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THE MASTER RELATION FOR POLYNOMIALITY AND

EQUIVALENCES OF INTEGRABLE SYSTEMS

XAVIER BLOT, ADRIEN SAUVAGET, AND SERGEY SHADRIN

Abstract. We prove the so-called master relation in the tautological ring of the moduli
space of curves that implies polynomial properties of the Dubrovin–Zhang hierarchies
associated to different versions of cohomological field theories as well as their equivalences
to the corresponding double ramification hierarchies.

1. Introduction

The main goal of the paper is to prove the so-called master relation in R∗(Mg,n+m),
g ≥ 0, n,m ≥ 1, 2g − 2 + n + m > 0, conjectured in [3, Conjecture 3.4]. This master
relation is proven in op. cit. in the Gorenstein quotient and used to imply the strong
form of the DR/DZ equivalence conjecture due to Buryak-Dubrovin-Guéré-Rossi [5, 6]
(see also the foundational work of Buryak [4] for an earlier weaker version of the DR/DZ
equivalence conjecture).
The master relation in the Gorenstein quotient is sufficient for the most important

applications to integrable systems associated with ordinary Cohomological field theories
(CohFTs), partial CohFTs, (ordinary or partial), and F-CohFTs. Indeed, the examples
considered in the literature in the context of integrable systems are constructed in terms
of the tautological classes. Yet, it was believed for a long time that polynomiality and
equivalence properties of integrable systems of topological type are governed by actual
relations in the tautological ring of the moduli space of curves. To this end, a number
of conjectures were made, see [7, Conjecture 2.5] and [8, Conjectures 1, 2, 3]. All these
conjectures were shown through a sequence of works [8, 1, 3, 2] to follow from the master
relation. Therefore, the present paper settles these conjectures as well.
Despite the fact that the master relation that we prove in this paper is of crucial

importance for integrable systems, we won’t survey these applications as it is already
done in a very detailed way in [8, Section 4]. In order to keep this paper short, we focus
on the statement and proof of the master relation itself. It is worth noticing that our
proof follows from a direct application of the virtual localization formula for moduli spaces
of (relative) stable maps to P1 [11], while the previous proof in the Gorenstein quotient
relied on a series of reduction steps to control the intersection of the master relation with
generators of the tautological rings.

1.1. Acknowledgments. X. B. and S. S. are supported by the Netherlands Organization
for Scientific Research.

2. The master relation

2.1. Definition. We follow the exposition in [3].

2.1.1. Pre-stable star rooted trees. We fix integers m ≥ 1, n ≥ 1, and g ≥ 0, such that
2g − 2 + n + m > 0. We denote by PSSRTg,n,m the set of n + m-pre-stable star rooted
trees of genus g, that is the set of pre-stable graphs

T = (V,H, ι : H → H, g : V → Z≥0, H
ι ≃ {σ1, . . . , σn+m})
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of genus g with n +m legs, satisfying the following constraints:

• If E(T ) stands for the set of edges H ι, then the graph (V,E) is a rooted tree, and
all edges are between the root and another vertex (hence the term “star”).

• The legs σn+1, . . . , σn+m are attached to the root vertex, while σ1, . . . , σn are at-
tached to non-root vertices. In particular, the root vertex vr is uniquely determined
by the rest of the data.

• For each v ∈ V (T ), let H(v) be the set of half-edges incident to v (including the
legs). The pre-stability condition means that 2g(v) − 2 + |H(v)| ≥ 0 for every
v ∈ V (T ).

• There is at least one leg attached to each vertex.

We will consider the ring Q = Q(a1, . . . , an) (where the ai’s are formal variable). If T is
a graph in PSSRTg,n,m, then each edge e connects the root vertex vr to a non-root vertex
that we denote ve. We set a(e) to be the sum of ai’s associated with the legs attached to
ve. If a half-edge h is the leg σi, then a(h) stands for ai.

2.1.2. Classes assigned to a tree. We want to assign to T a class Ξ(T ) in R∗(Mg,n+m)⊗Q

Q[u, u−1] (where u is an extra formal variable used to control the degree). In order to
construct this class, we first assign a class to each vertex.
Let v be a vertex of T . We will consider the moduli space of curves Mg(v),|H(v)|. If v is

the root vertex vr we have a natural isomorphism H(vr) ∼= E(T ) ⊔ {σn+1, . . . , σn+m} and
we associate the first |E(T )| marked points in the corresponding space Mg(vr),|H(vr)| with
the edges, and the remaining m points with the legs {σn+1, . . . , σn+m}. We set

Ψ(vr) :=
∏

e∈E(T )

