
HAL Id: hal-04731164
https://hal.science/hal-04731164v1

Preprint submitted on 10 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Φ-FD : A well-conditioned finite difference method
inspired by Φ-FEM for general geometries on elliptic

PDEs
Michel Duprez, Vanessa Lleras, Alexei Lozinski, Vincent Vigon, Killian

Vuillemot

To cite this version:
Michel Duprez, Vanessa Lleras, Alexei Lozinski, Vincent Vigon, Killian Vuillemot. Φ-FD : A well-
conditioned finite difference method inspired by Φ-FEM for general geometries on elliptic PDEs.
2024. �hal-04731164�

https://hal.science/hal-04731164v1
https://hal.archives-ouvertes.fr

ϕ−FD : A well-conditioned finite difference method inspired

by ϕ−FEM for general geometries on elliptic PDEs∗

Michel Duprez†, Vanessa Lleras‡, Alexei Lozinski§, Vincent Vigon¶and Killian Vuillemot‖

October 10, 2024

Abstract

This paper presents a new finite difference method, called ϕ-FD, inspired by the ϕ-FEM
approach for solving elliptic partial differential equations (PDEs) on general geometries. The
proposed method uses Cartesian grids, ensuring simplicity in implementation. Moreover,
contrary to the previous finite difference scheme on non-rectangular domain, the associated
matrix is well-conditioned. The use of a level-set function for the geometry description makes
this approach relatively flexible. We prove the quasi-optimal convergence rates in several
norms and the fact that the matrix is well-conditioned. Additionally, the paper explores
the use of multigrid techniques to further accelerate the computation. Finally, numerical
experiments in both 2D and 3D validate the performance of the ϕ-FD method compared to
standard finite element methods and the Shortley-Weller approach.

1 Introduction

We consider here the Poisson problem with homogeneous Dirichlet boundary conditions

−∆u = f in Ω, u = 0 on ∂Ω, (1)

where f ∈ C0(Ω) and Ω ⊂ Rn (n = 1, · · · , 3) is a connected domain. In the present article, we
will propose a new scheme to approximate the solution to (1) on a Cartesian grid for general
geometries Ω.

General advantages of Cartesian grids It is difficult and time-consuming to generate a body
fitting grid of a complex domain. This problem can be overcome by embedding the domain in
Cartesian grid, with the following advantages:

• The grid generation is simple and fast.

• Boundaries or interfaces can be easily represented by level-set functions.

• Computations can be parallelized.

∗This work was supported by the Agence Nationale de la Recherche, Project PhiFEM, under grant ANR-22-
CE46-0003-01.

†MIMESIS team, Inria de l’Université de Lorraine, MLMS team, Université de Strasbourg, 2 Rue Marie Hamm,
67000 Strasbourg, France, michel.duprez@inria.fr

‡IMAG, Univ Montpellier, CNRS UMR 5149, 499-554 Rue du Truel, 34090 Montpellier, France,
vanessa.lleras@umontpellier.fr

§Université de Franche-Comté, Laboratoire de mathématiques de Besançon, UMR CNRS 6623, 16 route de Gray,
25030 Besançon Cedex, France, alexei.lozinski@univ-fcomte.fr

¶Institut de Recherche Mathématique Avancée, UMR 7501, Université de Strasbourg et CNRS, Tonus team,
Inria de l’Université de Lorraine, 7 rue René Descartes, 67000 Strasbourg, France, vincent.vigon@math.unistra.fr

‖MIMESIS team, Inria de l’Université de Lorraine, MLMS team, Université de Strasbourg, 2 Rue Marie Hamm,
67000 Strasbourg, France, IMAG, Univ Montpellier, CNRS UMR 5149, 499-554 Rue du Truel, 34090 Montpellier,
France, killian.vuillemot@umontpellier.fr

1

• Once the problem is posed on the Cartesian grid (which is done analytically), we no longer
need interpolation, except for some approaches as the multigrid one presented in 6.3.

Finite difference method The use of Cartesian grids is mandatory to solve elliptic partial
differential equations with finite difference approaches. To do so on complex geometries, the main
approach used in the literature is the method introduced by Shortley and Weller in [29]. In [31, 2],
the authors have developed convergence study techniques for such finite difference methods. These
papers use discrete Green functions and a discrete maximum principle to obtain precise estimates
of the coefficients of the inverse matrix. These estimates sometimes lead to a phenomenon of
supraconvergence [32], which means that the numerical scheme converges to a higher order than
the one expected. In [6] they have considered elliptic problems with immersed interfaces. It has
been proposed in [14] a second-order accurate scheme to solve the Poisson equation with Dirichlet
boundary conditions on irregular domains. The immersed interface method [22] is based on a
Cartesian grid and is associated with a second-order finite difference scheme for very general
second-order elliptic and parabolic linear PDEs. They solve boundary value problems, extending
past the boundary to a computational box. So the combination of finite difference techniques and
an accurate unfitted method is therefore a natural idea. The drawback of these finite difference
methods is that the associated matrix is not well conditioned.

Finite element method Now let’s review the techniques based on non-conforming finite ele-
ment. Initial approaches like [26, 16, 15] have a lack precision due to their simple treatment of
boundary conditions and also produce not well-conditioned matrix. Over the past two decades,
have emerged more accurate methods, including XFEM [27, 19], CutFEM [4, 5, 3], and the Shifted
Boundary Method (SBM) [25]. They are mainly optimally convergent and the associated matrix
is well-conditioned, but require non-standard quadrature rules or extrapolations to assemble the
matrices. To avoid these constraints, the authors of [12] have developed a non-conforming method
called ϕ-FEM which uses a level-set function to describe the domain. ϕ-FEM has already been
demonstrated to be faster and more accurate than the classical finite element method on several
problems [7, 8, 9, 11]. In a recent paper [10], it has been proposed a combination with ma-
chine learning approach called ϕ-FEM-FNO based on the Fourier Neural Operator, which needs
Cartesian grids to perform discrete fast Fourier transform.

In the present article, we propose a finite difference scheme on Cartesian grid inspired by
ϕ-FEM. As in this approach, the domain is described by a level-set function ϕ which will be used
to impose the boundary conditions by penalization. This method, that we called ϕ-FD, combines
optimal accuracy, well conditioning of the associated matrix and simplicity of implementation (few
lines of python code with the help of scipy [30], see appendix).

Article outline The paper is organized as follows: Section 2 describes the expected formulation
of the ϕ-FD method for Poisson equation with homogeneous Dirichlet boundary conditions and
gives theorems on the convergence and on the conditioning of the associated matrix. Section 3
explains the parallel with the original ϕ-FEM method. Section 4 contains the proof of the two main
theorems of section 2. Section 5 proposes an alternative scheme which is numerically optimally
convergent. Section 6 is devoted to the numerical illustration of the method and a combination of
our scheme with a multigrid approach. In the appendix, we give an example of implementation
for ϕ-FD in the python language.

2 Main results

The domain is described by a level-set function ϕ such that

Ω = {ϕ < 0} . (2)

2

In particular, its boundary Γ is given by {ϕ = 0}.
We suppose that Ω is included in O :=

n∏
i=1

[ai, bi] with bi − ai = bj − aj for i ̸= j. Let N ∈ N∗,

h = (b1 − a1)/N and we consider the Cartesian grid covering this rectangle:

Oh := {xα : α ∈ {0, · · · , N}n}

with xαi = ai + αih for α = (α1, · · · , αn).
We denote by

D =


{1}, if n = 1,

{(1, 0), (0, 1)}, if n = 2,

{(1, 0, 0), (0, 1, 0), (0, 0, 1)}, if n = 3.

We define the following sub-grids:

Ωh = {xα ∈ Oh : xα ∈ Ω or xα±d ∈ Ω, d ∈ D} ,

Ωint
h = {xα ∈ Oh : xα ∈ Ω} .

Moreover, let Ωh, be the union of squares with vertices xα ∈ Oh intersecting Ω and Ω
int

h be the
union of squares with vertices xα ∈ Oh included in Ω. An example is given in Figure 1.

