
HAL Id: hal-04731150
https://hal.science/hal-04731150v1

Preprint submitted on 10 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A flat perspective on moduli spaces of hyperbolic
surfaces

Adrien Sauvaget

To cite this version:

Adrien Sauvaget. A flat perspective on moduli spaces of hyperbolic surfaces. 2024. �hal-04731150�

https://hal.science/hal-04731150v1
https://hal.archives-ouvertes.fr


A FLAT PERSPECTIVE ON MODULI SPACES OF HYPERBOLIC SURFACES

ADRIEN SAUVAGET

Abstract. Volumes of moduli spaces of hyperbolic cone surfaces were previously defined and
computed when the angles of the cone singularities are at most 2π. We propose a general definition
of these volumes without restriction on the angles. This construction is based on flat geometry as
our proposed volume is a limit of Masur–Veech volumes of moduli spaces of multi-differentials. This
idea generalizes the observation in quantum gravity that the Jackiw–Teitelboim partition function
is a limit of minimal string partition functions from Liouville gravity. Finally, we use the properties
of these volumes to recover Mirzakhani’s recursion formula for Weil–Petersson polynomials. This
provides a new proof of Witten–Kontsevich’s theorem.
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1. Introduction

1.1. Hyperbolic cone surfaces. Let (g, n) ∈ N2 be a pair satisfying 2g − 2 + n > 0. We set

(1) ∆g,n :=
{
a = (a1, . . . , an) ∈ Rn

≥0, such that |a| :=
n∑

i=1
ai < 2g − 2 + n

}
.

Let a be a vector in ∆g,n. We denote by Mg,n(a) the moduli space of hyperbolic surfaces of genus
g with n ordered cone singularities with angles 2πa1, . . . , 2πan (surfaces of type a for short in the
text), with the convention that ai = 0 stands for a cusp singularity. It is a smooth orbifold that
carries a canonical symplectic form ωg,n(a), the Weil–Petersson form. We define the Weil–Petersson
volume of this space as

(2) V W P
g,n (a) := 1

(3g − 3 + n)!

∫
Mg,n(a)

(
ωg,n(a)

4π2

)3g−3+n

.
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For all a, the space Mg,n(a) is real isomorphic to Mg,n, the moduli space of smooth curves of genus
g with n marked points [Tro91]. However, the symplectic geometry of Mg,n(a) depends on a, and
this dependence is expected to be regular in chambers of ∆g,n delimited by affine walls. We first
recall previous results obtained for small angles.

Angles smaller than π. If we assume that the coordinates of a are smaller than 1/2, then the
space Mg,n(a) shares common features with the moduli spaces of hyperbolic surfaces with geodesic
boundaries described by Mirzkhani in [Mir07a, Mir07b]. For instance, Mg,n(a) carries canonical
systems of Darboux coordinates, the Frenchel–Nielsen coordinates. The Weil–Petersson form ex-
tends to a kähler form on Mg,n, the compactification of Mg,n by stable curves. The cohomology
class of this form is given by

(3) [ωg,n(a)]
2π2 = κ1 −

n∑
i=1

a2
1ψi,

where ψi is the Chern class of the co-tangent line at the i-th marked point and κ1 is the Mumford-
Morita class [Mir07b, TWZ06, DN09, AM22]. In particular, the Weil–Petersson volume is a rational
polynomial defined by integrals of tautological classes

(4) (−1)g−1+nV W P
g,n (a) = Pg,n(a) := 1

(3g − 3 + n)!

∫
Mg,n

(
−1

2κ1 +
n∑

i=1

a2
1

2 ψi

)3g−3+n

.

The polynomials Pg,n are often called Mirzakhani polynomialsa.

Angles smaller than 2π. Let a be a vector in [0, 1[n. Anagnostou–Mullane–Norbury recently proved
that the Weil–Petersson symplectic form extends to a kähler form if we replace Mg,n by Mg,n(a),
Hasset’s compactification of Mg,n by a-stable curves [AMP23, Has03]. The spaces Mg,n(a) are
birational models of Mg,n that are constant in chambers of [0, 1[n, and Mg,n is the model associated
with the chamber defined by ai + aj < 1 for all pairs (i, j). As a consequence, the Weil-Petersson
volume is a piecewise polynomial function in a, and they described the wall-crossing formulas
explicitly. Finally, they observed that this volume tends to 0 as a goes to 1. This is the last of a
long series of works that computed Weil–Petersson volumes for a in several sub-domains of ]0, 1[n

through different approaches [DN09, ST11, MT21].

What about general angle data? The primary motivation for the present work is the following
problem: How to define the volume of the space Mg,n(a) for a general value of a in ∆g,n? Can we
compute this volume function? We propose indirect but explicit solutions to this problem based
on the geometry of moduli spaces of differentials. In the course of our construction, we will also
propose explicit conjectural expression of the cohomology class of the Weil-Petersson symplectic
form.

aOur convention for Mirzakhani polynomials differs from the classical one by a sign and a factor (2π)6g−6+2n.
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1.2. Moduli spaces of differentials. Let (a, k) be a pair of ∆g,n ×N∗. We denote by Ωg,n(a, k),
the moduli space of k-differentials of type a, i.e. the moduli space of tuples (C, x1, . . . , xn, η), where:

• (C, x1, . . . , xn) is a smooth curve of genus g with n markings,
• η is a meromorphic k-differential on C with singularities (zeros or poles) of order at least
kai − k at xi for all i ∈ {1, . . . , n}, and no poles outside the markings.

For k large enough, the space Ωg,n(a, k) is a vector bundle over Mg,n. Let r be the rank of this
vector bundle and p : PΩg,n(a, k) → Mg,n its projectivization. The line bundle O(−1) → PΩg,n(a, k)
carries a natural hermitian metric ha,k, the area metric, defined as follows: a k-differential deter-
mines a flat metric with cone singularities on the underlying surface, and the value of ha,k is the
k-th power of the area for this metric. We denote by αg,n(a, k) the curvature form associated with
the dual of the area metric.

Definition 1.1. Let d ≥ 0, and let η be a C∞- form of co-degree 2d in Mg,n. We set

(5) ωg,n,d(a)(η) := lim sup
k→∞

1
(−k2)d

∫
Ωg,n(a,k)

αg,n(a, k)r−1+d ∧ p∗ (η|Mg,n

)
.

(the convergence of the integrals in the RHS was proved in [CMZ19]).

Conjecture 1.2. For all d, ωg,n,d(a) is the current defined by integration of 1
d!

(
ωg,n(a)

4π2

)d
.

For n = 0, the restriction of this conjecture to forms with compact support in Mg follows from
the work of Ma–Zhang [MZ07]. The first technical difficulty in extending their arguments to n > 0
is the presence of a continuous part in the spectrum of the Laplacian of cone surfaces. However, the
most delicate part of this conjecture is to extend these results to differential forms on families of
singular curves. In particular, we formulated this conjecture on Mg,n, although we expect that the
Weil–Petersson form should extend naturally (with singularities) to an alternative compactification
Mg,n(a) of Mg,n that would generalize Hasset’s moduli spaces of a-stable curves. The construction
of this space for a general vector a is an open problem.

Here, we consider only the cohomological counterpart of Conjecture 1.2. Namely we define
sg,n,d(a, k) to be the cohomology class in H∗(Mg,n,Q) of the current defined by integration of
αg,n(a, k)r−1+d.

