
HAL Id: hal-04731088
https://hal.science/hal-04731088v1

Submitted on 10 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Whispering gallery modes for 3D strain measurement
Yann Lecieux, Dominique Leduc, Corentin Guigot, Marc François, Cyril Lupi

To cite this version:
Yann Lecieux, Dominique Leduc, Corentin Guigot, Marc François, Cyril Lupi. Whispering
gallery modes for 3D strain measurement. Optics and Laser Technology, 2022, 149, pp.107862.
�10.1016/j.optlastec.2022.107862�. �hal-04731088�

https://hal.science/hal-04731088v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Whispering gallery modes for 3D strain measurement

Yann Lecieux∗, Dominique Leduc, Corentin Guigot, Marc François, Cyril Lupi
GeM - Institut de Recherche en Génie Civil et Mécanique - UMR 6183 - Université de Nantes - CNRS - École

Centrale de Nantes

Abstract

This paper deals with the use of Whispering Gallery Modes to measure the six components of

an homogeneous strain tensor within a sphere undergoing a uniform strain field. The device

is a silica sphere in which six WGMs resonate, describing six circles positioned on the sphere’s

surface in planes perpendicular to the normals of a dodecahedron. The direct model relating

the strain to the resonant wavelength variation is established for one circle and then linearised

in accordance with the intended application, i.e. the realisation of a sensor. The expressions

are then generalised to six circles and inverse system computed to obtain an expression for the

six components of the strain field as a function of six wavelength shifts of WGMs. Finally, the

theoretical performances of the sensor are assessed. The study shows that using a conventional

1 pm resolution detector, the uncertainty on the strain components is, after correction of systematic

errors, equal to 2 µε.

Keywords: Whispering-gallery modes, Strain, 3D sensor, Optical sensors

1. Introduction

Measuring strain within a structure or material is a complex task due to the nature of

the strain. It is a tensor field defined by six independent components at each point of the

space. To date, strain sensors are essentially unidirectional and only provide a measurement of

one component of the strain tensor in projection along the axial direction of the sensor. Six5

unidirectional sensors are therefore needed to completely measure the strain at a point in space.

Then the problem of the possible non-uniformity of the measured field arises. Since it is not

possible to place six sensors at the same point, it is necessary to ensure the uniformity of the

strain field in the volume where the different unidirectional sensors are positioned.
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To solve this problem, a sensor concept was recently patented [1]. Its test body is a sphere10

crossed by 6 fibres positioned in six directions corresponding to the normals of a dodecahedron

and equipped with a Bragg grating to perform unidirectional strain measurement. Under certain

conditions, the strain is uniform in the sphere [2]. The six fibres therefore measure different

components of the same tensor. The validity of the measurements given by this sensor has been

experimentally proven [3, 4].15

In its current form, the body measures 4 cm in diameter. This size is well suited for civil

engineering applications but is not suitable for insertion into composite materials or biological

structures. However, the fact of inserting the strain gauges according to diameters in the test

body limits significant miniaturisation of the device. Indeed, it is necessary to have a bonding

length of several centimetres for a correct strain transfer from the test body to the fibre [5]–[9].20

This requirement defines the minimum diameter of the sphere.

An interesting alternative would be to use a test body cut from a dielectric material as a

medium for light propagation. Indeed, its spherical shape allows it to guide gallery modes [10]–

[13] at its periphery. However, gallery modes are resonant modes: the phase tuning conditions

after one revolution mean that there is a relationship between the wavelength of the propagating25

mode and the radius of the sphere, its refractive index and the refractive index of the external

medium [14]. Consequently, a sphere radius variation results in a variation of the resonant

wavelength. Measuring the variation of the wavelength can therefore be used to calculate the

strain field within the sphere.

Several studies have already demonstrated the link between strain or mechanical loading and30

shift of the resonant wavelength. However, all these studies focused on one dimensional strain

analysis in an a priori known direction. In some of them [15]–[19], the gallery modes propagate in

microwire and they shift due to a tensile strain in the axial direction. The aim of the others[20]–

[24] is to develop force sensor with whispering gallery modes in a micro-sphere. The micro-sphere

is wedged between two flat plates or a similar arrangement. The force is exerted in the direction35

normal to the plates and the contact between the plates and the sphere induce a non homogeneous

strain. The key parameter in these studies is the link between the amplitude of the force in a

given direction and the shift of the wavelength of the whispering gallery mode. The aim of the

study presented here is quite different. The starting point is a micro-sphere embedded in a host

material and therefore strained in an unknown manner but in homogeneous strain field. The40

problem to solve is to determine the full strain, in all dimensions.