1

1− a(e)ψe

∈ R∗(Mg(vr),|E(T )|+m)⊗Q Q(2.1)

where ψe stands for the ψ-class attach the half-edge part of the edge e. In the exceptional
unstable case g(vr) = 0, m = 1, |E(T )| = 1, we formally assign to the root vertex the
following class:

Ψ(vr) := a(e)−1 ∈ R−1(M0,2)⊗Q Q,(2.2)

where R−1(M0,2) is identified with Q and the negative cohomological degree is just for-
mally assigned to allow to treat this case non-exceptionally in what follows.
If v is a non-root vertex ve 6= vr for some edge e, the we associate the first |H(ve)| − 1

marked points in the space Mg(ve),|H(ve)| with the legs attached to ve, and the last marked
point with the edge e that connects ve to vr. We set

D(ve) :=
λg(ve)DRg(ve)

(

a(h1), . . . , a(h|H(ve)|−1),−a(e)
)

1− a(e)ψ|H(ve)|

∈ R∗(Mg(ve),|H(ve)|)⊗Q Q.(2.3)

As a(e) = a(h1) + · · · + a(h|H(ve)|−1), the class DRg(ve)

(

a(h1), . . . , a(h|H(ve)|−1),−a(e)
)

is
the corresponding double ramification cycle. In the exceptional unstable case g(ve) =
0, H(ve) = 2 we formally assign to this vertex the following class:

D(ve) := a(e)−1 ∈ R−1(M0,2)⊗Q Q,(2.4)

where, as it was for the root vertex, the negative cohomological degree is just formally as-
signed to allow the treatment of this case non-exceptionally. With this system of notation,
we set

Ξ(T ) := u2g−2+m





∏

e∈E(T )

a(e)

u



 (bT )∗





(

∞
∑

d=−1

Ψ(vr)d
(−u)d

)

⊗
⊗

e∈E(T )

(

∞
∑

d=−1

D(ve)d
ud

)



 ,

(2.5)
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where (bT )∗ :
⊗

v∈V (T )R
∗(Mg(v),|H(v)|) → R∗(Mg,n+m) is the boundary push-forward (com-

posed with the contraction of unstable components) map extended by linearity with the
coefficients in Q[u, u−1], and αd stands for the projection to R∗(Mg(v),|H(v)|) of a tauto-
logical class.Note that the resulting formula is a polynomial in ai’s of degree bounded by
3g − 3 + n +m.

2.2. Statement and proof. For any g ≥ 0, m,n ≥ 1, 2g − 2 + n +m > 0, we set

Ξm
g,n :=

∑

T∈PSSRTg,n,m

Ξ(T ).(2.6)

Theorem 2.1. We have

Ξm
g,n ∈ R∗(Mg,n+m)⊗Q Q[a1, . . . , an, u].(2.7)

(in other words, the coefficients of all negative degrees of u vanish).

Proof. Since Ξm
g,n is a polynomial in a1, . . . , an of degree at most 3g − 3 + m + n, it is

sufficient to prove that Ξm
g,n(a1, . . . , an) is a polynomial in u for each a1, . . . , an ∈ Z>0.

Note also that it is sufficient to consider the cohomology with the complex coefficients.
Then the proof directly generalizes the argument in [8, Proof of Theorem 5.3] along the
lines of computation done [10, Section 3.2].
We consider the moduli space Mg,n+m(P

1, a1, . . . , an) of relative stable maps to (P1,∞):
the first n marked points are mapped to ∞ with contact orders prescribed by the ai’s.
We consider the standard C∗-action on P1 and induced action on Mg,m(P

1, a1, . . . , an).
Let π : U → Mg,m(P

1, a1, . . . , an) be the universal curve and f : U → P1 the universal
map. The curve U is endowed with the C∗-action making f equivariant. For i ∈ {n +
1, . . . , n + m} we denote evi : Mg,n+m(P

1, a1, . . . , an) → P1 the evaluation morphism at
the i-th marking.
We will consider the line bundle O(−1) → P1. We lift the C∗-action to O(−1) → P1

with the fiber weights at 0 and ∞ equal to −1 and 0 respectively. We set

Img,n := (−1)g+mev∗
n+1([0]) ∪ · · · ∪ ev∗n+m([0]) ∪ eC∗(R1π∗f

∗O(−1))(2.8)

inHC∗

∗ (Mg,n+m) ∼= H∗(Mg,n+m)⊗CC[u]. In this expression, the class [0] ∈ H2
C∗(P1) stands

for the C∗-equivariant class dual to the point 0, while eC∗ is the C∗-equivariant Euler class
(here, the derived pushforward R1π∗f