Claim 1.3. For all d, the functions k−2dsg,n,d(·, k) : ∆g,n → H2d(Mg,n,Q) converge uniformly
towards a function sg,n,d as k goes to ∞. The function sg,n,d is a continuous piece-wise polynomial
in a of degree 2d with coefficients in the tautological ring of Mg,n that can be explicitly computed.
Moreover for all a ∈]0, 1[n, we have

(6)
∑
d≥1

sg,n,d(a) = exp
(

− [ωg,n(a)]
4π2

)
in H∗(Mg,n,Q).
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We will prove this claim in full generality in a subsequent paper. Here, we restrict our attention
to smaller domains of angle data where the analysis is simplified. For all x > 0 we denote by
∆≤x

g,n ⊂ ∆g,n the set of vectors of ∆g,n such that an ≤ x and ai < 1/2 for all i ∈ {1, . . . , n− 1}.

Theorem 1.4. The restriction of Claim 1.3 to a ∈ ∆≤2
g,n is valid.

The functions sg,n,d are computed by induction on g and n (see Theorem 2.4). The main interest
of this theorem is to make sg,n,d(a) explicit and, therefore, provides a conjectural expression of
powers of the Weil-Petersson symplectic form. If we restrict to the numerical counterpart, then we
can consider the function on ∆≤2

g,n defined by

(7) Vg,n(a) :=
∫

Mg,n

(−1)g−1+nsg,n,3g−3+n(a).

By Theorem 1.4, this function is a piece-wise polynomial of degree 6g − 6 + n with rational coef-
ficients, and we have Vg,n(a) = V W P

g,n (a) for all a ∈ ∆≤1
g,n. The intuition behind the construction

of this function comes from the study of flat surfaces. The function Vg,n is an integral on moduli
space of k-differentials with n cone singularities of angles prescribed by a and simple zeros, i.e.,
cone singularities of angles

(
1 + 1

k

)
2π [Sau20]. Heuristically, the simple zeros form a small punctual

negative curvature, and as k goes to infinity, these small singularities equidistribute to approximate
a smooth metric of constant negative curvature.

This heuristic convergence has already been observed and used in theoretical physics. The Weil–
Petersson measure is used to compute the partition functions in Jackiw–Teitelboim (JT) theory, a
gravity theory with dilaton [Wit20]. These partition functions are limits of partition functions for
(2, k) minimal string models in Liouville conformal field theory that can be expressed in terms of the
Segre classes of moduli spaces of k-differentials [SSS19]. Then, wall-crossing formulas in JT theory
with angles smaller than 2π are recovered from the study of the change of regime for instantons
in the (2, k)-minimal models [MT21]. Theorem 1.4 generalizes these results from a mathematical
perspective.

1.3. Isomonodromic foliations. If an ̸= 1 or 2, then we set

(8) Volg,n(a) := Vg,n(a)∏n
i=1 sin(aiπ) .

Theorem 1.5. If 2g − 2 + n ≥ 2, then the function Volg,n extends to a continuous non-negative
function on ∆≤2

g,n. In particular, Vg,n(a) = 0 if an = 1 or 2.b

The vanishing of Vg,n(a) when a has an integral coordinate is the consequence of the vanishing
of the top power of αg,n(a, k) which is proved in [Sau20] via flat geometric arguments. If we assume
that Conjecture 1.2 is valid, then this vanishing can be proved directly from a hyperbolic point of
view via the existence of isomonodromic deformations. Indeed, the Teichmüller space associated
bThe fact that Vg,n may be negative is due to the difference between the orientation defined by the complex structure
(used implicitly for integration) and the one defined by the symplectic structures (Weil–Petersson or area form).
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(a) (b)

(c)

Figure 1. Graphs of the functions x 7→ (−1)n−1P0,n(x) (a), V0,n(x) (b), and
1

sin(x)V0,n(x) (c) for n = 3, 4, and 5 (here x implicitly stands for the vector
(0, . . . , 0, x)). The values for x > 2 are based on our forthcoming work.

with Mg,n(a) carries a monodromy morphism to the SL(2,R) character variety of a punctured
surface with “relative conditions” on the monodromy around the punctures prescribed by a. For
general values of a, this morphism is locally an isomorphism, and the Weil–Petersson symplectic
form should be a pull-back of a symplectic form on the character variety as was shown by Goldman
when n = 0 [Gol84]. However, if a coordinate of a is integral, then the relative condition is trivial,
and the monodromy morphism is a submersion with complex fibers of positive dimension, which
are the leaves of the isomonodromy foliation. The existence of this foliation implies that the top
power of the pull-back of a symplectic form along the monodromy morphism vanishes.

As the notation suggests, the value Volg,n(a) should be considered as an alternative definition of
volumes of Mg,n(a). Although Volg,n(a) can be determined from Vg,n(a) (or conjecturally V W P

g,n (a))
at generic points of ∆g,n, it has the advantage of being non-trivial when a is integral. To define
it geometrically, one would need to construct a volume form that is non-trivial in the direction
of the isomonodromic foliations. From a flat geometric perspective, this function is the analog of
Masur–Veech volumes of moduli spaces of differentials or flat surfaces [Vee82, Mas82, CMSZ20,
CMS23, Sau20].

1.4. Recursion formulas for Mirzakhani polynomials. The geometry of moduli spaces of
hyperbolic cone surfaces serves as a guide to introduce the objects studied in the present paper.
Beyond this original motivation, the classes sg,n,d(a) can be used to study tautological classes of
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moduli spaces of stable curves. In the next paper, we will prove that certain vanishing properties
of sg,n,d(a) can be used to produce tautological relations.

Here, we focus on the properties of the functions Vg,n. We will prove that in each chamber
of polynomiality, Vg,n can be explicitly expressed in terms of Mirzkhani polynomials. Then, the
vanishing of Vg,n at an = 1 or 2 produces relations between Mirzkhani polynomials. The first
family of relations (an = 1) recovers the Do–Norbury relations [DN09]. The second family (an = 2)
implies the following theorem.

Theorem 1.6. For all (g, n) ̸= (0, 3) with n ≥ 1, we have

(1 + a1)Pg,n(1 + a1, a2, . . .) − (1 − a1)Pg,n(1 − a1, a2, . . .)

=
∑

1<i≤n

∫ ai+a1

t=ai−a1
tPg,n−1(t, a2, . . . , âi, . . .) dt(9)

+
∫ a1

t=−a1

∫ t

y=0

t(y − t)
2 Pg−1,n+1(y, t− y, a2, . . .) dy dt

+
∑

g1+g2=g
I1⊔I2={2,...,n}

∫ a1

t=−a1

∫ t

y=0

t(y − t)
2 Pg1,|I1|+1(y, {ai}i∈I1)Pg2,|I2|+1(t− y, {ai}i∈I2) dy dt.

(where the notation âi means that we remove the variable).

By applying the Laplace transform to formula (9), Du showed that it is equivalent to Mirzakhani’s
original recursion for the polynomials Pg,n [Du20, Mir07a]. It is worth noting that his approach
relies on another heuristic interpretation of Weil–Petersson volumes for an angle 4π. However, his
proof of Theorem 9 reduces to Mirzkhani’s original theorem while we provide an independent proof.
In particular, following the arguments of Mirzakhani, we obtain a new proof of Witten–Kontsevich’s
theorem: integrals of ψ-classes satisfy the Virasoro constraints [Wit91, Kon92]. If we assume that
Conjecture 1.2 holds, then our method shows that the Virasoro constraints (of the point) are a
numerical consequence of the existence of isomonodromic foliations.