Let us describe now our finite difference method. We propose here a description of the scheme
for any dimension, but it will be given in the two dimensional case with explicit indices in Section
4. Find a discrete function uh = (uα)α:xα∈Ωh

defined on Ωh such that

ah(uh, vh) = lh(vh), (3)

for all discrete function vh = (vα)α:xα∈Ωh
defined on Ωh, where

ah(uh, vh) = (−∆huh, vh) + bh(uh, vh) + jh(uh, vh) ,

and
lh(vh) =

∑
α:xα∈Ωint

h

∑
d∈D

fαvα ,

with fα = (f(xα))α, the discrete Laplacian:

(−∆huh, vh) = −
∑

α:xα∈Ωint
h

∑
d∈D

−uα−d + 2uα − uα+d

h2
vα,

a penalization for the boundary conditions

bh(uh, vh) =
γ

2h2

∑
(α,d)∈B

1

ϕ2
α + ϕ2

α+d

(ϕα+duα − ϕαuα+d)(ϕα+dvα − ϕαvα+d)

and a stabilization term near the boundary

jh(uh, vh) = σ
∑

(α,d)∈J

−uα−d + 2uα − uα+d

h
× −vα−d + 2vα − vα+d

h

with γ, σ > 0 and

B = {(α, d)| the edge xα − xα+d intersects Γ and not included in Γ},

J = {(α, d)|xα ∈ Ω and [xα−d ̸∈ Ω or xα+d ̸∈ Ω]}.

3

Ωh Ωh Γ

Figure 1: Representation of Ωh, Ωh and Γ.

The discrete L2-norm, L∞-norm and H1-semi-norm are defined for all vh = (vα)α:xα∈Ωint
h

as

∥vh∥h,0 =

h2
∑

α:xα∈Ωint
h

v2α

1/2

, ∥vh∥h,∞ = max
α:xα∈Ωint

h

|vα|

and

|vh|h,1 =


∑

α,d:xα∈Ωint

and xα+d∈Ωint

h2

∣∣∣∣vα+d − vα
h

∣∣∣∣2


1/2

.

Here and after, in the inequalities, C will denote a constant independent on h and f .
Let us first define the notion of regularity we will need on the domain:

Definition 1. We say that a domain Ω is r-smooth, if for each point x0 ∈ Γ there exists a cone
centered at x0 with an angle strictly greater that π/2 and a radius r which is included in Ω.

Our scheme converges optimally :

Theorem 1 (Convergence). Suppose that Ω is r-smooth for a r > 0 and is defined by a level-set
function ϕ ∈ C2(Ωh) as in (2). Let u be the solution of the continuous system (1). Suppose that

u ∈ C4(Ω). For σ, γ large enough and h <
2r√
10

, the discrete system (3) admits a unique solution

uh. In this case, denoting by U = (u(xα))α:xα∈Ωint
h
, one has

∥U − uh∥h,0 + ∥U − uh∥h,∞ + |U − uh|h,1+ ⩽ Ch3/2∥u∥C4(Ω). (4)

Moreover, the matrix associated to the discrete system is well-conditioned:

Theorem 2 (Conditioning). Under the hypothesis of Theorem 1, the condition number defined by
κ(A) := ∥A∥2∥A−1∥2 of the matrix A associated to the bilinear form ah satisfies

κ(A) ≤ Ch−2.

4

Here, ∥ · ∥2 stands for the matrix norm associated to the euclidian norm.

These two theorems are proved in Section 4.

Remark 1. • The following proofs are given in 2D for readability in Section 4 but can be done
in the same way in 3D by adding corresponding indices.

• In the case of non-homogeneous Dirichlet boundary conditions uD
h = (uD

α)α, one needs to
add the following term in the right hand side:

brshh (vh) =
γ

2h2

 ∑
(α,d)∈B

1

ϕ2
α + ϕ2

α+d

(ϕα+du
D
α − ϕαu

D
α+d)(ϕα+dvα − ϕαvα+d)

 .

3 Link with ϕ−FEM

Consider T O
h a Cartesian triangular (or tetrahedral in 3D) mesh of O with nodes (xα), Th the set

of cells belonging to T O
h and intersecting Ω, ΩEF

h the domain covered by the mesh Th and ∂ΩEF
h

its boundary. Let EΓ
h the set of edges belonging to Th cutted by Γ and FΓ

h the set of internal
edges belonging to a cell of Th cutted by Γ. We define

Vh = {vh ∈ C0(Ωh) : vh|K ∈ P1(K) ∀K ∈ Th} and Qh = {vh ∈ L2(Ωh) : vh|K ∈ P0(E) ∀E ∈ EΓ
h }.

Consider the following ϕ-FEM scheme for (1): Find (uh, ph) ∈ Vh ×Qh∫
Ωh

∇uh · ∇vh −
∫
∂Ωh

∇uh · nvh +
γ

h

∑
E∈EΓ

h

∫
E

(uh − ϕhph)(vh − ϕhqh) (5)

+σh
∑

F∈FΓ
h

∫
F

[n · ∇uh][n · ∇vh] =

∫
Ωh

fvh, ∀vh, qh ∈ Vh ×Qh.

This ϕ-FEM scheme is a variant of the one given in [7]. We impose here uh ∼ ϕhph by penalization
on the edges E ∈ EΓ

h . The solution uh is represented by its values uα at the nodes xα. If xα is
inside Ω together with all its neighbors, then (5) gives (after division by h2 and some quadrature)
the usual discretization ∑

d∈D

−uα−d + 2uα − uα+d

h2
= fα. (6)

Like this we have the equations at the interior nodes, but the active unknowns are also at the
nodes outside Ω but adjacent to an inside node. If vh is a basis function attached to such a node,
then we simply ignore the contribution

∫
Ωh

∇uh · ∇vh −
∫
∂Ωh

∇uh · nvh (and also
∫
Ωh

fvh on the

right hand side). On the contrary, we want to keep the equations coming from

γ

h3

∑
E∈EΓ

h

∫
E

(uh − ϕhph)(vh − ϕhqh), (7)

which we have divided by h2 to be consistent with (6). For any E ∈ EΓ
h , ph and qh on E are just

some numbers, say pE and qE . Taking vh = 0 in (7) gives∫
E

(uh − ϕhpE)ϕh = 0,

thus

pE =

∫
E
uhϕh∫
E
ϕ2
h

.

5

We can now take qh = 0 and exclude ph from (7), which becomes

γ

h3

∑
E∈EΓ

h

∫
E

(
uh −

∫
E
uhϕh∫
E
ϕ2
h

ϕh

)
vh. (8)

Let us work out this term in the case when E ∈ EΓ
h is an edge from xα to xα+d, with xα inside Ω

and xα+d outside and d ∈ D. In this case

uh −
∫
E
uhϕh∫
E
ϕ2
h

ϕh =

{ ϕα+d

ϕ2
α+ϕ2

α+d
(ϕα+duα − ϕαuα+d) at xα,

ϕα

ϕ2
α+ϕ2

α+d
(ϕαuα+d − ϕα+duα) at xα+d

,

so the contribution to (8) on this edge E is given by

γ

2h2

1

ϕ2
α + ϕ2

α+d

(ϕα+duα − ϕαuα+d)(ϕα+dvα − ϕαvα+d),

which is of the same order as the penalization term bh.
Similar formulas hold for other configurations of edges E ∈ EΓ

h . This gives the matrix repre-
senting (7), which should be added to the matrix representing (6).

Finally, the ghost penalty term

σh
∑

F∈FΓ
h

∫
F

[n · ∇uh][n · ∇vh], (9)

which will be also divided by h2 can also be approximated in an Finite Difference manner. Take
again a node xα inside Ω such that xα+d is outside Ω with d ∈ D. Then the two edges (xα−d−xα

and (xα − xα+d) adjacent to xα are in FΓ
h and the above contributions on these edges can be

approximated as

σ
−uα−d + 2uα − uα+d

h
× −vα−d + 2vα − vα+d

h
.

4 Proof of Theorems 1 and 2

Most studies in the literature [23, 21] analyze the finite difference methods using the formalism of
finite elements or finite volumes [20] on elliptic problems. We will follow here the finite element
formalism.