In order to measure strain completely, 6 different gallery modes would have to be used,
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following 6 different circles. The question is whether there is a configuration that allows all

components of the strain tensor to be measured using these purely tangential measurements,

and if so, whether the relationship between the measured wavelengths and the components of45

the strain tensor is linear over a reasonable range of strains for the sensor to be truly usable in

practice.

The objective of this article is to demonstrate that there are linearized relations and an

architecture that satisfies these requirements, and then to propose a complete method for the

inversion of measurements obtained with this type of sensor. After a brief reminder of the50

context, the problem statement is presented in section 2. Relationships for calculating strains

from the measurement of wavelength shifts will then be established by specifying the necessary

approximations to the sections 3 and 4. Then, the optimal architecture of the sensor will be

defined in section 5. Finally, the relevance of the approximations with respect to the expected

performances in terms of sensitivity and resolution will be discussed in connection with the55

practical aspects for the implementation of this type of sensor.

2. Problem Statement

Electromagnetic Whispering Gallery Modes propagate in structures with axial symetry such

as discs, torus or spheres [25]–[30]. These are resonant modes with quality-factor as high

as 109 [31] which makes them suitable for fine measurements of various parameters such as60

temperature [32], refractive index [14, 33] or biological parameters [29, 34, 35].

The studied structure in this paper is a silica sphere of refractive index n and radius R

surrounded by an external medium of index next. The spherical coordinate system (~er, ~eθ, ~eφ)

is used for the calculations. From Maxwell equations, it can be seen that two family of modes

exist: transverse electric modes (TE) and transverse magnetic modes (TM). In the following, the

study will be focused on TE modes. In this case, the electric field in the sphere is given by [36]:

~Eelec = A
ψ`(knr)
knr

[
j
mP `m(cos θ)

sin θ ~eθ −
∂P `m(cos θ)

∂θ
~eφ

]
ejmφ (1)

where k = 2π/λ is the wave number, j the imaginary unit, (r, θ, φ) the spherical coordinates,

ψ` a Ricatti-Bessel function of the first kind and P `m the associated Legendre polynomials. The

parameters ` and m are integers such that [37]: −` ≤ m ≤ ` and 1 < ` × λ/2πR < n/next. `

is of the order of 50 for R = 10 µm and 3000 for R = 500 µm. For ` >> 1 the component of65

the electrical field along ~eφ is negligible [38]. It will then be assumed that the electrical field is

purely along ~eθ.
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The continuity of the tangential components of the fields at the interface yields [38, 39]:

n

next

ψ′`(knR)
ψ`(knR) = χ′`(knextR)

χ`(knextR) (2)

where χ` is a Ricatti-Bessel function of the second kind. The exponents prime stand for the

derivation with respect to r. This equation gives the wavelengths of the ` order modes which

can propagate around the sphere. For an unstrained sphere, modes (`,m) are degenerated.70

The fundamental mode corresponds to m = `. Schematically, it can be seen as a toroidal beam

centered on the equatorial plane (θ = π/2) with radial width δr ' λ [37, 40] and angular opening

δθ depending on R.

The studied sensor architecture is made of six whispering gallery modes propagating around

the sphere along six different circles. The ith mode propagates along a circle perpendicular to75

the direction ~ni. The previous field expressions are therefore valid for this mode, provided that

the angle θ is measured from the axis carrying ~ni as shown on figure 1.

Propagation direction

mi

pi

ni

Mode TE field orientation

R

EE0

e2
e1

e3

er

eφ  

eθ   

Figure 1: Settings used for the study of WGM

When the sphere is submitted to a uniform strain field E0, in accordance with the intended

use as sensor and the assumption of the Eshelby’s inclusion theorem, it undergoes a uniform

strain E related to E0 by Eshelby’s equations [2, 41, 3]. Thus the strains leads to a shift of the

wavelength of the ith resonant whispering gallery mode, which can be written as [20]:

∆λi
λi

= ∆Li
Li

+ ∆n
n
− `−m

2` ∆(ei)2 (3)
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It depends on three terms: a geometrical term, ∆L/L, that describes the variation of the

perimeter of the circle, a photo-elastic term, ∆n/n, that describes the refractive index variation

induced by the strain E and a term depending on the eccentricity of the loop. The latest is of80

second order in eccentricity and will be neglected (it is by the way strictly null for the fundamental

mode). The remaining terms depend on the strain tensor. For each term, this dependence will

be explained as well as the calculation allowing to invert the relations obtained.

Before doing so, it is worth considering the limitations of the proposed model. The first

concerns the power of the incident beam. Indeed, as the cavity has a high quality factor, a85

low incident power can lead to a very high energy stored in the cavity and induce non-linear

effects or mechanical instabilities. Such effects are observed for threshold powers of a few tens of

watts with cavities of quality factor between 106 and 109. It is reasonable to take this order of

magnitude as the maximum incident power. The second concerns the coupling between modes.

