equalizer (SILE) algorithm derived
in [2] is based on EP to compute extrinsic soft decision
feedback.

The functional structure of the iterative receiver, which is
based on the analytical simplifications described in [6], is
depicted in Fig. 1. The received signal undergoes a transfor-
mation to the frequency domain via an FFT function. Subse-
quently, a linear Minimum Mean Square Error (MMSE) filter
with interference cancellation is employed for equalization. In
addition to the channel frequency response and noise statistics,
the filter computation requires the statistics of the soft decision
feedback [2].

The receiver executes S self-iterations, that pass through the
equalizer, the soft demapper, and the EP-based soft mapper.
After the filtering stage, the equalized symbols in the time
domain xz(s) are processed by the soft demapper, along with

Equalizer Filters

Soft Mapper/Demapper

Bitwise Max-log MAP
Demapper

Cep LUT
d y_ -
Zj_||EP-based |[K |Bitwise Soft

FFT
< " Soft Est. Mapper

Fig. 1: Simplified EP-based FD-SILE functional structure.

Le(dr.q)
FFT Forward —>

to Decoder

from Channel

Feedback

b ;
Hard [3 Ad
ecide[LUTs
; 1
& ﬁ
b
i

(c) 16-QAM.

Fig. 2: Architectures of Bitwise Max-log MAP Demapper.

an estimate of the residual post- equalization noise and inter-
ference variance v;(s). The bitwise max-log MAP demapper
then analytically estimates the Log-Likelihood Ratios (LLRs)
L(dy,q) based on the constellation under consideration [6].

During the last self-iteration, the LLRs are sent to the
FEC decoder. However, during the iterative process, the LLRs
are input to the bitwise soft mapper, where the soft symbol
estimate p¢ is analytically computed according to the constel-
lation. The EP-based soft estimates are then calculated using
the equalized symbols in the time domain xz(s), the estimate of
the residual post- equalization noise and interference variance
v;(s), the soft symbol estimate %, and the auxiliary quantity
Cep(ve) = 72/(v¢ — 4%), which is tabulated in terms of
vy, where 4¢ is the asymptotic a posteriori mean square
error (MSE) [5] [6].

The focus of the work lies on the blocks within the Soft
Mapper/Demapper.

B. Bitwise Max-log MAP Demapper

The proposed bitwise max-log MAP demapper, as shown in
Fig. 2, processes the equalized symbols and generates the soft
bits. The architectures enable the processing of the analytical
expressions [6] of the QPSK (Fig. 2a), 8-PSK (Fig. 2b) and
16-QAM (Fig. 2c) constellations.

For the 8-PSK constellation, the demapper starts by retriev-
ing the precomputed values of A« , from a Look-Up Table
(LUT) according to the max-log MAP criterion [6]. Then it
proceeds to multiply the equalized symbols by the LUT values
and add the real and imaginary results, followed by a saturation
block.

In the case of the 16-QAM constellation, one of the LLRs is
calculated using the absolute value of the equalized symbols,
while the second LLR is determined based on a conditional

(c) 16-QAM.

Fig. 3: Architectures of Bitwise Soft Mapper.

statement that depends on the modulus of the equalized
symbols. Both results are then passed through a saturation
block.

At the end of each LLR calculation, a multiplication opera-
tion is performed between the results and a tabulated constant
divided by sigma, in order to avoid division operations. In
the QPSK constellation, for example, this value is given by
21/2/vE. This is followed by a saturation block.

The execution time of the demapper varies depending on the
constellation: QPSK requires one clock cycle, 8-PSK requires
three clock cycles and 16-QAM requires two clock cycles.
The registers were added to remove the critical paths of the
architecture and thus operate at a frequency of 100 MHz.

C. Bitwise Soft Mapper

The proposed bitwise soft mapper, as shown in Fig. 3,
operates on the LLRs and generates soft symbol estimates,
denoted as p?. The architectures enable the processing of the
analytical expressions described in [6] of the QPSK (Fig. 3a),
8-PSK (Fig. 3b) and 16-QAM (Fig. 3c) constellations.