Let us introduce the following discrete L2-norm, L∞-norm and H1-semi-norm on Ωh defined
for all vh = (vα)α:xα∈Ωh

as

∥vh∥h,0,Ωh
=

(
h2

∑
α:xα∈Ωh

v2α

)1/2

, ∥vh∥h,∞,Ωh
= max

α:xα∈Ωh

|vα|

and

|vh|h,1,Ωh
=


∑

α,d:xα∈Ω

or xα+d∈Ω

h2

∣∣∣∣vα+d − vα
h

∣∣∣∣2


1/2

.

We will focus here on the 2D case, but the reader will see that the other situation can be
treated similarly. In this case, the problem can be rewritten as follows: find a discrete function
uh = (uij)ij defined on Ωh such that

ah(uh, vh) = lh(vh),

6

for all discrete function vh = (vij)ij defined on Ωh, where

ah(uh, vh) = (−∆huh, vh) + bh(uh, vh) + jh(uh, vh) ,

and
lh(vh) =

∑
i,j

fijvij ,

with the discrete Laplacian:

(−∆huh, vh) =
∑

i,j|(xi,yj)∈Ω

4uij − ui−1,j − ui+1,j − ui,j−1 − ui,j+1

h2
vij ,

a penalization for the boundary conditions

bh(uh, vh) =
γ

h2

 ∑
(i,j)∈Bx

1

ϕ2
ij + ϕ2

i+1,j

(ϕi+1,juij − ϕijui+1,j)(ϕi+1,jvij − ϕijvi+1,j)

+
∑

(i,j)∈By

1

ϕ2
ij + ϕ2

i,j+1

(ϕi,j+1uij − ϕijui,j+1)(ϕi,j+1vij − ϕijvi,j+1)


and a stabilization term near the boundary

jh(uh, vh) = σ

(∑
(i,j)∈Jx

−ui−1,j + 2uij − ui+1,j

h
× −vi−1,j + 2vij − vi+1,j

h

+
∑

(i,j)∈Jy

−ui,j−1 + 2uij − ui,j+1

h
× −vi,j−1 + 2vij − vi,j+1

h

)
with γ, σ > 0 and

Bx = {(i, j)| the edge (xi, yj)− (xi+1, yj) intersects Γ and not included in Γ},

By = {(i, j)| the edge (xi, yj)− (xi, yj+1) intersects Γ and not included in Γ},
Jx = {(i, j)|(xi, yj) ∈ Ω and [(xi−1, yj) ̸∈ Ω or (xi+1, yj) ̸∈ Ω]},

and
Jy = {(i, j)|(xi, yj) ∈ Ω and [(xi, yj−1) ̸∈ Ω or (xi, yj+1) ̸∈ Ω]}.

We give now some intermediate results which will be used to prove Theorems 1 and 2.
The first one is an adaptation of Lemma 3.3 in [12] which will be central in the proof of the

convergence.

Lemma 1. There exist α1 ∈ (0, 1), α2 ∈ (0, 1/2) and β > 0 such that∣∣∣∣u1 − u0

h

∣∣∣∣2 ⩽ α1

∣∣∣∣u1 − u0

h

∣∣∣∣2 + α2

∣∣∣∣u2 − u1

h

∣∣∣∣2 + β

∣∣∣∣u0 − 2u1 + u2

h

∣∣∣∣2
for all u0, u1, u2 ∈ R.

Proof. For all a, b ∈ R and ε, δ > 0, it holds

a2 ≤ |a|(|a− b|+ |b|) ≤ 1

2ε
a2 +

ε

2
(|a− b|+ |b|)2

≤ 1

2ε
a2 +

ε

2
b2 + ε|a− b||b|+ ε

2
(a− b)2

≤ 1

2ε
a2 +

ε

2
(1 + δ)b2 +

ε

2
(1 +

1

δ
)(a− b)2.

7

For ε =
3

4
and δ =

1

6
, we have

a2 ≤ 2

3
a2 +

7

16
b2 +

ε

2
(1 +

1

δ
)(a− b)2,

which leads to the conclusion.

Lemma 2. For all β > 0, there exists α ∈ (0, 1) such that for all uij ∈ R

∣∣∣∣u10 − u00

h

∣∣∣∣2 + ∣∣∣∣u20 − u10

h

∣∣∣∣2 ⩽ α

(∣∣∣∣u10 − u00

h

∣∣∣∣2 + ∣∣∣∣u20 − u10

h

∣∣∣∣2
)

+ β

(∣∣∣∣u11 − u01

h

∣∣∣∣2 + ∣∣∣∣u11 − u10

h

∣∣∣∣2 + ∣∣∣∣u01 − u02

h

∣∣∣∣2
+

∣∣∣∣u00 − 2u10 + u20

h

∣∣∣∣2 + ∣∣∣∣u00 − 2u01 + u02

h

∣∣∣∣2
)
.

Proof. Consider

α = inf
(
|u10 − u00|2 + |u20 − u10|2

−β
(
|u11 − u01|2 + |u11 − u10|2 + |u01 − u02|2 + |u00 − 2u10 + u20|2

+ |u00 − 2u01 + u02|2
))

/
(
|u10 − u00|2 + |u20 − u10|2

)
,

where
|u10 − u00|2 + |u20 − u10|2 ̸= 0.

Without loss of generality, we can assume that

|u10 − u00|2 + |u20 − u10|2 = 1. (10)

We clearly have α ≤ 1. Assume that α = 1. There exists uij such that

|u11 − u01|2 + |u11 − u10|2 + |u01 − u02|2 + |u00 − 2u10 + u20|2 + |u00 − 2u01 + u02|2 = 0.

We deduce that u11 = u01 = u10 = u02, then

|u00 − 2u10 + u20|2 + |u00 − u10|2 = 0.

Hence u00 = u10 = u20 which is in contradiction with (10).

Lemmas 1 and 2 allow us to deduce the coercivity of the bilinear form ah:

Proposition 1 (Coercivity). There exists c > 0 such that, for each uh,

ah(uh, uh) ⩾ c|||uh|||2h,

where

|||uh|||h =

(
1

h2
|uh|2h,1,Ωh

+ bh(uh, uh) + jh(uh, uh)

)1/2

.

In the following proof and in the rest of the manuscript, we will use the following notation for
each i, j

uϕ
(i,j)−(i+1,j) =

ϕi,jui+1,j − ϕi+1,jui,j

ϕi,j − ϕi+1,j
. (11)

8

u00 u10 u20

Γ Ω

Figure 2: Case Nj > 2 in the proof of Proposition 1.

Proof of Proposition 1. Let us fix the index j, and assume that the nodes (xi, yj) belonging to Ωh

are for i ∈ {Mj , . . . , Nj}. Without loss of generality, we can assume that Mj = 0.

Case Nj > 2: We are in the situation described in Figure 2. We remark that

Nj−1∑
i=1

(−ui−1,j + 2ui,j − ui+1,j)ui,j

= − (u0,j − u1,j)u0,j︸ ︷︷ ︸
(I)

+(uNj−1,j − uNj ,j)uNj ,j︸ ︷︷ ︸
(II)

+

Nj−1∑
i=0

|ui+1,j − uij |2.

Let us first estimate the term (I). Using notation (11), we remark that

u0,j =

√
ϕ2
0,j + ϕ2

1,j

ϕ0,j − ϕ1,j

u0,jϕ0,j − u0,jϕ1,j√
ϕ2
0,j + ϕ2

1,j

=

√
ϕ2
0,j + ϕ2

1,j

ϕ0,j − ϕ1,j

uϕ
(0,j)−(1,j) +

ϕ0,j√
ϕ2
0,j + ϕ2

1,j

(u0,j − u1,j)

 . (12)

Since ϕ0,j ≥ 0 and ϕ1,j < 0, we have

0 ⩽
ϕ0,j√

ϕ2
0,j + ϕ2

1,j

< 1 and

√
ϕ2
0,j + ϕ2

1,j

ϕ0,j − ϕ1,j
≤ 1. (13)

Hence
(I) ≤ |(u0,j − u1,j)u

ϕ
(0,j)−(1,j)|+ (u0,j − u1,j)

2.

Moreover, using Young inequality with ε > 0 and Lemma 1 with α1 ∈ (0, 1), α2 ∈ (0, 1/2) and
β > 0, we observe

(I) ≤ 1

2ε
(uϕ

(0,j)−(1,j))
2 +

(
1 +

ε

2

)
(u0,j − u1,j)

2

⩽
1

2ε
(uϕ

(0,j)−(1,j))
2 +

(
1 +

ε

2

)
(α1|u1,j − u0,j |2 + α2|u2,j − u1,j |2)

+
(
1 +

ε

2

)
β|u2 − 2u1 + u0|2.