In this model it is assumed that the modes are completely decoupled. One way to do this is90

to interrogate the different modes sequentially, leaving enough time between two interrogations

for the energy of the previous mode to be fully dissipated. However, it should be noted that a

coupling resulting in an energy transfer between modes with no change in resonant wavelength

would be compatible with the proposed method. It would only affect the sensitivity.

3. Linearized relation between the variation of perimeter ∆Li/L for a circle of95

normal ~ni and the components of the strain tensor E

The vectors plotted in figure 1 (~mi, ~pi, ~ni) form local orthonormal bases. The components of

the strain tensor E are defined by the equation 4, in the canonical basis (~e1, ~e2, ~e3) and in the

local basis (~mi, ~pi, ~ni):

E =

 Epq


(~e1,~e2,~e3)

=

 Epq


(~mi,~pi,~ni)

(4)

The components of the strain tensor Ekl projected in a plane of normal ~ni are noted Eikl:

Eiij = P⊥ipP
⊥
jqEpq (5)

where P⊥kl refers to the components of the projector P[~n⊥
i ] on the plane of normal ~ni:

P [~n⊥
i ] = I − ~ni ⊗ ~ni (6)
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where I is the identity tensor. In the local basis (~mi, ~pi, ~ni), the projected tensor noted Ei of

the strain tensor E has the following components:

Ei =


E
i

11 E
i

12 0

E
i

12 E
i

22 0

0 0 0


(~mi,~pi,~ni)

. (7)

The directions (~mi, ~pi) can be chosen such that they coincide with the Ei eigenvectors. The

associated principal strains are noted as EiI and E
i

II . The strain tensor projected onto the ~ni
normal plane is then written as:

Ei =


E
i

I 0 0

0 E
i

II 0

0 0 0


(~mi,~pi,~ni)

(8)

The position vectors of points describing a ring on the sphere surface in the initial and final states

are denoted by ~x and ~X respectively. The possible displacement field ~u involves, with a possible

additional rigid body motion, the final position vectors ~X as a function of initial position vectors

~x according to:

~u

∣∣∣∣∣∣∣∣∣
E
i

Ix

E
i

IIy

0
(~mi,~pi,~ni)

~X

∣∣∣∣∣∣∣∣∣
X = (1 + E

i

I)x

Y = (1 + E
i

II)y

0
(~mi,~pi,~ni)

(9)

The points, initially on the circle, satisfy:

x2 + y2 = R2 (10)

From the equations 9 and 10, it follows:

X2

(1 + E
i

I)2
+ Y 2

(1 + E
i

II)2
= R2 (11)

This result shows that a ring, initially circular, takes an elliptical shape under the effect of an

homogeneous strain field given by E. As a consequence, looking for a relation between the

perimeter variation of a ring in a plane of normal ~ni and the components of the strain tensor

projected in this same plane Ei implies to be interested in the calculation of an ellipse perimeter.

The latter is obtained following the calculation of an elliptic integral (equation 12):

P = 4
∫ π

2

0

√
a2 cos2(t) + b2 sin2(t)dt (12)
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where a and b are half the lengths of the minor and major axes of the ellipse defined by:

a = R(1 + E
i

I), b = R(1 + E
i

II) (13)

This equation has no analytical solution. It must therefore be calculated by numerical integration

or by rational approximations. Many approximations exist. The choice is made here to express

the perimeter variation ∆Li by using the Euler approximation (equation 14) since it is very

precise when the ellipse is close to a circle as it is the case under the classical assumption of small

perturbations:

L+ ∆Li ≈ π
√

2(a2 + b2) (14)

From this approximation, it is possible to determine the expression of the ring final length L+∆Li
as a function of the principal strains (EiI , E

i

II) and the radius R. Linearising this expression to

first order in strain, it comes:

L+ ∆Li =
√

2π
√
R2(1 + EI)2 +R2(1 + EII)2 (15)

' 2πR
√

1 + EI + EII (16)

∆Li
2πR ' EI + EII

2 (17)

This expression is the trace of the Ei tensor in the ( ~mi, ~pi) basis. This quantity is an invariant,

so the following expression is valid whatever the basis:

∆Li
2πR ' 1

2trace(Ei) (18)

From the expression 18, it is possible to establish a relation between the perimeter variation100

and the components of the tensor E expressed in the (~e1, ~e2, ~e3) basis. Indeed, the ring length

relative variation ∆Li/2πR is given as a function of the strain tensor components Epq and P i⊥pq
the components of the projector P [~n⊥

i ], in the canonical basis.