The operation begins by computing the hyperbolic tangent
of the LLRs thanks to a piecewise linear approximation where
all the slope and bias coefficients are powers of two. This
enables the evaluation of the probability of each bit. The first
probability is then multiplied by specific constants: 1/1/2 for

QPSK, /(2 — /2)/8 for 8-PSK, and 1//10 for 16-QAM.

For the 8-PSK constellation, the product of the first prob-

ability and /(2 —+/2)/8 is added to /(2 +/2)/8 and

subtracted from it. Then the results are multiplied by the
second and third probabilities, respectively. As for the 16-
QAM constellation, the second probability is subtracted from
2 and then multiplied by the product of the first probability
and 1/ V10.

The execution time of the bitwise soft mapper varies de-
pending on the constellation: QPSK requires one clock cycle,
while 8-PSK and 16-QAM require two clock cycles. The

Fig. 4: Architecture of EP-based Soft Estimates.

registers were allocated once to operate at a frequency of 100
MHz.

D. EP-based Soft Estimates

The proposed EP-based Soft Estimates block, as shown in
Fig. 4, employs the equalized symbols in the time domain
xz(s), the soft symbol estimate ¢, and the auxiliary quantity
Cpp(vS). The operation begins with the subtraction of the
equalized symbols xz(s) from the soft symbol estimates %
and the subsequent saturation of the result. This is followed
by a multiplication of the result by the auxiliary quantity C'gp
and another saturation. Finally, the result of the multiplication
is added to the soft symbol estimates ¢ and the final result is
saturated. This process is consistent across all constellations
and is designed to operate at a frequency of 100 MHz, taking
two clock cycles to execute.

III. A FLEXIBLE PIPELINED ARCHITECTURE

The flexible pipelined architecture, as depicted in Fig. 5, is
designed to support any of the three constellations mentioned:
QPSK, 8-PSK, and 16-QAM. The receiver can dynamically
change the mapping in each frame, thanks to the multiplexing
logic that allows the selection of the appropriate data path.

In order to easily prototype the receiver on a Multi Processor
System on Chip (MPSoC), a 32-bit AXI-stream [7] interface
was employed. This interface consists of an AXI-stream mas-
ter and an AXI-stream slave, both of which are equipped with
the signals data, valid, last, and ready. A Finite State Machine
(FSM) controls three states: Reset, Receive, and Send. This
requires the valid, last, and ready signals of both the master
and the slave for the state transitions.

The Control Data block receives the initial message, which
conveys whether there is a self-iteration, the constellation
identifier, and the 8-bit value of the estimated variance, v5').
The variance value is then processed by a ROM that contains

the auxiliary quantity Cgp. The Cgp is used to calculate the
extrinsic soft feedback variance vg(sﬂ) in the Extrinsic Vari-
ance block and the extrinsic soft feedback estimates z4(s+1)
in the EP-based Soft Estimates block (Fig. 4). The variance
is also processed by a ROM containing the inverse variance
values for the demapper, as shown in Fig. 2.

All messages are expressed in 32 bits. The messages fol-
lowing the first one contain two complex symbols each. These
two complex values are processed in parallel and in a pipeline.
First they pass through the demapper of their respective
constellation. If there is no self-iteration, the LLRs are moved
to the master’s data. However, if a self-iteration is required,
the LLRs are transferred to the mapper of their respective
constellation and then to the EP-based Soft Estimation block,
and finally shifted out to the master’s data.

The task scheduling for a QPSK frame with self-iteration
is shown in Fig. 6. The process comprises two main phases:
handling the control data and processing the symbol data.