Similarly, it holds

(II) ⩽
1

2ε
(uϕ

(Nj−1,j)−(Nj ,j)
)2 +

(
1 +

ε

2

)
(α1|uNj−1,j − uNj ,j |2 + α2|uNj−2,j − uNj−1,j |2)

+
(
1 +

ε

2

)
β|uNj−2 − 2uNj−1 + uNj

|2.

9

Since Nj > 2, denoting by α = max{α1, 2α2}, one has

Nj−1∑
i=1

(−ui−1,j + 2ui,j − ui+1,j)ui,j

h2
⩾
(
1− α

(
1 +

ε

2

))Nj−1∑
i=0

∣∣∣∣ui+1,j − uij

h

∣∣∣∣2

− 1

2ε

Nj−1∑
i=0

(uϕ
(i,j)−(i+1,j))

2

h2
−
(
1 +

ε

2

)
β

Nj−1∑
i=1

∣∣∣∣−ui−1,j + 2uij − ui+1,j

h

∣∣∣∣2 .

u10

u01 u11

u02

u00 u20

Ω

Γ

Figure 3: Case Nj = 2 in the proof of Proposition 1.

Case Nj = 2: One has

(−u0,j + 2u1,j − u2,j)u1,j

= −(u0,j − u1,j)u0,j + (u1,j − u2,j)u2,j + |u1,j − u0j |2 + |u2,j − u1j |2

≤ |(u0,j − u1,j)u
ϕ
(0,j)−(1,j)|+ (u0,j − u1,j)

2 + |(u2,j − u1,j)u
ϕ
(1,j)−(2,j)|+ (u2,j − u1,j)

2.

We have (x0, yj), (x2, yj) ̸∈ Ω and (x1, yj) ∈ Ω. The circle containing (0, 0), (2h, 0), (0, 2h) has a

radius equal to

√
10

2
h. Then, since Ω is r-smooth, for h <

2r√
10

, without loss of generality, we can

assume that we are in the situation described in Figure 3. Thanks to Lemma 2, we obtain the
same conclusion as in the previous case.

Conclusion: Combining the two cases,

ah(uh, uh) ⩾
(
1− α

(
1 +

ε

2

))∑
i,j

∣∣∣∣ui+1,j − uij

h

∣∣∣∣2 +∑
j,i

∣∣∣∣ui,j+1 − uij

h

∣∣∣∣2


+

(
1− 1

2εγ

)
bh(uh, uh) +

(
1−

(
1 +

ε

2

) β

σ

)
jh(uh, uh),

which leads to the result taking ε such that α
(
1 + ε

2

)
< 1 and then γ, σ large enough.

Remark 2. As seen in the above proof, the assumption on h in Theorem 1 can be replaced by the
two assumptions :

• If (xi+1, yj), (xi−1, yj) ̸∈ Ω and (xi, yj) ∈ Ω then there exists k, l ∈ {−1, 1} such that
(xi+k, yj+l), (xi+k, yj+2l), (xi, yj+l) ∈ Ω.

• If (xi, yj+1), (xi, yj−1) ̸∈ Ω and (xi, yj) ∈ Ω then there exists k, l ∈ {−1, 1} such that
(xi+k, yj+l), (xi+2k, yj+l), (xi+k, yj) ∈ Ω.

10

We will need also the following Poincaré estimate :

Lemma 3. There exists CP > 0 such that for each vh = (vij)ij,

∥vh∥2h,∞,Ωh
+ ∥vh∥2h,0,Ωh

≤ CP

(
|vh|2h,1,Ωh

+ h3bh(vh, vh)
)
.

Proof. Let us fix the index j, and assume that the first and the last term (xi, yj) belonging to Ωh

are for i ∈ {Mj , . . . , Nj}. Without loss of generality, we can assume that Mj = 0. We have for all
i

vij = v0j +

i−1∑
k=0

(vk+1,j − vkj).

Then

v2ij ≤ 2v20j + 2(i− 1)

i−1∑
k=0

(vk+1,j − vkj)
2.

Denoting by L the maximum of the diameters of the set Ωh (i.e. the biggest distance between two
points of Ωh), Nj ⩽ CL/h (C > 0), we deduce that

Nj∑
i=0

v2ij ≤ 2C
L

h
v20j + 2C2L

2

h2

Nj−1∑
i=0

(vi+1,j − vij)
2.

Using (12) and (13),

v20,j ≤ 2(uϕ
(i,j)−(i+1,j))

2 + 2(v0,j − v1,j)
2,

which leads to the conclusion.

Proof of Theorem 1. Let us now prove Theorem 1. We remark that there exists C0 > 0 such that
for all f ∈ C2(Ω) and all h < h0 with h0 > 0, there exists an extrapolation ũ ∈ C4 of the solution
u of (1) such that

∥ũ∥C4(Ωh)
⩽ C0∥u∥C4(Ω). (14)

Consider ũ such an extrapolation. We denote by f̃ = −∆ũ and Ũ = (ũij)ij = (ũ(xi, yj))ij .
Let us denote by eij = ũij − uij and eh = (eij)ij . Thanks to Proposition 1, it holds

|||eh|||2h ≤ 1

c
ah(eh, eh).

Since uh is solution to (3),

ah(uh, eh) =
∑
ij

fijeij .

Thus

ah(eh, eh) = −
∑

i,j|(xi,yj)∈Ω

(
−4ũij − ũi−1,j − ũi+1,j − ũi,j−1 − ũi,j+1

h2
− fij

)
eij︸ ︷︷ ︸

(I)

+ bh(Ũ , eh)︸ ︷︷ ︸
(II)

+ jh(Ũ , eh)︸ ︷︷ ︸
(III)

.

Let us estimate each term:
Term (I): Thanks to Cauchy-Schwarz inequality,

(I) ⩽

√√√√ ∑
i,j|(xi,yj)∈Ω

(
−4ũij − ũi−1,j − ũi+1,j − ũi,j−1 − ũi,j+1

h2
− fij

)2

×
√ ∑

i,j|(xi,yj)∈Ω

e2ij .

11

There exist (ξi, νj) ∈ [xi − h, xi + h]× [yj − h, yj + h] such that

−4ũij − ũi−1,j − ũi+1,j − ũi,j−1 − ũi,j+1

h2
= fij −

h2

12

(
∂4ũ

∂x4
(ξi, yj) +

∂4ũ

∂y4
(xi, νj)

)
.

Since the number of nodes in Ωh is of order 1/h2, we deduce that√√√√ ∑
i,j|(xi,yj)∈Ω

(
−4ũij − ũi−1,j − ũi+1,j − ũi,j−1 − ũi,j+1

h2
− fij

)2

⩽ C∥u∥C4(Ω).

Thanks to Lemma 3,
(I) ≤ Ch∥u∥C4(Ω)|||eh|||h.

Term (II): Consider w := ũ/ϕ. Let (xi, yj) ∈ ∂Ωh such that (xi+1, yj) ∈ Ω. Using Sobolev
inequality and Hardy inequality (see e.g. [12])

∥w∥C1([xi,xi+1]) ⩽ C∥w∥2,[xi,xi+1] ⩽ C∥ũ∥3,[xi,xi+1].

Hence∣∣∣∣∣∣ϕ(i+1)j ũi,j − ϕij ũi+1,j√
ϕ2
(i+1)j + ϕ2

ij

∣∣∣∣∣∣ ≤
∣∣∣∣ ϕ(i+1)jϕij

min{|ϕ(i+1)j |, |ϕij |}

∣∣∣∣ |w(xi, yi)− w(xi+1, yj)|

≤ max{|ϕij |, |ϕi+1,j |}|w(xi, yi)− w(xi+1, yj)|
≤ Ch∥ϕ∥L∞([xi,xi+1])∥w∥C1([xi,xi+1]) ≤ Ch2∥ũ∥3,[xi,xi+1].