Acknowledgement. I would like to thank Bertrand Deroin and Siarhei Finski for extensive dis-
cussions on the circle of ideas motivating this article.

2. Induction formulas for sg,n,d

In this section, we introduce several combinatorial structures that will be used in the rest of
the text, and we state the formulas defining the functions sg,n,d by induction on g and n. These
formulas will be proved in Section 4.

2.1. Rational hyperbolic graphs. Let Γ be a stable graph of genus g with n marked points (as
defined in [GP03] for instance).

Definition 2.1. A twist on Γ is a function b : H(Γ) → R satisfying the following constraints:
6



(1) For all edges e = (h, h′) we have b(h) + b(h′) = 0.
(2) If (h1, h

′
1) and (h2, h

′
2) are vertices between two vertices v and v′ then b(h1) ≥ 0 ⇒ b(h2) ≥ 0.

In which case, we denote v ≥ v′.
(3) The relation ≥ is transitive.
(4) If v is a vertex then we denote by b(v) the vector (b(h))h7→v of twists at half-edges incident

to v, and we have the inequality |b(v)| ≤ 2g(v) − 2 + n(v).

We define the twist at an edge as b(e) =
√

−b(h)b(h′) (if e is the edge (h, h′)) and the multiplicity
of the twisted graph (Γ, b) as

m(Γ, b) :=
∏

e∈E(Γ)
b(e).

We say that a twist is compatible with a vector a ∈ Rn if b(i) = ai for all legs.

Definition 2.2. A bi-colored graph is the data of

Γ = (Γ, b, V ab ⊂ V, V = V0 ⊔ V−1)

where b is a twist, V ab is a set of vertices v such that b(v) is integral, and the partition of V into
two levels V0 ⊔ V−1 satisfies: all edges of Γ are between a vertex v of V0 and a vertex v′ V−1, and
we have v > v′.

Definition 2.3. A bi-colored is a hyperbolic graph if |b(v)| = 2g(v) − 2 + n(v) for all vertices v in
V−1 and V ab = ∅. It is a rational hyperbolic graph if V−1 is reduced to a single vertex of genus 0.

2.2. Expression of sg,n via rational graphs. We denote by Ratg,n the set of rational graphs, i.e.
graphs such that the vertex carrying the n-th leg is of genus 0 (the central vertex), and all edges
connect this vertex to another vertex (outer vertices). A hyperbolic graph structure on such graph
Γ is uniquely determined by the twist function. We denote by ∆Γ(a) ⊂ RH(Γ) the set of rational
hyperbolic structures on Γ compatible with a, i.e. the simplex of functions b : H(Γ) → R satisfying
the constraints:

(10)



b(h) + b(h′) = 0 and b(h) ̸= 0 if (h, h′) is an edge,
b(h) ≥ 0 if h is incident to v ∈ V 0,∑

h7→v b(h) < 2g(v) − 2 + n(v) if v is a vertex in V 0,∑
h7→v b(h) = 2g(v) − 2 + n(v) if v is the central vertex,

b(i) = ai for all i ∈ {1, . . . , n}.

Equivalently, we can define ∆Γ(a) as a simplex of RE(Γ)
>0 if we specify only the twist at edges. This

domain is empty or of dimension h1(Γ).

7



Theorem 2.4. Let sg,n,d : ∆≤2
g,n → H2d(Mg,n,Q) be the functions determined by the following

identities

base of the induction: sg,n,0 = 1;(11)

small angles value: sg,n(a) = eg,n(a) := exp
(

−1
2κ1 +

n∑
i=1

a2
i

2 ψi

)
if an ≤ 1/2;(12)

derivative: ∂

∂an
sg,n = anψnsg,n −

∑
Γ∈Ratg,n

∫
b∈∆Γ(a)

m(Γ, b)
|Aut(Γ)|ζΓ∗

 ⊗
v∈V out

sg(v),n(v)(b(v))

 db.(13)

where sg,n =
∑

d≥0 sg,n,d, ζΓ :
∏

v∈V (Γ) Mg(v),n(v) → Mg,n is the gluing morphism, and V out is the
set of outer vertices of a rational graph. The function sg,n,d is the absolute limit of the functions
k−2dsg,n,d(·, k) : ∆≤2

g,n → H2d(Mg,n,Q) as k goes to infinity.

These formulas will be proved in Section 4. In this section, we use this theorem to describe
explicitly the function sg,n in terms of the polynomials eg,n.

2.3. Expression of sg,n in terms of tautological classes. We use the fact that
∂

∂an
ψℓ

nsg,n = anψ
ℓ+1
n sg,n + boundary terms

to compute the functions ψℓ
nsg,n by an induction on ℓ that goes down from ℓ = 3g − 3 + n.

Let Γ be a rational graph in Ratg,n. If ∆Γ(a) is non-empty for some a ∈ ∆≤2
g,n, then the central

vertex carries at most 4 half-edges. If ℓ ≥ 2, then ζ∗
Γψ

ℓ = 0 because n is supported on a vertex v

with (g(v), n(v)) = (0, 3) or (0, 4). This implies that ∂
∂an

(ψℓ
nsg,n) = anψ

ℓ+1
n sg,n, and

(14) ψℓ
nsg,n = ψℓ

neg,n.

The next step is to compute ∂
∂an

ψ1sg,n. By a similar argument, the rational graphs contributing
to the expression of this derivative are the ones with 4 half-edges on the central vertex. There are
3 types of such graphs:

Γ{i,j,n} Γroot
{i,n} Γg1,g2,I1,I2

{i,n}
for 1 ≤ i < j < n for 1 ≤ i < n for 1 ≤ i < n, g = g1 + g2,

and {1, . . . , n} \ {i, n} = I1 ⊔ I2

g

...

0

i j n

g−1

...

0

i n

I1 I2

g1

...

g2

...

0

i n
8



If a is in ∆≤2
g,n(a), then the twists of edges of these graphs are at most 1/2. For ℓ ≥ 0, we set

D4,ℓ
g,n(a) :=

∑
1≤i<j<n

(ai + aj + an − 2)+ζΓ{i,j,n}∗
(
ψℓ

n ⊗ eg,n−2(. . . , âi, . . . , âj , . . . , an + ai + aj − 2)
)

+
∑

1≤i<n

∫ (ai+an−2)+

y=0

y(ai + an − 2 − y)
2

ζΓloop
{i,n}∗

(
ψℓ

n ⊗ eg−1,n(. . . , âi, . . . , y, an + ai − 2 − y)
)
dy

+
∑

1≤i<n

∑
g1+g2=g

I1⊔I2={1,...,n−1}\{i}

∫ (ai+an−2)+

y=0

y(ai + an − 2 − y)
2

ζΓI1,I2,g1,g2
{i,n} ∗

(
ψℓ

n ⊗ eg1,|I1|+1(y, {ai}i∈I1) ⊗ eg2,|I2|+1(ai + an − 2 − y, {ai}i∈I2)
)
dy,

where (x)+ = max(x, 0). Then we have

(15) ∂

∂an
(ψnsg,n) = anψ

2
neg,n −D4,1

g,n(a).

Finally, the expression of ∂
∂an

sg,n also involves graphs with 3 legs on the central vertex:

Γ{i,n} Γroot
{n} Γg1,g2,I1,I2

{n}
for 1 ≤ i < n for g = g1 + g2, and {1, . . . , n− 1} = I1 ⊔ I2

g

...