The control data o, being the first one, is initially received
in the s_axis_data. It then moves to the Control Data block
in the next clock cycle. Subsequently, o navigates through the
Crgp ROM and the Extrinsic Variance block, as well as the
ROM of each constellation. By the fourth clock cycle, the
processed control data is available for transmission. However,
it is placed in m_axis_data only in the clock cycle before the
first processed symbol data, which enables better utilization if
there are multiple frames.

The symbol data is processed after the control data. Starting
from the second clock cycle, s_axis_data has the first symbol
data, denoted as S; and S;. As the clock cycles progress,
it moves through the demapper, the mapper, and is then
processed by the EP-based soft estimation. By the seventh
clock cycle, it is ready for transmission and is placed in
m_axis_data.

This sequence is repeated for all symbols up to S;25, with
each symbol pair following the path of its predecessor with a
delay of one clock cycle. As each data contains 2 symbols, this
results in a total number of 64 data values. The task scheduling
for the other constellations is similar. 8-PSK requires two
additional clock cycles for the demapper and one for the
mapper, while 16-QAM requires one additional clock cycle
for both the demapper and the mapper.

s roset n
QPSK s_flush_qpsk —

s_axis_data[>F—

s_axis_valid >

. Le(dr,) « roset o ut o)
_fush 5poK] Z Ext. M
QPSK fsalg QPSK |uaia Var
ROM Demap. . Mapper | Block |42
1 last

s_axis_last [<
m_axis_ready Lo(dy,) i = J?m_axls_data
s_reset_n —o{ b ! s_reset_nf L 5 "
8PSK s tush 855k — BPSK [vaia st 3o BPSK |uaia s der) L oy gm-axis.valid
ROM Demap. |, Mapper [e o I <Jm_axis_last
il — EP-based| sflush: s_axis_ready
L Soft e
Lot vt Est.
st
Control | s qps set L Le(dig) s_roset_n] ut
Data «_tun. t6qim—] T | s —
| isops 6QA 16QAM |vaig 5l 16QAM g
[is_t6qam ROM Demap. |, Mapper |,

Fig. 5: Architecture of Flexible Pipelined Soft Mapper/Demapper.

i 1 [S127
s_axis_data| o s, S oe

First Message g
ROM Cgp
Block Vgtar
ROM sigma
Demapper | . P

Si28
Mapper [S1 S| - Si27 <
EP-based Soft Est. 1 IS1 S P <.

EP-based Soft Est. 2 S1 | - Stz <
1S4

m_axis_data o 5, . [S8

Architecture Scheduling

Fig. 6: Task Scheduling of Proposed Architecture for QPSK
Constellation with Self-Iteration.

z°, vy,
Equalized > Le(dy)
y [Filters Ilflttr;ifr::é > D(:ciger b
FFT/IFFT [€
z¢, vg X
Software | Computer
Hardware L2 z€, e
Ed Soft Mapper
ARM l€- DMA 1 ¢ / Demapper
e(dq
Device z?, v

Fig. 7: Simplified EP-based FD-SILE FPGA and HIL Block
Diagram.

IV. FPGA IMPLEMENTATION AND PROTOTYPING

A. Experimental Setup

The experimental setup employs a Hardware-in-the-Loop
(HIL) configuration, involving a computer and a PYNQ Z2
board [8]. The computer runs py-AFF3CT, a Python wrapper
for the Forward Error Correction Toolbox AFF3CT [9]. The
PYNQ Z2 board is a prototyping board based on the Xilinx
Zynq System on Chip (SoC) with an ARM processor and an
FPGA ZYNQ XC7Z020-1CLG400C. As shown in Fig. 7, the
board is connected to the computer via an Ethernet interface.
The board’s ARM processor forwards the data to the FPGA
device via a Direct Memory Access (DMA).

Within the FPGA device, the Soft Mapper / Demapper block
encapsulates the flexible pipelined architecture depicted in Fig.
5. The remaining parts of the receiver are executed thanks to
AFF3CT on the associated computer. These software blocks
encompass filtering, equalization, FFT and IFFT operations,
rate dematching and Forward Error Correction (FEC) decod-
ing. This HIL setup is useful to verify that the error rate
performance matches the software reference model described
with the AFF3CT library.