Thus, since the number of edges where is applied the ghost penalty is of order CL
h ,

(II) ⩽ bh(Ũ , Ũ)1/2bh(eh, eh)
1/2

⩽
C

h


√√√√√ ∑

(i,j)∈Bx

∣∣∣∣∣∣ϕ(i+1)j ũi,j − ϕij ũi+1,j√
ϕ2
(i+1)j + ϕ2

ij

∣∣∣∣∣∣
2

+

√√√√√ ∑
(i,j)∈By

∣∣∣∣∣∣ϕi(j+1)ũi,j − ϕij ũi(j+1)√
ϕ2
i(j+1) + ϕ2

ij

∣∣∣∣∣∣
2
 |||eh|||h

⩽ C
√
h∥ũ∥3,Ωh

|||eh|||h.

Term (III): Again, since the number of edges where is applied the ghost penalty is of order
CL
h ,

∑
(i,j)∈Jx

−ũi−1,j + 2ũij − ũi+1,j

h
× −ei−1,j + 2eij − ei+1,j

h

⩽ Ch∥ũ∥C2(Ωh)

∑
(i,j)∈Jx

∣∣∣∣−ei−1,j + 2eij − ei+1,j

h

∣∣∣∣
⩽ Ch1/2∥ũ∥C2(Ωh)

 ∑
(i,j)∈Jx

∣∣∣∣−ei−1,j + 2eij − ei+1,j

h

∣∣∣∣2
1/2

.

Thus
(III) ≤ Ch1/2∥ũ∥C2(Ωh)

|||eh|||h.

Combining with Lemma 3,

∥eh∥h,1,Ω ⩽ h|||eh|||h ⩽ Ch3/2∥u∥C4(Ω).

Lemma 3 leads to the L∞ and L2 estimates.

12

Let us now prove Theorem 2.

Proof of Theorem 2. Thanks to Proposition 1 and Lemma 3,

ah(vh, vh) ≥ C
∑

(i,j):(xi,yj)∈Ωh

v2ij .

Moreover, thanks to the expression of ah

ah(vh, vh) ≤
C

h2

∑
(i,j):(xi,yj)∈Ωh

v2ij ,

which leads to Theorem 2.

5 Alternative scheme

Here, we propose an alternative version of the scheme that is more complex but (numerically)
optimally convergent.

In 2D, consider the following finite difference scheme: find a discrete function uh = (uij)ij
defined on Ωh such that

ãh(uh, vh) = lh(vh),

for all discrete function vh = (vij)ij defined on Ωh, where

ãh(uh, vh) = (−∆huh, vh) + b̃h(uh, vh) + j̃h(uh, vh),

with

b̃h(uh, vh) =
γ

2h2

∑
ij

uϕ
(i−1,j)−(i+1,j) × vϕ(i−1,j)−(i+1,j)

4ϕ2
i+1,jϕ

2
i−1,j + ϕ2

ijϕ
2
i−1,j + ϕ2

ijϕ
2
i+1,j

+
∑
ij

uϕ
(i,j−1)−(i,j+1) × vϕ(i,j−1)−(i,j+1)

4ϕ2
i,j+1ϕ

2
i,j−1 + ϕ2

ijϕ
2
i,j−1 + ϕ2

ijϕ
2
i,j+1


and

uϕ
(i−1,j)−(i+1,j) := 2ϕi+1ϕi−1ui − ϕiϕi−1ui+1 − ϕiϕi+1ui−1,

uϕ
(i,j−1)−(i,j+1) and vϕ(i,j−1)−(i,j+1) are similarly defined, and the second stabilization term is given

by

j̃h(uh, vh) = σ

(∑
i,j

−ui−1,j + 3uij − 3ui+1,j + ui+2,j

h
× −vi−1,j + 3vij − 3vi+1,j + vi+2,j

h

+
∑
i,j

−ui,j−1 + 3uij − 3ui,j+1 + ui,j+2

h
× −vi,j−1 + 3vij − 3vi,j+1 + vi,j+2

h

)
. (15)

The indices in the sums are such that all the corresponding nodes belong to Ω with one outside
to Ω.

Remark 3. This alternative scheme is given in the 2D case for readability but is still holding
in 3D by adding the terms corresponding to the third index. We will give in Section 6 numerical
illustrations in both cases. We do not give proof of convergence for this alternative scheme, but it
can be analyzed in a future work.

13

Let us explain how to obtain the penalization term b̃h. If we assume that u = pϕ with
p = p0 + p1(x− xi) and uij = u(xi, yj), then

ui+1,j = (p0 + p1h)ϕi+1,j ,

uij = p0ϕij ,

ui−1,j = (p0 − p1h)ϕi−1,j ,

which gives
uϕ
(i−1,j)−(i+1,j) = 0.

Concerning the stabilization term (15), ∂xu(xi, yi) can be approximated (with an order 2) by

u(xi+1, yi)− u(xi−1, yi)

2h
and

−3u(xi, yi) + 4u(xi+1, yi)− u(xi+2, yi)

2h
,

which gives for the jump of ∂xu(xi, yi)

−u(xi+1, yi) + 3u(xi, yi)− 3u(xi+1, yi) + u(xi+2, yi)

2h
.

Thus (15) is an approximation of (9).

6 Numerical illustrations

In this section, we compare our two schemes with different existing approaches:

• ϕ-FEM scheme: to illustrate the interest of our new approach, it is mandatory to compare it
numerically with ϕ-FEM [12] to highlight the advantages and drawbacks of a finite element
approach compared to a finite difference approach;

• a standard finite element method: we also compare our method to the generic technique to
solve PDEs, a classic conforming finite element method;

• Shortley-Weller approach: we finally compare our method to the finite difference scheme
of the literature. For that, we have implemented the Shortley-Weller method [32, 2]. The
method has the same objective, to deal with complex geometries using a finite difference
approach but the associated matrix is not well conditioned. It is then natural to compare
our work with this technique.

The schemes presented in Section 2 and 5 will be denoted in the different figures by ϕ-FD and ϕ-
FD2, respectively. The FEM schemes are written thanks to the FEniCS software (see [24]) and the
finite difference schemes using the python libraries scipy1 [30] and numpy2 [18]. The simulations
were executed on a laptop with an Intel Core i7-12700H CPU and 32Gb of memory. All the
codes to reproduce the results are available at

https://github.com/PhiFEM/PhiFD.git

Since the solution of ϕ-FD is defined only on the nodes (xi, yj)ij and the solutions to Shortley-
Weller and Standard FEM live only on Ω, then the ϕ-FEM and Standard FEM solutions will be
interpolated on the nodes (xi, yj)ij belonging to Ω. The relative errors will be then computed
thanks to the norms ∥ · ∥h,0, ∥ · ∥h,∞ and ∥ · ∥h,1 defined in Section 2.

Note that this way of calculating errors for finite element methods may slightly deteriorate
the results compared to the standard way of calculating them. The idea is to compare the same
quantities for each scheme.

1https://scipy.org/
2https://numpy.org/

14

https://github.com/PhiFEM/PhiFD.git
https://scipy.org/
https://numpy.org/

6.1 First test case : 2D example

We consider the explicit solution

u = cos
(π
2
r
)

on the circle centered at (0.5, 0.5) with a radiusR = 0.3+1e−10 (and r = 1
R

√
(x− 0.5)2 + (y − 0.5)2).

This choice of radius ensures that the real boundary cuts an edge close to a node. In this case,
the Shortley-Weller approach will not be well-conditioned.

For the ϕ-FD scheme, the theoretical rate h3/2 is reached for the H1 norm and we observe a
h2 rate for the L2 and L∞ norms (see Figure 4 and 5, left and Table 1). ϕ-FD2 seems less good
for coarse grids, but is slightly better for fine resolution and has the optimal convergence h2 in
particular for the H1 norm. We also have the optimal conditioning number of the corresponding
matrix with an order of 1/h2 (see Figure 5, right). The python code has less than 100 lines (see
Appendix) and uses only the libraries scipy and numpy which induces a reduced computational
time (see Figure 6). On these figures, it appears that ϕ-FEM and ϕ-FD both have interests to
solve PDEs. Indeed, while the L2 and L∞ are pretty close for the two approaches, the H1 error,
the conditioning or the computation times are much different: the ϕ-FD approach is much faster
than the finite element approach while it leads to a slightly worst error on the derivatives of the
solution. Moreover, for the two ϕ-FD schemes, we observe the supra-convergence phenomenon as
for the Shortley-Weller approach.