0

i n

g−1

...

0

n

I1 I2

g1

...

g2

...

0

n

We set

D3
g,n(a) :=

∑
1≤i<n

(ai + an − 1)+ζΓ{i,n}∗ (1 ⊗ sg,n−2(. . . , âi, . . . , an + ai − 1))

+
∫ (an−1)+

y=0

y(an − 1 − y)
2 ζΓloop

{n} ∗ (1 ⊗ sg−1,n(. . . , y, an − 1 − y)) dy

+
∑

g1+g2=g

I1⊔I2={1,...,n−1}\{i}

∫ (an−1)+

y=0

y(an − 1 − y)
2

ζΓI1,I2,g1,g2
{n} ∗

(
1 ⊗ sg1,|I1|+1(y, {ai}i∈I1) ⊗ sg2,|I2|+1(an − 1 − y, {ai}i∈I2)

)
dy.

Altogether, we have the following expression:

(16) ∂

∂an
sg,n = anψnsg,n −D3

g,n(a) −D4,0
g,n(a).

9



The the function sg,n,d is a piece-wise polynomial of degree 2d defined by

(17) sg,n(a) = eg,n(a[0]) +
∫ an

t=0

∂

∂an
sg,n(a[t])dt,

where a[t] is the vector obtained from a by replacing an by t ∈ R>0. Moreover, sg,n,d is of class C1

as D3
g,n and D4,ℓ

g,n are continuous.

3. Tautological calculus in moduli spaces of differentials

Here, we recall some elements of intersection theory on moduli spaces of multi-differentials
from [Sau19, BCG+19, Sau20]. The main result that will be used in the next sections is Proposi-
tion 3.2.

3.1. Incidence variety compactification. A rational pair (a, k) of a subset E of Rn is the data
of a rational vector a in E and a positive integer k such that ka is integral. We denote by QP(E)
the set of rational pairs in E. If (a, k) is a rational pair, then a k-twisted graph (Γ, b) (compatible
with a) is a twisted graph such that kb takes integral values.

Let (a, k) be a rational pair of Rn, and let P = (p1, . . . , pn) be a vector of positive integers such
that pi ≥ k|ai| for all i ∈ {1, . . . , n}. We denote by Ωk,P

g,n → Mg,n the vector bundle with fiber

H0
(
C,ω⊗k

log (p1x1 + . . .+ pnxn

)
(where ωlog is the log-dualizing sheaf ωC(x1 + . . . + xn)). The space Ωg,n(a, k) of k-differentials
of type a is a sub-cone of Ωk,P

g,n . We denote by Ωg,n(a, k) the closure of Ωg,n(a, k) in Ωk,P
g,n . This

compactification does not depend on the choice of P and is called the incidence variety compacti-
fication.

We assume here that a is non-negative and |a| = 2g − 2 + n. Let Γ be a k-bi-colored graph
compatible with a. This graph determines a boundary component Ωg,n(a, k) of co-dimension at
least 1. To construct it, we consider the cones

Ω̃Γ(k)i :=
∏

v∈Vi\(Vi∩V ab)
Ωnab

g,n (a, k)
∏

v∈Vi∩V ab

Ωab
g,n(a, k)

where Ωab
g,n(a, k) and Ωnab

g,n (a, k) are the closure of the loci of k-differentials on smooth curves ob-
tained (respectively not obtained) as k-th power of a meromorphic one-form, and

pi : Ω̃Γ(k)i → Mi :=
∏

v∈Vi

Mg(v),n(v)

is defined by forgetting the differential. At level 0, we set ΩΓ(k)0 = Ω̃Γ(k)0. At level −1, we denote
by ΩΓ(k)−1 the sub-locus of Ω̃Γ(k)−1 defined by the global residue condition (GRC) of [BCG+19].
We do not state the GRC here, but we will use the two following facts from [BCG+19]:

(1) The co-dimension of ΩΓ(k)−1 in Ω̃Γ(k)−1 is at most the number of vertices in V0 ∩ V ab.
10



(2) If V0 ∩V ab is empty then the map p−1 has fiber of positive dimension along ΩΓ(k)−1 unless
V−1 is of size 1.

We set
ΩΓ(k) := ΩΓ(k)0 × PΩΓ(k)−1.

There is a canonical morphism ζΓ,k : PΩΓ(k) → PΩ(a, k) defined by gluing the curves along nodes
and imposing that the differential vanishes on vertices in V−1. With this notation, the space ΩΓ(k)
is a cone over MΓ and the following diagram commutes

ΩΓ(k)
ζΓ,k //

(p0×IdM−1)
��

Ωg,n(a, k)

p

��
MΓ

ζΓ

// Mg,n.

3.2. Adding simple zeros. Let (a, k) be a rational pair in ∆<2
g,n. In the rest of the section we

assume that k > 4(g + 1) and (g, n, a) ̸= (1, 1, (1 − 1/k)). We denote

ak = (a1, . . . , an, (1 + 1/k), . . . , (1 + 1/k)︸ ︷︷ ︸
N(a,k)×

),

where N(a, k) = k(2g − 2 + n − |a|). We denote by π(a, k) : Ωg,n+N(a,k)(ak, k) → Ωg,n(a, k), the
morphism defined by forgetting the N(a, k) marked points. It is dominant and of degree N(a, k)!.

Lemma 3.1. Let Γ be a bi-colored graph compatible with ak such that n is incident to a vertex in
V−1. Let X be an irreducible component of PΩΓ(k)−1 then (π(a, k) ◦ ζΓ,k)∗[X] = 0 unless V ab is
empty and V−1 is reduced to a unique vertex of genus 0 and either

(1) all the markings forgotten by π(a, k) are incident to the vertex in V0,
(2) or this vertex has one edge, no legs in {1, . . . , n− 1} and one leg forgotten by π(a, k).

Proof. Let Γ be a bi-colored graph. For each vertex, we denote by N(v) the number of legs incident
to v which are forgotten by π(a, k) and by N−1 =

∑
v∈ℓ−1(−1)N(v). We will show that N−1 is

bigger than the co-dimension of p−1
(
PΩΓ(k)−1

)
in M−1 and thus (π(a, k) ◦ ζΓ,k)∗[X] = 0 is trivial

for all irreducible component of PΩΓ(k) unless Γ satisfies the conditions of the lemma.

Step 1: no vertex in V−1 is of positive genus. The vertices of V0 ∩ V ab are of genus at least one.
This set is of size at most g. Besides, we have

dimPΩ̃Γ(k)−1 = dimM−1 + 1 −
∑

v∈V−1

(g(v) − 1).

Therefore the co-dimension of p−1
(
PΩΓ(k)−1

)
in M−1 is at most

g − 1 +
∑

v∈V−1

(g(v) − 1) < 2g.(18)

11



If v is a vertex of level −1 then

2g(v) − 2 = N(v)/k +
∑

i∈{1,n}
i 7→v

(ai − 1) +
∑

(h,h′)∈E(Γ)
h7→v

(b(h) − 1).(19)

The first sum is over the legs in {1, . . . , n} incident to v, and this sum is smaller than 1 if n is the
only element in this set and 1/2 otherwise. The second sum is over half-edges incident to v and is
smaller than −1 (as the sum is non-empty and b(h) is negative). Therefore we have

(20) N(v)/k > 2g(v) − 1 −
∑

i∈{1,n}
i 7→v

(ai − 1)

and N(v) > k/2 unless v is of genus 0, or v is of genus 1, with only two other half-edges ( the
marking n and a half of an edge to the upper vertex). If Γ has a vertex that does not satisfy one
of these conditions, then N−1 is bigger than co-dimension p−1

(
PΩΓ(k)−1

)
in M−1.