B. FPGA Implementation Results

Table I summarizes the allocated FPGA resources for each
of the three constellations considered in this article: QPSK,
8-PSK, and 16-QAM. The values are given for the imple-
mentation of only the Soft Mapper / Demapper without the
HIL configuration. The HIL configuration employs about 3200

XC72020- Number QPSK 8-PSK 16-QAM Flexible
1CLG400C Orig. | Pipe. | Orig. | Pipe. | Orig. | Pipe. | Architecture
LUTs 53200 1035 | 1070 | 1805 | 1857 | 1448 | 1714 3834
Flip-Flops 106400 198 281 346 566 340 562 1059
BRAMs 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0
Cycles - 390 70 646 73 582 72 70-73

Frequency = 100 MHz

Table I: FPGA Resource Usage and Number of Clock Cycles
for the Soft Mapper / Demapper.

LUTs, 5200 Flip-Flops and 2 BRAMs for each implementa-
tion. The implemented architectures assign a data width of 32
bits for the DMA connection. It enables the exchange of two
symbols with 8-bit real and imaginary parts.

In addition to the first implementations given in [6],
pipelined versions of each constellation have been imple-
mented, as well as a global flexible pipelined architecture that
addresses the three mappings. While the pipelined versions
consume slightly more resources, they significantly reduce
the number of clock cycles required for the computations.
The global flexible implementation, on the other hand, allo-
cates fewer resources than the sum of the three individual
implementations. Moreover, it offers the advantage that it can
switch the constellation for each received message. These
enhancements demonstrate the versatility and efficiency of the
proposed architectures.

V. CONCLUSION

This paper details a hardware implementation of a flexible
pipelined EP-based receiver. To the best of our knowledge, this
is the first architecture that enables to consider three different
constellations. Thanks to the hardware-in-the-loop approach,
this architecture has been prototyped onto an MPSOC FPGA
to estimate its BER performance. In addition to the initial
block implementations, pipelined versions for each constel-
lation have been proposed. These versions, albeit requiring
slightly more resources, have significantly reduced the number
of clock cycles.

REFERENCES

[1]1 L. Bahl, J. Cocke, F. Jelinek and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate”, IEEE Trans. on Information
Theory, Mar. 1974.

[2] S. Sahin, A. M. Cipriano, C. Poulliat, M.-L. Boucheret, “A framework
for iterative frequency domain EP-based receiver design”, IEEE Trans.
on Communications, Dec. 2018.

[3] D. Auras, R. Leupers and G. Ascheid, “A Novel Class of Linear MIMO
Detectors with Boosted Communications Performance: Algorithm and
VLSI Architecture,” 2014 IEEE Computer Society Annual Symposium
on VLSI, 2014.

[4] J. Xiao, J. Hu, and K. Han, “Low complexity expectation propagation
detection for SCMA using approximate computing”, 2019 IEEE Global
Commun. Conf. (GLOBECOM), 2019.

[5]1 A. M. Cipriano, S. Sahin, C. Poulliat, “Practical Frequency-Domain
Decision Feedback Equalization Based on Expectation Propagation”,
IEEE Communications Letters, Oct. 2023.

[6] I. F. Schilling et al., “Hardware Implementation of Soft Map-
per/Demappers in Iterative EP-based Receivers”, arXiv Preprint, 2024,
arXiv:2406.07934

[71 ARM, 2021. “AMBA AXI-Stream Protocol Specification”. Available at:
developer.arm.com/documentation/ihi005 1/latest/

[8] AMD, 2024. AUP PYNQ-Z2. Available at:
amd.com/en/corporate/university-program/aup-boards/pynq-z2.html

[9] A. Cassagne et al., “AFF3CT: A Fast Forward Error Correction Tool-
box!,” SoftwareX, 2019.