10−2 10−1

10−5

10−4

10−3

10−2

10−1

1

2

h

L
2
re
la
ti
ve

er
ro
r

ϕ-FEM Std-FEM
SW ϕ-FD

ϕ-FD2

10−2 10−1
10−5

10−4

10−3

10−2

10−1

1

2

h

L
∞

re
la
ti
ve

er
ro
r

ϕ-FEM Std-FEM
SW ϕ-FD

ϕ-FD2

Figure 4: First test case, a 2D example. L2 (left) and L∞ (right) relative errors with respect
to the discretization step for ϕ-FEM, standard FEM, Shortley-Weller, ϕ-FD and ϕ-FD2.

ϕ-FEM Std FEM SW ϕ-FD ϕ-FD2
Relative L2-error 2.04 2.0 2.01 2.05 1.93
Relative L∞-error 1.98 1.94 1.95 1.96 1.95
Relative H1-error 2.02 1.17 1.82 1.83 1.98

Table 1: First test case, a 2D example. Orders of convergence.

To complete this test case and to justify our choice for the parameters σ and γ, we present in
Figure 7 the evolution of the L2 relative error and the condition number of the matrix. This leads
to the choice of σ = 0.01 for both schemes and γ = 1 for the first ϕ-FD scheme and γ = 10 for
the second scheme. We remark in Fig. 7 that the L2 relative error of the second ϕ-FD scheme is
more stable to the variations of σ than the one of ϕ-FD, thanks to the second order term j̃h.

15

10−2 10−1

10−5

10−4

10−3

10−2

1

2

1

1.5

1
1

h

H
1
re
la
ti
ve

er
ro
r

ϕ-FEM Std-FEM
SW ϕ-FD

ϕ-FD2

10−1.5 10−1
101

102

103

104

105

1

2

h

C
on

d
it
io
n
in
g

ϕ-FEM Std FEM
ϕ-FD ϕ-FD2

Figure 5: First test case, a 2D example. H1 relative error (left) and conditioning number
(right) with respect to the discretization step for ϕ-FEM, standard FEM, Shortley-Weller, ϕ-FD
and ϕ-FD2.

10−5 10−4 10−3 10−2 10−1

10−2

10−1

100

L2 relative error

C
om

p
u
ti
n
g
ti
m
e
(s
)

ϕ-FEM Std FEM
SW ϕ-FD

ϕ-FD2

10−5 10−4 10−3 10−2

10−2

10−1

100

H1 relative error

C
om

p
u
ti
n
g
ti
m
e
(s
)

ϕ-FEM Std FEM
SW ϕ-FD

ϕ-FD2

Figure 6: First test case, a 2D example. Computing times with respect to the L2 relative
error (Left) and the H1 relative error (Right) for ϕ-FEM, standard FEM, Shortley-Weller, ϕ-FD
and ϕ-FD2.

6.2 Second test case: a 3D example

We now consider a three-dimensional extension of the previous test case, i.e. the same explicit
solution, in a sphere centered at (0.5, 0.5, 0.5), with a radius R = 0.3 and

r =
1

R

√
(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2 .

Once again, the optimal h2 convergence is observed in the L2 and H1 norms (see Fig. 8).
Moreover, our two schemes outperform the two finite element methods as well as the Shortley-
Weller approach.

16

10−3 10−2 10−1 100 101

10−3

10−2

10−1

σ

L
2
re
la
ti
ve

er
ro
r

10−3 10−2 10−1 100 101

103

104

105

106

107

σ

C
on

d
it
io
n
n
u
m
b
er

ϕ-FD h =0.14 ϕ-FD2 h =0.14 ϕ-FD h =0.07 ϕ-FD2 h =0.07
ϕ-FD h =0.04 ϕ-FD2 h =0.04 ϕ-FD h =0.02 ϕ-FD2 h =0.02

10−3 10−2 10−1 100 101
10−4

10−3

10−2

10−1

100

101

γ

L
2
re
la
ti
ve

er
ro
r

10−3 10−2 10−1 100 101

103

104

105

106

γ

C
on

d
it
io
n
n
u
m
b
er

Figure 7: First test case, a 2D example. Top: evolution of the L2 relative errors (left) and
condition number (right) with respect to σ with γ = 1 for ϕ-FD and γ = 10 for ϕ-FD2. Bottom:
evolution of the L2 relative errors (left) and condition number (right) with respect to γ with
σ = 0.01 for ϕ-FD and ϕ-FD2.

17

10−1.4 10−1.2 10−1 10−0.8

10−3

10−2

10−1

1

2

h

L
2
re
la
ti
ve

er
ro
r

ϕ-FEM Std-FEM
SW ϕ-FD

ϕ-FD2

10−1.4 10−1.2 10−1 10−0.8

10−2

1

2

h

H
1
re
la
ti
ve

er
ro
r

ϕ-FEM Std-FEM
SW ϕ-FD

ϕ-FD2

Figure 8: Second test case, a 3D example. L2 (left) and H1 (right) relative errors with respect
to the discretisation step for ϕ-FEM, standard FEM, Shortley-Weller, ϕ-FD and ϕ-FD2.

6.3 Third test case: combination with a multigrid approach

Another advantage of using Cartesian grids is that we can take advantage of the structured multi-
grid solvers [1] in order to improve the stability and to speed up the numerical method. The
multigrid method is based on combining relaxation schemes and a hierarchy of coarser grids. Af-
ter applying point relaxation on the finest grid, a correction term is found by representing the
fine-grid residual on the next coarsest grid and using point relaxation there. Recursively, a hier-
archy of grids is obtained, and the algorithm is stopped when the problem is coarsened enough
to be solved directly. [13] describes the different iterative techniques for solving elliptic difference
problems: simple iteration method, Seidel’s method, Richardson’s method, Young’s method, re-
laxation method and minimal residuals method. [17] gives a description of a multigrid method
for the solution of Poisson equation on general bounded regions with numerical examples. Two
important components in multigrid methods are the restriction and prolongation operators which
transfer the information between grids. In [28], they have used Summation-by-Parts preserving
interpolation operators which lead to accurate and stable coarse-grid approximations. In the last
section of the present article, we propose a multigrid-like technique to obtain a good compromise
in terms of the computation time with respect to the error.

To reduce the computational time of the numerical resolution, we propose a way to combine
our numerical scheme ϕ-FD with a multigrid approach. The idea is to use the ϕ-FD solution
obtained on a coarse grid using a direct linear solver to initialize the ϕ-FD resolution on a finer
grid in the case of an iterative resolution of the associated linear system. More precisely, the
algorithm will be divided into three steps:

1. Step 1, direct resolution on coarse grid: we compute a coarse ϕ-FD solution u0 on a
coarse grid Nn

0 with a direct solver.

2. Step 2, interpolation on the fine grid: we consider u1 the interpolation by splines of
order 2 of u0 on a given fine grid Nn

obj with Nobj >> N0.

3. Step 3, iterative resolution on fine grid: we compute a ϕ-FD solution u2 on the fine
grid with an iterative linear solver and u1 as initialisation.

In 2D, we will compare this algorithm with the two following methods:

• Direct method: we solve a problem with a direct solver for several resolutions N0×N0 and
we interpolate the solution to the fine grid Nn

obj. The direct solver used here is the standard

18

one from scipy, i.e. a LU solver.

• Iterative method: the same process is applied except that we use this time an iterative
solver, namely the stabilized conjugate bigradient.

In 3D, we only compare our approach to the iterative method. We will consider the 2D and 3D
examples presented in the previous subsections. Nobj will be fixed to 2200 and 200 for the 2D and
3D cases, respectively. All the iterative solvers have the same tolerance for the interior relative
residues, i.e. 10−4. All the compatible iterative solvers of the python library scipy have been
tested by the authors, but the stabilized conjugate bigradient3 has always proven to be the best.
Note that the simple conjugate gradient cannot be used because the matrix A is not symmetric.

Remark 4. • Another point is that one can also add an intermediate step, solving a finer
problem with resolution N0 < N1 < Nobj to reduce the number of iterations of the last
solver. However, this approach was not necessary for our test cases and increased the number
of parameters to tune in the pipeline (tolerance and maximal number of iterations of the
intermediate solver, intermediate grid, parameters of the intermediate interpolation).