To complete the first step, we need to exclude the possibility of a vertex v of genus 1 in V−1. To
do so, we remark that if the markings n and half of an edge are incident to this vertex, then N(v)
is at least 2. As there is only one edge to the vertex of level 0, we have two possibilities:

• If the GRC is trivial then v is the only vertex of level −1 and the co-dimension of the level
−1 in the moduli space of curves is g(v) = 1 which is smaller than N(v).

• If the GRC is non-trivial then b(h) ≤ −1 for an half-edge h to an upper vertex in V ab) and
thus N(v) > k/2 as above.

Step 2: V ab is empty. Each vertex in V−1 contains at least one leg, and the vector ak has no integral
coordinate apart from an that can be equal to 1. A vertex carrying the n-th leg necessarily has
another leg if this is true. Therefore, all vertices of V ab are of level 0.

Let v0 be a vertex in V ab. If this vertex is of genus at least 2, then b(h) ≥ 2 for at least one
half-edge incident to v0 and going to a vertex v of level 0. For this vertex v we again find that
N(v) > k/2 because the second sum in (19) is at most −3. Besides, if we assume that there are
at least 2 vertices of level 0, then at least one vertex v of level −1 is connected to v0 and another
vertex. We again find that the second sum in (19) is at most −3. Therefore, v0 is the only vertex
of level 0 of genus 1. If this vertex is connected twice to a vertex v of level −1, then N(v) > k/2
by a similar argument. Therefore, we must have g = 1.

To exclude the possibility that g = 1, we remark that each vertex of level −1 must carry at least
one leg in {1, . . . , n}. If n > 1 and v (of level −1) carrying the first leg, then the first sum in (19)
is smaller than 1/2 while the second one is −2 so N(v) > k/2 again. Therefore, (g, n) = (1, 1) and
the graph Γ must have exactly one edge connecting a vertex of genus 1 to a vertex of genus 0 with
all legs. This situation cannot occur because the co-dimension of the level −1 space is 1, and we
have excluded the case N(a, k) = 1 in our assumption for the section.

12



Step 3: end of the proof. The GRC is trivial, so there can be only a vertex of level −1; otherwise,
ζΓ,k has fibers of positive dimension. Finally, the co-dimension of p−1

(
PΩΓ(k)−1

)
in the moduli

space of curves is 0, so the unique vertex of level 0 must satisfy N(v) = 0, or it has to be contracted
by the forgetful morphism. In the latter situation, it carries exactly the leg n, one half-edge, and
a forgotten leg. □

3.3. Tautological relations. Let ξ be the first Chern Class of O(1) in PΩ(a, k). By [CMZ19],
for all m ≥ 0 we p∗ξ

m ∈ H∗(Mg,n,Q) is the cohomology class of the current p∗αg,n(a)d defined in
the introduction. In order, to compute this cohomology class, for a ∈ ∆≤2

g,n we will apply [Sau20,
Theorem 2.7]. However, this theorem is stated for |a| = 2g− 2 +n. To use it in our setting, we use
the forgetful morphism π(a, k).

To state our main proposition of the section, we first define boundary components of PΩg,n(a, k)
associated with rational graphs. If Γ is a rational graph, then we denote by ∆Γ(a, k) ⊂ ∆Γ(a) the
set k-rational hyperbolic structures on Γ. If (Γ, b) is a rational hyperbolic graph, then we denote

ΩΓ(k) := M0,n(vc) ×
∏

v∈V Out

Ωnab
g(v),n(v)(b(v), k)

where vc is the central vertex of the graph and the morphism ζ(Γ,b),k : ΩΓ(k) → Ωg,n(a, k) is defined
by gluing the curves along nodes and imposing that the differential vanishes on the central vertex.
The image of this morphism is contained in the boundary Ωg,n(a, k) because the GRC is trivial for
this space of differentials. Besides, the morphism ζ(Γ,b),k is finite of degree |Aut(Γ, b)|.

Proposition 3.2. The following relation holds

(21) ξ + (kan)ψn = [PΩg,n(a[an + 1/k], k)] +
∑

Γ∈Ratg,n

∑
b∈∆Γ(a,k)

m(Γ, b)k|E(Γ)|

|Aut(Γ)| ζ(Γ,b),k ∗[PΩ(Γ,b)(k)],

where we recall that a[t] is the vector obtained from a by replacing the last coordinate by t, and
PΩg,n(a[an + 1/k], k) is considered as a sub-stack of PΩg,n(a, k).

Proof. We apply [Sau20, Theorem 2.7] for the vector ak. Then, we obtain a formula of the following
type:

(ξ + anψn) =
∑

Γ, k-bi-colored graph
compatible with ak

contribution of Γ.

If we apply the push-forward along π(a, k) to this formula, then the contribution of each graph in
the sum is trivial unless it satisfies the conditions of Lemma 3.1. If R denotes the set of graphs
satisfying these conditions, then we obtain the following formula

(22) π(a, k)∗(ξ + kanψn) =
∑

(Γ,b)∈R

m(Γ, b)k|E(Γ)|

|Aut(Γ, b)| π(a, k)∗ζ(Γ,b),k ∗[PΩ(Γ,b)(k)].
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Therefore, we need to describe the push-forward of each term of this formula to get (21). First, we
remark that ξ is the pull-back of ξ along π(a, k) so

(23) π(a, k)∗ξ = N(a, k)!ξ.

To compute the push-forward of ψn we recall that

(24) ψn = ψ∗
n +

∑
I⊂{n+1,...,n+N(a,k)}

I ̸=∅

δ{n}∪I

where δE is the divisor of curves with a genus 0 component carrying the markings in E. The
intersection of δ{n}∪I with PΩg,n(a, k) is the boundary stratum defined by the unique twist function
that one can put of the stable graph defining δ{n}∪I (and the intersection is transverse). Then, we
have

(25) π(a, k)∗
(
δ{n} ∩ [PΩg,n(a, k)]

)
=
{

0 if |I| > 1,
[PΩg,n(a[an + 1/k], k)] otherwise.

Combining (24) and (25) we obtain

(26) π(a, n)∗ψn = N(a, k)![PΩg,n(a[an + 1/k], k)].

Finally, we remark that the set R splits into R1⊔R2 according to the two possibilities in Lemma 3.1.
A stratum associated to a graph in R2 is again the intersection of a class δ{n,n+i} for some leg
i ∈ {1, . . . , N(a, k)}. Thus

(27)
∑

(Γ,b)∈R2

m(Γ, b)k|E(Γ)|

|Aut(Γ, b)| π(a, k)∗ζ(Γ,b),k ∗[PΩ(Γ,b)(k)] = N(a, k)!(kan + 1)[PΩg,n(a[an + 1/k], k)].