∗O(−1) is a vector bundle of rank g+a1+· · ·+an−1).
Let ǫ : Mg,m(P

1, a1, . . . , an) → Mg,n+m and [Mg,m(P
1, a1, . . . , an)]

vir denote the C∗-
equivariant virtual fundamental class of Mg,m(P

1, a1, . . . , an). We will prove that

Ξm
g,n(a1, . . . , an,−u) = ǫ∗

(

Img,n ∩ [Mg,m(P
1, a1, . . . , an)]

vir
)

.(2.9)

To this end, we need to apply the localization formula to (2.9) along the lines of [11] (see
also a survey in [8, Appendix]), and the computation of eC∗(R1π∗f

∗O(−1)) performed
in [10, Equation (3.13)]. As the right-hand side of (2.9) belongs to HC∗

∗ (Mg,n+m) ∼=
H∗(Mg,n+m)⊗C C[u], the theorem follows.
The localization formula expresses [Mg,m(P

1, a1, . . . , an)]
vir as a sum over bipartite

graphs with some vertices corresponding to the components mapped to 0 and ∞. We
allow these vertices to correspond to the unstable moduli spaces as well — formally
speaking, in such cases, a separate computation is required, but the final result can be
written uniformly with the contributions of the unstable vertices introduced formally as
we did above in the definition of Ξm

g,n. Only part of these bipartite graphs contributes
when we intersect the virtual fundamental class with Img,n:

• The first n legs are incident to vertices over ∞ because of the relative conditions,
while the last m legs are over 0 because of the factors ev∗i ([0])
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• Our specific choice of lift of the C∗-action to O(−1) reduces the computation to an
expression on star trees. Indeed, the expression of eC∗(R1π∗f

∗O(−1)) has a factor
0|E(v)|−1 for each vertex v over infinity, where E(v) is the set of edges attached to
v (see [10, Equation (3.13)])1. Therefore, each vertex over ∞ should have exactly
one edge (otherwise, the class vanishes).

Hence, the bipartite graphs that we consider are, in fact, the graphs in PSSRTg,n,m: the
root is the unique vertex over 0 while the other vertices are over ∞. Note that the degree
assignment at edges, which is part of the bi-partite graph data, is uniquely determined
by the relative conditions at infinity and the fact that the graphs are of compact type.
Altogether, the virtual localization formula provides an expression of the form

ǫ∗
(

Img,n ∩ [Mg,m(P
1, a1, . . . , an)]

vir
)

=
∑

T∈PSSRTg,n,m

(bT )∗(α1(T )α2(T ))(2.10)

where α1(T ) corresponds to the contribution of [Mg,m(P
1, a1, . . . , an)]

vir from [11] (see
also a convenient reminder in [8, Appendix]), while α2(T ) corresponds to the contribution
of Im,n deduced from [10, Equation (3.13)]. The explicit expression of these classes is

α1(T ) = − u−|E(T )|−1





g(vr)
∑

i=0

(−1)iλiu
g(vr)−i

∏

e∈E(T )

a(e)a(e)+1

a(e)!

u−a(e)

1− u−1a(e)ψe



(2.11)

⊗

e∈E(T )

(

DRg(ve)

(

a(h1), . . . , a(h|H(ve)|−1),−a(e)
)

1 + u−1a(e)ψ|H(ve)|

)

,

and

α2(T ) = (−u)|E(T )|−1(−1)g+mum



(−1)g(vr)
g(vr)
∑

i=0

λiu
g(vr)−i

∏

e∈E(T )

a(e)!

a(e)a(e)
ua(e)−1



(2.12)

⊗

e∈E(T )

(−1)g(ve)λg(ve).

Now we use Mumford’s relation [13]




g(vr)
∑

i=0

(−1)iλiu
g(vr)−i









g(vr)
∑

i=0

λiu
g(vr)−i



 = u2g(vr)(2.13)

to deduce

α1(T )α2(T ) = (−u)2g−2+m





∏

e∈E(T )

a(e)

−u

1

1− u−1a(e)ψe



(2.14)

⊗

e∈E(T )

(

(−u)2g(vr)λg(vr)DRg(ve)

(

a(h1), . . . , a(h|H(ve)|−1),−a(e)
)

1 + u−1a(e)ψ|H(ve)|

)

.

Together with (2.10), we indeed obtain the identity (2.9). �

1This observation was used in [12] and [9] to obtain the multiple cover formula for rigid rational curves
in CY 3-folds.
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[2] X. Blot, D. Lewański, S. Shadrin. Rooted trees with level structures, Ω-classes and double ramifica-
tion cycles. arXiv:2406.06205.
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