• If a ϕ-FD scheme is subsequently developed for non-linear equations, this multigrid approach
can be applied to the iterations of Newton’s algorithm.

The results in Fig. 9 (left) illustrate that our approach is better than the 2 baseline methods:
indeed, we reach a better precision (due to the final iterative solver) much faster since we only need
a few iterations of the fine linear solver. On each baseline curve, we add the discretization used
for the resolution, and on the multigrid curves, the one used for the coarse solvers. Since we have
chosen to use the multigrid approach using an interpolation of f and ϕ from the fine resolution to
the coarse one, the computation times contain only the times to solve the linear systems and the
time to interpolate u from the resolution N0 to the Nobj for the multigrid approach.

As previously said, one of the issues of the ϕ-FD technique, and all the finite difference tech-
niques is the growth of the size of the linear system to solve, especially in 3D: the matrix A collects
(N + 1)6 values for a resolution N . Hence, one would always need to use an iterative solver to
solve 3D problems with this approach. However, applying an iterative solver without any initial
guess with a resolution N = 200 leads to solving a problem with a matrix A collecting more than
1013 values. Even using the sparsity of the matrix, this results in a gigantic system that takes a
long time to solve. As illustrated in Fig. 9 (right), our approach gives results to such problems
much faster than the baseline method, the iterative method presented before.

7 Conclusion and perspectives

In this work, we have proposed a well-conditioned finite difference method inspired by the ϕ-FEM
approach for solving elliptic PDEs on general geometries. The key advantages of the proposed
ϕ-FD method can be summarized as follows:

• Well-conditioned Matrices: The method produces well-conditioned matrices, which en-
sure stability and efficiency during the numerical resolution of PDEs.

• Quasi-optimal Convergence: The ϕ-FD scheme achieves quasi-optimal convergence rates,
demonstrating accuracy comparable to other established methods.

• Compatibility with Multigrid Techniques: Our method is fully compatible with multi-
grid approaches, allowing further acceleration of the numerical solution process, especially
for large-scale problems.

The proposed method opens several avenues for future research and development:

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.bicgstab.html

19

10−6 10−5
100

101

102

N0 =1000

N0 =1200
N0 =1400

N0 =1600

N0 =1800

N0 =2000

N0 =1000

N0 =1200

N0 =1400

N0 =1600

N0 =1800
N0 =2000

N0 =400

N
0

=
5
0
0

N
0

=
6
0
0

N
0

=
7
0
0

N
0

=
8
0
0

N
0

=
9
0
0

N
0

=
1
0
0
0

L2 relative error

C
o
m
p
u
ta
ti
on

ti
m
e
(s
)

Direct Iterative
Multigrid

10−4 10−3

101

102

N0 =100

N0 =120

N0 =140

N0 =160

N0 =180

N
0

=
4
0

N
0

=
5
0

N
0

=
6
0

N
0

=
7
0

N
0

=
8
0

N
0

=
9
0

N
0

=
1
0
0

L2 relative error

C
o
m
p
u
ta
ti
on

ti
m
e
(s
)

Iterative
Multigrid

Figure 9: Third test case, multigrid approach: Computational time with respect to the L2

relative error for the direct, iterative and multigrid method for 2D (left) and 3D (right) examples.

• Neumann Boundary Conditions: An extension of the ϕ-FD method to handle Neumann
boundary conditions is a natural next step, enabling the application of this technique to a
broader class of PDEs.

• Proof for the Second Scheme: While we have introduced an alternative ϕ-FD scheme, a
proof of its convergence properties is still pending. This will be an essential step to validate
and potentially optimize the scheme further.

• Non-linear Problems and Multigrid Implementation: Another promising direction is
to apply the ϕ-FD scheme to non-linear PDEs, combined with a multigrid approach within
Newton’s iterative method. This could significantly enhance the efficiency and applicability
of the method in solving complex, real-world problems.

• Combination with a neural network: As it has been proposed in [10], where ϕ-FEM is
combined with a neural operator, one could also imagine an adaptation to the ϕ-FD approach
to generate a collection of precise data to train a neural operator.

The results obtained in this study indicate that the ϕ-FD method has significant potential
in numerical analysis and computational science, particularly for problems involving complex
geometries and large-scale computations. However, the theoretical results of the present paper
needs more regularity of the exact solution than the finite element approaches.

A Example of code for ϕ-FD in python

1 import numpy as np

2 import scipy.sparse as sp

3 from scipy.sparse.linalg import spsolve

4

5 # Radius of the domain

6 R = 0.3 + 1e-10

7

8 # Parameter of penalization and stabilization

9 sigma , gamma = 0.01, 1.0

10

11 # Construction of the grid

12 Nx, Ny = 100, 100

20

13 x, y = np.linspace(0, 1, Nx + 1), np.linspace(0, 1, Ny + 1)

14 hx, hy = x[1] - x[0], y[1] - y[0]

15 X, Y = np.meshgrid(x, y)

16

17 # Computation of the exact solution , exact source term and the level -set

18 r = lambda x, y: np.sqrt((x - 0.5) * (x - 0.5) + (y - 0.5) * (y - 0.5) + 1e-12)

19 K = np.pi / 2 / R

20 ue = lambda x, y: np.cos(K * r(x, y))

21 f = lambda x, y: K * K * np.cos(K * r(x, y)) + K * np.sin(K * r(x, y)) / r(x, y)

22 phi = lambda x, y: (x - 0.5) * (x - 0.5) + (y - 0.5) * (y - 0.5) - R * R

23 phiij = phi(X, Y)

24 ind = (phiij < 0) + 0

25 mask = sp.diags(diagonals=ind.ravel())

26 indOut = 1 - ind

27

28 # Laplacian matrix

29 D2x = (1 / hx / hx) * sp.diags(

30 diagonals =[-1, 2, -1], offsets=[-1, 0, 1], shape=(Nx + 1, Nx + 1)

31)

32 D2y = (1 / hy / hy) * sp.diags(

33 diagonals =[-1, 2, -1], offsets=[-1, 0, 1], shape=(Ny + 1, Ny + 1)

34)

35 D2x_2d = sp.kron(sp.eye(Ny + 1), D2x)

36 D2y_2d = sp.kron(D2y , sp.eye(Nx + 1))

37 A = mask @ (D2x_2d + D2y_2d)

38

39 # Boundary conditions

40 diag = np.zeros ((Nx + 1) * (Ny + 1))

41 diagxp = np.zeros((Nx + 1) * (Ny + 1) - 1)

42 diagxm = np.zeros((Nx + 1) * (Ny + 1) - 1)

43 diagyp = np.zeros((Nx + 1) * Ny)

44 diagym = np.zeros((Nx + 1) * Ny)

45 actGx = np.zeros((Ny + 1, Nx + 1))

46 actGy = np.zeros((Ny + 1, Nx + 1))

47

48 indx = ind[:, 1 : Nx + 1] - ind[:, 0:Nx]

49 J, I = np.where ((indx == 1) | (indx == -1))

50 for k in range(np.shape(I)[0]):

51 if indx[J[k], I[k]] == 1:

52 indOut[J[k], I[k]], actGx[J[k], I[k] + 1] = 0, 1

53 else:

54 indOut[J[k], I[k] + 1], actGx[J[k], I[k]] = 0, 1

55 phiS = np.square(phiij[J, I]) + np.square(phiij[J, I + 1])

56 diag[I + (Nx + 1) * J] = phiij[J, I + 1] * phiij[J, I + 1] / phiS

57 diagxp[I + (Nx + 1) * J] = -phiij[J, I] * phiij[J, I + 1] / phiS

58 diag[I + 1 + (Nx + 1) * J] = phiij[J, I] * phiij[J, I] / phiS

59 diagxm[I + (Nx + 1) * J] = -phiij[J, I] * phiij[J, I + 1] / phiS

60

61 indy = ind[1 : Ny + 1, :] - ind[0:Ny , :]

62 J, I = np.where ((indy == 1) | (indy == -1))

63 for k in range(np.shape(I)[0]):

64 if indy[J[k], I[k]] == 1:

65 indOut[J[k], I[k]], actGy[J[k] + 1, I[k]] = 0, 1

66 else:

67 indOut[J[k] + 1, I[k]], actGy[J[k], I[k]] = 0, 1

68 phiS = np.square(phiij[J, I]) + np.square(phiij[J + 1, I])

69 diag[I + (Nx + 1) * J] += phiij[J + 1, I] * phiij[J + 1, I] / phiS

70 diagyp[I + (Nx + 1) * J] = -phiij[J, I] * phiij[J + 1, I] / phiS

71 diag[I + (Nx + 1) * (J + 1)] += phiij[J, I] * phiij[J, I] / phiS

72 diagym[I + (Nx + 1) * J] = -phiij[J, I] * phiij[J + 1, I] / phiS

73

74 B = (gamma / hx / hy) * sp.diags(

75 diagonals =(diagym , diagxm , diag , diagxp , diagyp),

76 offsets=(-Nx - 1, -1, 0, 1, Nx + 1),

77)

78

79 # Stabilization

21

80 maskGx = sp.diags(diagonals=actGx.ravel ())

81 maskGy = sp.diags(diagonals=actGy.ravel ())

82 C = sigma * hx * hy * (D2x_2d.T @ maskGx @ D2x_2d + D2y_2d.T @ maskGy @ D2y_2d)

83

84 # Penalization outside

85 D = sp.diags(diagonals=indOut.ravel())

86

87 # Linear system

88 A, b = (A + B + C + D).tocsr(), (ind * f(X, Y)).ravel ()

89 u = spsolve(A, b).reshape(Ny + 1, Nx + 1)

90

91 # Computation of the errors

92 uref = ue(X, Y)

93 e = ind * (u - uref)

94 eL2 = np.linalg.norm(e) * np.sqrt(hx * hy)

95 emax = np.linalg.norm(e, np.inf)

96 print(eL2 , emax)

Listing 1: ϕ-FD Python implementation.

References

[1] L. Adams. A multigrid algorithm for immersed interface problems. In NASA Conference
Publication, pages 1–14, 1996.

[2] J. H. Bramble and B. E. Hubbard. On the formulation of finite difference analogues of the
Dirichlet problem for Poisson’s equation. Numer. Math., 4:313–327, 1962.

[3] E. Burman, S. Claus, P. Hansbo, M. Larson, and A. Massing. CutFEM: discretizing ge-
ometry and partial differential equations. International Journal for Numerical Methods in
Engineering, 104(7):472–501, 2015.

[4] E. Burman and P. Hansbo. Fictitious domain finite element methods using cut elements:
I. A stabilized Lagrange multiplier method. Computer Methods in Applied Mechanics and
Engineering, 199(41):2680–2686, 2010.

[5] E. Burman and P. Hansbo. Fictitious domain finite element methods using cut elements: II.
A stabilized Nitsche method. Applied Numerical Mathematics, 62(4):328–341, 2012.

[6] M. Cisternino and L. Weynans. A parallel second order cartesian method for elliptic interface
problems. Communications in Computational Physics, 12(5):1562–1587, 2012.

[7] S. Cotin, M. Duprez, V. Lleras, A. Lozinski, and K. Vuillemot. ϕ-FEM: An efficient simulation
tool using simple meshes for problems in structure mechanics and heat transfer. Partition of
Unity Methods, pages 191–216, 2023.

[8] M. Duprez, V. Lleras, and A. Lozinski. A new ϕ-FEM approach for problems with natural
boundary conditions. Numerical Methods for Partial Differential Equations, 39(1):281–303,
2023.

[9] M. Duprez, V. Lleras, and A. Lozinski. ϕ-FEM: an optimally convergent and easily imple-
mentable immersed boundary method for particulate flows and Stokes equations. ESAIM:
Mathematical Modelling and Numerical Analysis, 57(3):1111–1142, 2023.

[10] M. Duprez, V. Lleras, A. Lozinski, V. Vigon, and K. Vuillemot. ϕ-FEM-FNO: a new approach
to train a neural operator as a fast PDE solver for variable geometries. submitted, 2024.

[11] M. Duprez, V. Lleras, A. Lozinski, and K. Vuillemot. ϕ-FEM for the heat equation: optimal
convergence on unfitted meshes in space. Comptes Rendus. Mathématique, 361(G11):1699–
1710, 2023.

22

[12] M. Duprez and A. Lozinski. ϕ-FEM: a finite element method on domains defined by level-sets.
SIAM J. Numer. Anal., 58(2):1008–1028, 2020.

[13] R. P. Fedorenko. Iterative methods for elliptic difference equations. Russian Mathematical
Surveys, 28(2):129, 1973.

[14] F. Gibou, R. P. Fedkiw, L.-T. Cheng, and M. Kang. A second-order-accurate symmetric dis-
cretization of the Poisson equation on irregular domains. Journal of Computational Physics,
176(1):205–227, 2002.

[15] V. Girault and R. Glowinski. Error analysis of a fictitious domain method applied to a
Dirichlet problem. Japan Journal of Industrial and Applied Mathematics, 12(3):487, 1995.

[16] R. Glowinski, T. Pan, and J. Periaux. A fictitious domain method for Dirichlet problem and
applications. Computer Methods in Applied Mechanics and Engineering, 111(3-4):283–303,
1994.

[17] W. Hackbusch. A fast iterative method for solving Poisson’s equation in a general region. In
Numerical treatment of differential equations (Proc. Conf., Math. Forschungsinst., Oberwol-
fach, 1976), volume Vol. 631 of Lecture Notes in Math., pages 51–62. Springer, Berlin-New
York, 1978.

[18] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,
E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk,
M. Brett, A. Haldane, J. F. del Ŕıo, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357–362, Sept. 2020.

[19] J. Haslinger and Y. Renard. A new fictitious domain approach inspired by the extended finite
element method. SIAM Journal on Numerical Analysis, 47(2):1474–1499, 2009.

[20] H. Johansen and P. Colella. A cartesian grid embedded boundary method for Poisson’s
equation on irregular domains. Journal of Computational Physics, 147(1):60–85, 1998.

[21] B. S. Jovanović and E. Süli. Analysis of finite difference schemes: for linear partial differential
equations with generalized solutions, volume 46. Springer Science & Business Media, 2013.

[22] Z. Li. An overview of the immersed interface method and its applications. Taiwanese Journal
of Mathematics, 7(1):1 – 49, 2003.

[23] Z. Li, T. Lin, and X.-H. Wu. New cartesian grid methods for interface problems using the
finite element formulation. Numerische Mathematik, 96:61–98, 2003.

[24] A. Logg and G. N. Wells. Dolfin: Automated finite element computing. ACM Transactions
on Mathematical Software (TOMS), 37(2):1–28, 2010.

[25] A. Main and G. Scovazzi. The shifted boundary method for embedded domain computations.
Part I: Poisson and Stokes problems. J. Comput. Phys., 372:972–995, 2018.

[26] R. Mittal and G. Iaccarino. Immersed boundary methods. Annu. Rev. Fluid Mech., 37:239–
261, 2005.

[27] N. Moës, J. Dolbow, and T. Belytschko. A finite element method for crack growth without
remeshing. International journal for numerical methods in engineering, 46(1):131–150, 1999.

[28] A. A. Ruggiu, P. Weinerfelt, and J. Nordström. A new multigrid formulation for high order
finite difference methods on summation-by-parts form. Journal of Computational Physics,
359:216–238, 2018.

23

[29] G. H. Shortley and R. Weller. The numerical solution of Laplace’s equation. Journal of
Applied Physics, 9(5):334–348, 1938.

[30] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wil-
son, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey,
İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Hen-
riksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van
Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020.

[31] L. Weynans. Convergence of a cartesian method for elliptic problems with immersed inter-
faces. INRIA research report 8872, 2017.

[32] G. Yoon and C. Min. A review of the supra-convergences of shortley-weller method for poisson
equation. Journal of the Korean Society for Industrial and Applied Mathematics, 18:51–60,
2014.

24

	Introduction
	Main results
	Link with testFEM
	Proof of Theorems 1 and 2
	Alternative scheme
	Numerical illustrations
	First test case : 2D example
	Second test case: a 3D example
	Third test case: combination with a multigrid approach

	Conclusion and perspectives
	Example of code for test-FD in python