If (Γ′, b′) is a graph in R1, then the image of PΩ(Γ′,b′)(k) under π(a, k) is PΩ(Γ,b)(k) for some
k-rational hyperbolic graph (Γ, b) compatible with a. Moreover, the restriction of π(a, k) to
PΩ(Γ′,b′)(k) is finite of degree

∏
v∈V0 N(v)! (where N(v) = k(2g(v) − 2 +n(v) − |b(v)| is the number

of markings forgotten by π(a, k)). Conversely, given a rational hyperbolic graph (Γ, b), a graph
in R1 is uniquely determined by a partition of N(a, k) into subsets of size N(v) for each vertex.
Therefore, we have∑

(Γ′,b′)∈R1

m(Γ′, b′)k|E(Γ)|

|Aut(Γ′, b′)| π(a, k)∗ζ(Γ′,b′),k ∗[PΩ(Γ′,b′)(k)](28)

=
∑

Γ∈Ratg,n

∑
b∈∆Γ(a,k)

m(Γ, b)k|E(Γ)|

|Aut(Γ)|
N(a, k)!∏
v∈V0 N(v)!

∏
v∈V0

N(v)!

 ζ(Γ,b),k ∗[PΩ(Γ,b)(k)].

Then formula (21) is obtained by combining (23), (26), (27), (27). □
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4. Growth of powers of the area form

In this section, we complete the proof of Theorems 1.4 and 2.4. First, we recall that the coho-
mology class sg,n,d(a, k) defined in the introduction via the area metric on O(1) is the Segre class
of Ωg,n(a, k). In particular sg,n,0(a, k) = 1, and sg,n,0 = 1, thus formula (11) is valid.

If x is a real number then we denote by ⌊x⌋k = 1
k ⌊kx⌋. If a is a real vector, and k is a positive

integer, then we denote by ⌊a⌋k = (⌊a1⌋k, . . . , ⌊an⌋k). We will use the following lemma to prove
formulas (12) and (13).

Lemma 4.1. Let f : ∆≤2
g,n → H∗(Mg,n,Q) be a continuous piece-wise polynomial. Let g : QP∆≤2

g,n →
H∗(Mg,n,Q) be a function on the set of rational pairs ∆≤2

g,n such that k(g(a, k) − f(a)) is bounded.
Then, the sequence of functions fk : ∆≤2

g,n → H∗(Mg,n,Q) defined by fk(a) = g(⌊a⌋k, k) absolutely
converges to f as k goes to infinity.

Proof. The function f is K-Lipschitz for a positive constant K. Besides, there exists K ′ > such
that ∥f(a) − g(a, k)∥ < K ′/k, so

∥f(a) − g(a, k)∥ = ∥(f(a) − f(⌊a⌋k)) + (⌊a⌋k − g(a, k))∥ < (K +K ′)/k.

□

4.1. Small angles. Let (a, k) be a rational pair of ∆≤1/2
g,n . The space Ωg,n(a, k) is isomorphic to

the vector bundle over Mg,n with fibers H0(C,ω⊗k
log (ka1x1 + . . . + kanxn)). The first cohomology

group H1(C,ω⊗k
log (ka1x1 + . . .+ kanxn)) is trivial, so the Segre class of Ωg,n(a, k) can be computed

by applying the Grothendieck-Riemann-Roch formula. We recall from [Bin05] that the Chern
characters of Ωg,n(a, k) are given by

(29) chd

(
Ωg,n(a, k)

)
= Bd+1(k)

(d+ 1)! κ1 −
n∑

i=1

Bd+1(kai)
(d+ 1)! ψi + 1

(d+ 1)!δd

where δd is a boundary term that does not depend on k or a, and Bd is the Bernoulli polynomial.
We recall that B2 = x2 − x + 1/6 and degBd = d. For a fixed a, we see that chd is a polynomial
of degree d+ 1 in k. In particular, as k goes to infinity the Chern characters chd for d ≥ 2 do not
contribute to the highest degree term in k of the Segre class, so

sg,n,d(a, k) = sd

(
Ωg,n(a, k)

)
= (−1)d

d!
(
c1
(
Ωg,n(a, k)

))d
+O∆≤1/2

g,n
(k2d−1)

= k2d

d!

(
1
2κ1 −

n∑
i=1

a2
i

2 ψi

)d

+O∆≤1/2
g,n

(k2d−1),(30)

where the notation OE(kℓ) stands for a function g : QP(E) → H∗(Mg,n,Q) with norm bounded
by Ckℓ for some constant C (and V is an implicitly defined vector bundle, here H∗(Mg,n,Q)).
Together with Lemma 4.1, this estimate implies (12) of Theorem 2.4.
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4.2. Expression of the derivatives. We fix a triple (g, n, d). We will show that

k2g+1sg′,n′,d′(a, k) − ksg,n,d)(a)

is bounded on QP(∆≤2)
g,n , where sg,n,d is defined by the relations of Theorem 2.4. We work by

induction, so we assume that this holds for all triples (g′, n′, d′) such that 2g′ − 2 + n′ < 2g− 2 + n

or (g′, n′) = (g, n) and d′ < d. The bases cases (g, n, d) = (0, 3, 0) = (1, 1, 0) have already been
treated.

Let (a, k) be a rational pair of ∆<2
g,n. Let d ≥ 0. We multiply formula (21) by ξr+d−1 and

push-forward the result along p : PΩg,n(a′, k) → Mg,n. This way, we obtain the following relation

sg,n,d(a, k) + kanψnsg,n,d−1(a, k) = sg,n,d(a′, k)

+
∑

Γ∈Ratg,n

∑
b∈∆Γ(a,k)

m(Γ, b)k|E(Γ)|

|Aut(Γ)| ζΓ∗sd−|E(Γ)|
(
Ω(Γ,b)(k)

)
.(31)

In the sum, the space Ω(Γ,b)(k) is considered as a cone over the stratum of the moduli space of
curves MΓ and the Segre class is given by

(32) sd

(
Ω(Γ,b)(k)

)
=

∑
d=(dv)v∈V out

|d|=d

 ⊗
v∈V out

sdv

(
Ωg(v),n(v)(b(v), k)

) .
Therefore, if (a, k) is a rational pair of ∆≤2

g,n then

sg,n,d(a, k) = sg,n,d(a[0], k) +
∑

0≤ℓ≤kan−1
sg,n,d(a[(ℓ+ 1)/k], k) − sg,n,d(a[ℓ/k], k)

= sg,n,d(0, k) +
∑

0≤ℓ≤kan−1
ℓψnsg,n,d−1(33)

+
∑

Γ∈Ratg,n

0≤ℓ≤kan−1

∑
b∈∆Γ(a[ℓ/k],k)

ζΓ∗sd−|E(Γ)|
(
Ω(Γ,b)(k)

)
.

We have already shown that

sg,n,d(a[0], k) = k2deg,n,d(a[0]) +O∆≤1/2
g,n

(k2d−1).

Besides, by induction hypothesis
1
k2d

∑
0≤ℓ≤kan−1

ℓψnsg,n,d−1(a, k) = 1
k2

∑
0≤ℓ≤kan−1

ℓψnsg,n,d−1(a) +O∆≤2
g,n

(k−1)

=
∫ an

t=0
t ψnsg,n,d−1(a[t]) dt.
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To control the sum in the RHS of (33), we start by fixing a rational graph Γ. Then, by induction
hypothesis, we have

1
k2d− 1

∑
b∈∆Γ(a[ℓ],k)

m(Γ, b)k|E(Γ)|ζΓ∗sd−|E(Γ)|
(
Ω(Γ,b)(k)

)

= 1
k|E(Γ)|−1

∑
d⊢d−|E(Γ)|

∑
b∈∆Γ(a,k)

m(Γ, b)ζΓ∗

 ⊗
v∈V out

sg(v),n(v),dv
(b(v))

+O∆≤1/2
g,n

(k−1)

=
∫

b∈∆Γ
ζΓ∗

 ⊗
v∈V out

sg(v),n(v),dv
(b(v))

 db+O∆≤1/2
g,n

(k−1).

Altogether, we obtain the following expression

k−2dsg,n,d(a, k) = eg,n,d(a[0]) +
∫ an

t=0
t ψnsg,n,d−1(a[t]) dt

−
∑

Γ∈Ratg,n

d⊢d−|E(Γ)|

∫ a

t=0

∫
b∈∆Γ(a[t])

m(Γ, b)
|Aut(Γ)|ζΓ∗

 ⊗
v∈V out

sg(v),n(v),dv
(b(v))

 db

+O∆≤1/2
g,n

(k−1).

Therefore k−2dsg,n,d(a, k) converges uniformly and the limit sg,n satisfies (13). This completes the
proof of theorems 1.4 and 2.4.

5. Identities at integral singularities

In this section, we study the volume functions in the presence of integral coordinates. We recall
from [Sau20] that

∫
Mg,n

(−1)g−1+nsg,n,3g−3+n(a, k) = 0 is of the same sign as
∏n

i=1 sin(aiπ). In
particular, if an is integral, then Vg,n(a) = 0. As shown in Section 2, the function Vg,n is C1.
This implies that the function Volg,n is continuous and non-negative, thus completing the proof of
Theorem 1.5.

The rest of the section will be dedicated to the proof of Theorem 1.6. Let (g, n) ̸= (0, 3) be a
pair such that n ≥ 1, and let a be a vector in ∆≤1/2

g,n . Theorem 1.6 will be deduced from the identity
Vg,n+1(a1, . . . , an, 2) = 0.

5.1. Expression of Vg,n+1 in terms of Mirzakhani polynomials. Our first task is to write
Vg,n+1 in terms of Mizakhani polynomials using the closed expression of sg,n proved in Section 2.
For all ℓ ≥ 0, and 0 ≤ t ≤ 2 we set

V ℓ
g,n+1(a, t) :=

∫
Mg,n+1

ψℓ
nsg,n+1(a1, . . . , an, t), and

P ℓ
g,n+1(a, t) :=

∫
Mg,n+1

ψℓ
ncg,n+1(a1, . . . , an, t).
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With this convention we have V 0
g,n+1 = (−1)g+nVg,n+1 while P 0

g,n+1 = Pg,n+1. We have

V ℓ
g,n+1(a, t) = P ℓ

g,n+1(a, t) if ℓ ≥ 2,(34)

V 1
g,n+1(a, t) = P 1

g,n+1(a, t) −
∫ t

u=0
D4(a, u) du(35)

V 0
g,n+1(a, t) =

∫ t

u=0

(
uV 1

g,n+1(a, u) − D3(a, u)
)
du,(36)

where D4(a, u) =
∫

Mg,n+1
D4,1

g,n+1(a, u)du and D3(a, u)
∫

Mg,n+1
D3

g,n+1(a, u) (the classes D3
g,n+1 and

D4,ℓ
g,n+1 are defined in Section 2). The integral of D4,0

g,n+1 vanishes, thus does not appear in the
expression of Vg,n+1. Indeed, the contribution of a rational graph with a central vertex with 4
half-edges to D4,0

g,n+1 is defined as the push-forward of classes supported only on the outer vertices,
so the top cohomological degree of this class is trivial.

We use the expression of the D-functions given at Section 2 to re-write the RHS of these formulas
with Mirzakhani polynomials. As

∫
M0,4

ψn = 1, we have

D4(a, u) =
∑

1≤i<j<n+1
(ai + aj + u− 2)+Pg,n−1(. . . , âi, . . . , âj , . . . , ai + aj + u− 2)

+
∑

1≤i<n+1

∫ (ai+u−2)+

y=0

y(ai + u− 2 − y)
2 Pg−1,n+1(. . . , âi, . . . , y, u+ ai − 2 − y) dy

+
∑

1≤i<n+1

∑
g1+g2=g

I1⊔I2={1,...,n}\{i}

∫ (ai+u−2)+

y=0

y(ai + u− 2 − y)
2

Pg1,|I1|+1(y, {ai}i∈I1) × Pg2,|I2|+1(ai + u− 2 − y, {ai}i∈I2) dy.

This expression determines V 1
g,n+1 in terms of the P -functions. If u ≤ 1, then these sums are trivial,

so V 1
g,n+1(a, t) = P 1

g,n+1(a, t) if t ≤ 1.

D3(a, u) =
∑

1≤i<n+1
(ai + u− 1)+V 0

g,n(. . . , âi, . . . , ai + u− 1)

+
∫ (u−1)+

y=0

y(u− 1 − y)
2 V 0

g−1,n+2(. . . , âi, . . . , y, u− 1 − y) dy(37)

+
∑

g1+g2=g

I1⊔I2={1,...,n}

∫ (u−1)+

y=0

y(u− 1 − y)
2

V 0
g1,|I1|+1(y, {ai}i∈I1) × V 0

g2,|I2|+1(u− 1 − y, {ai}i∈I2) dy.

Here, the function V -functions are evaluated at vectors with coordinates at most 3/2 for the first
term at most and 1 for the others. Besides, if u ≤ 1, then only the first sum is non-trivial. In
particular, we have the following expression for t ≤ 1:

(38) V 0
g,n+1(a, t) = Pg,n+1(a, t) −

n∑
i=1

∫ (t+ai−1)+

u=0
uPg,n(. . . , âi, . . . , u) du.
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We use this expression, and V 0
g,n+1(a, 1) = 0 to re-prove the following result by Do–Norbury [DN09].

Theorem 5.1. For all a ∈ Rn we have

(39) Pg,n+1(a, t) =
n∑

i=1

∫ ai

u=0
uPg,n(. . . , âi, . . . , u) du.

Here, we will use (38) to express D3 in terms of Mirzakhani polynomials. To do so, we denote
by D̃3(a, u) the expression obtained by replacing V by P in the RHS of (37). Then, we set

D′(a, t) :=
∑

1≤i<n+1

( ∑
1≤j<n+1

j ̸=i

∫ (ai+aj+t−2)+

u=0
u(ai + t− 1)Pg,n−1(. . . , âi, . . . , âj , . . . , u) du

+
∫ (ai+t−2)+

u=0

∫ (u−1)+

y=0

y(u− y)
2 (ai + t− 1)

Pg−1,n+1(. . . , âi, . . . , . . . , y, u− y) dy du

+
∑

g1+g2=g

I1⊔I2={1,...,n}

∫ (ai+t−2)+

u=0

∫ (u−1)+

y=0

y(u− y)
2 (ai + t− 1)

Pg1,|I1|+1(y, {ai}i∈I1) × Pg2,|I2|+1(u− y, {ai}i∈I2) dy du
)

+
∑

1≤i<n+1

∫ (t−1)+

y=0

∫ (y+ai−1)+

u=0
yu(t− 1 − y)Pg−1,n+1(. . . , âi, . . . , u, t− 1 − y) du dy

+
∑

g1+g2=g

I1⊔I2={1,...,n}

∑
i∈I1

∫ (t−1)+

y=0

∫ (y+ai−1)+

u=0
yu(t− 1 − y)

Pg1,|I1|+1(u, {ai}i∈I1) × Pg2,|I2|+1(t− 1 − y, {ai}i∈I2) du dy,

and

(40) D′′(a, t) :=
∑

1≤i<j<n+1

∫ max(t−1,1−ai−aj)

y=1−ai−aj

y(t− 1 − y)Pg,n−1(. . . , âi, . . . , âj , . . . , t− 1 − y) dy.

With this notation, we have

(41) D3(a, t) = D̃3(a, t) − D′(a, t) − D′′(a, t).

To explain this last expression, note that the term D′ corresponds to the correction between the V
and P function given by (38). The term D′′ has another explanation: in the third sum of (37), if
g1 = 0 and I1 = {i, j}, then the integration domain includes values of y such that y + ai + aj ≥ 1
while ∆0,3 is the set of vectors of size at most 1. To make sense of this expression, we must impose
that V0,3(a) = 0 if |a| > 1 while P0,3(a) = 1. The term D′′ corresponds to the correction obtained
by integration on the complement of ∆0,3. Altogether, we obtain the following relation

(42) V 0
g,n+1(a, 2) = 0 = Pg,n+1(a, 2) −

∫ 2

t=0
D3(a, t) −

∫ 2

t=0

∫ t

u=0
tD4(a, u) du dt.
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The RHS of this identity is a linear combination of polynomials in a constructed from Mirzakhani
polynomials.

5.2. Odd part of the relation. In order to prove Theorem 1.6, we simplify the identity (42) by
extracting the monomials with odd powers in a1. If P is a polynomial in a1, . . . , an, then we denote

P odd = 1
4

(
P (a1, a2, . . . , an) + P (a1,−a2, . . . ,−an) − P (−a1, a2, . . . , an) − P (−a1,−a2, . . . ,−an)

)
the odd part in a1 of the odd degree part of P . Mirzkhani polynomials are even in all variables,
so (42) implies

(43)
(∫ 2

t=0
D̃3(a, t)dt

)odd
=
(∫ 2

t=0
D′(a, t) + D′′(a, t) − t

∫ t

u=0
D4(a, u) du dt

)odd

The parity of Mirzakhani polynomials also implies the following simple expression of the LHS:(∫ 2

t=0
D̃3(a, t) dt

)odd
=

(∫ 2

t=0
(ai + t− 1)+Pg,n(a1 + t− 1, a2 . . . , an) dt

)odd

=
(∫ ai+1

t=0
tPg,n(t, a2 . . . , an) dt

)odd

=
∫ 1+a1

t=1−a1
tPg,n(t, a2 . . . , an) dt.(44)

Indeed, the other terms are even in the variable a1. We introduce notation to re-group the terms
in the RHS of (43). For all 2 ≤ i ≤ n, we set

D{1,i,n+1}(a) :=
∫ 2

t=0

∫ (a1+ai+t−2)+

u=0
u ((a1 + t− 1) + (ai + t− 1))Pg,n−1(u, . . . , âi, . . .) du dt

+
∫ 2

t=0

∫ max(t−1,1−a1−ai)

y=1−a1−aj

y(t− 1 − y)Pg,n−1(t− 1 − y, . . . , âi, . . .) dy dt

−
∫ 2

t=0

∫ t

u=0
t(a1 + ai + u− 2)+Pg,n−1(a1 + ai + u− 2, . . . , âi, . . .) du dt

=
∫ a1+ai

t=0

∫ t

u=0
(u(2t− a1 − ai + 2) + (t− u+ 1 − a1 − ai)u− u(t+ 2 − a1 − ai))

Pg,n−1(u, . . . , âi, . . .) du dt

From the first expression to the second, we have made the change of variable t 7→ t+ 2 − a1 − ai,
and then y 7→ t− u+ 1 − a1 − ai in the second integral, and u 7→ u+ 2 − a1 − ai in the third one.
With this notation, we have

(45) D{1,i,n+1}(a)odd =
∫ a1+ai

t=ai−a1

∫ t

u=0
uPg,n−1(u, . . . , âi, . . .) du dt
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Dloop
{1,n+1}(a) :=

∫ 2

t=0

∫ (t−1)+

y=0

∫ (y+a1−1)+

u=0
yu(t− 1 − y)Pg−1,n+1(. . . , u, t− 1 − y) du dy dt

+
∫ 2

t=0

∫ (a1+t−2)+

u=0

∫ u

y=0

y(u− y)
2 (a1 + t− 1)Pg−1,n+1(. . . , y, u− y) dy du dt

−
∫ 2

t=0

∫ t

u=0

∫ (a1+u−2)+

y=0

ty(a1 + u− 2 − y)
2 Pg−1,n+1(. . . , y, u+ a1 − 2 − y) dy du dt

=
∫ a1

t=0

∫ t

y=0

∫ y

u=0
(y + 1 − a1)u(t− y)Pg−1,n+1(. . . , u, t− y) du dy dt

+
∫ a1

t=0

∫ t

u=0

∫ u

y=0

y(u− y)
2 (t+ 1)Pg−1,n+1(. . . , y, u− y) dy du dt

−
∫ a1

t=0

∫ t

u=0

∫ u

y=0

(t+ 2 − a1)y(u− y)
2 Pg−1,n+1(. . . , y, u− y) dy du dt

=
∫ a1

t=0

∫ t

u=0

∫ u

y=0

(
t− y + 1 − a1 + a1 − 1

2

)
(u− y)y

Pg−1,n+1(. . . , y, u− y) du dy dt

From the first line to the second, we have made the change of variables t 7→ t+2−a1 in all integrals,
then y 7→ t − y + 1 − a1 in the first integral and u 7→ u + 2 − a1 in the third integral. From the
second line to the second, we have changed variables in the first integral u 7→ u+ y. The odd part
of this polynomial is given by

(46)
(
Dloop

{1,n+1}(a)
)odd

=
∫ a1

t=−a1

∫ t

u=0

∫ u

y=0

(u− y)y
2 Pg−1,n+1(a2, . . . , y, u− y) du dy dt,

For g1 + g2 = g and I1 ⊔ I2 = {2, . . . , n − 1}, we define and compute Dg1,g2,I1,I2
{1,n+1} similarly to

Dloop
{1,n+1}(a), so we simply give the final expression of the odd part:(

Dg1,g2,I1,I2
{1,n+1} (a)

)odd
=
∫ a1

t=−a1

∫ t

u=0

∫ u

y=0

(u− y)y
2

Pg1,|I1|+1(u, {ai}i∈I1) × Pg2,|I2|+1(u− y, {ai}i∈I2) du dy dt.(47)

With these functions, we can rewrite (43) as

(48)
(∫ 2

t=0
D̃3(a, t) dt

)odd
=
(

n∑
i=2

D{1,i,n+1}(a) + Dloop
{1,n+1}(a) +

∑
g1+g2=g

I1⊔I2={2,...,n}

Dg1,g2,I1,I2
{1,n+1} (a)

)odd

.

21



Putting (44), (45), (46), and (47) together we obtain the following relation∫ 1+a1

t=1−a1
(1 + t)Pg,n(1 + t, a2, . . . , an)

=
∑

1<i≤n

∫ a1

t=−a1

∫ ai+t

u=0
uPg,n−1(u, a2, . . . , âi, . . .) dt(49)

+
∫ a1

t=−a1

∫ u

y=0

y(u− y)
2 Pg−1,n+1(y, u− y, a2, . . .) dy dt

+
∑

g1+g2=g

I1⊔I2={2,...,n}

∫ u

y=0

y(u− y)
2 Pg1,|I1|+1(y, {ai}i∈I1)Pg2,|I2|+1(u− y, {ai}i∈I2) dy dt.

Theorem 1.6 follows if we take the derivative of this relation with respect to a1.
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