∆Li/πR = P i⊥rs Ers (19)

In expression 19 the double contraction is identified which allows to write:

∆Li/πR = P [~n⊥
i ] : E (20)

The equation 20 is a dot product between the two tensors resized as column vectors in Bechterew105
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basis [42]. Thus the following expression is obtained:

∆Li
πR

= 〈 P i⊥11 P i⊥22 P i⊥33
√

2P⊥23
√

2P i⊥31
√

2P i⊥12 〉



E11

E22

E33
√

2E23
√

2E31
√

2E12


(21)

0 0.2 0.4 0.6 0.8

EII - EI

× 10-3

0

-1

1

2

3

4

5

6

7
× 10-8

Ф
 

Figure 2: Approximation error in the ellipse perimeter calculation, as a function of the ellipticity EII − EI .

The model error when estimating the perimeter LApprox of a deformed sphere using equation

18 depends only on the ellipticity of the test body, i.e. the principal strains difference: EII −EI .

To estimate this error, the elliptic integral of the equation 12 is evaluated numerically so as to

obtain LNum, the ellipse perimeter to the nearest 10−14 in relative value. Figure 2 shows that the110

relative error, Φ = LApprox−LNum

LNum , reaches at most 6.10−8 for an ellipticity of 1.10−3. This value

has to be compared to the relative uncertainty on the measured wavelength which is typically of

the order of 1 pm/1500 nm or about 6.10−7. The error made by estimating the perimeter length

with the approximation 18 (or 21) instead of calculating the perimeter by numerical evaluation of

the elliptic integral is much smaller than the measurement error. It is therefore acceptable for the115

expected range of strains, around 1000× 10−6. This approximation will be used in the following

since it allows the linearisation of the perimeter variations as a function of the components of

the strain tensor with a model error which remains low.
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4. Linearized relation between the strain tensor components of E and the change in

refractive index ∆n120

The photoelastic effects are described by the relation between the changes in the impermeability

tensor components B and the strain tensor E:

∆(Bij) = pijklEkl , (i, j = 1, 2, 3) (22)

where pijkl are the components of the photoelastic index tensor Pe. The components of the

impermeability tensor and those of the refractive index tensor n (see [43]) noted nij are related

by the following relation:

∆(Bij) = ∆
(

1
n2
ij

)
, (i, j = 1, 2, 3) (23)

For an isotropic homogeneous medium, this tensor is expressed by:

n = nI (24)

where n is the refractive index of the medium.

As stated in section 2, the electrical field is along ~eθ for ` >> 1. In the following, it will

be assumed that this direction can be equated to the normal of the gallery mode propagation

plane. Simulations were performed with COMSOL in order to validate this approximation. The

2D axisymetric system shown on figure 3 was simulated. The system is made of a sphere of

refractive index n1 and radius R (white area on figure 3) embedded in a medium of refractive

index n2 (blue area on figure 3). Waves are absorbed at the external boundary by a 20 µm PML

(red area on figure 3). Around the diopter, from R−5 µm to R+ 5µm, a structured mesh made

of a 0.5 µm squares was used. This regular arrangement of the finite elements at the interface

between the two media is made to avoid creating fictitious dissymmetries in the modes due to

dissymmetries of the finite element mesh. The simulated equation over the whole geometry is :

~∇∧ (~∇∧ ~Eelec)− k2εr ~Eelec = ~0 (25)

The example of figure 3 corresponds to a silica sphere with a radius of 500 µm. This is the largest

size considered in this study.

The figure 4 shows the angular distribution of the component, Eelec
θ , of the simulated electrical

field of two gallery modes propagating on two different spheres: one with a 100 µm radius and125

the other with a 500 µm radius. This figure illustrates the fact that the angular aperture of the

9



PML

n1

n2

500 µm

Figure 3: COMSOL modelling of a silica sphere used for WGM simulation.
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mode is weak, of the order of 2◦ for the 500 µm sphere. It increases when the radius of the sphere

decreases, but remains smaller than 8◦ for a 100 µm sphere. This weak angular aperture justifies

that the direction ~eθ can be equated to the direction ~ni. The electrical field is therefore assumed

to be along ~ni. As a consequence, it is assumed that the electrical field is just influenced by the130

refractive index in the direction ~ni.

Angle (°)

-10 -8 -4 -2 0-6 2 4 6 8 10

E
 (
a
.u

.)

0.2

0

0.4

0.6

0.8

1
100 µm
500 µm

Figure 4: Eelec
θ component of a WGM propagating in a silica sphere of 500 µm diameter and in a silica sphere of

100 µm diameter.

The component ∆Bi of the tensor ∆B along a direction ~ni, is given by:

∆Bi = P~ni : ∆B = P~ni : Pe : E (26)

where P~ni stands for the projector in the direction ~ni:

P~ni = ~ni ⊗ ~ni (27)

From 23 :

∆Bi = −2∆ni

(n)3 (28)

with ∆ni the refractive index variation in the direction ~ni. This leads to:
∆ni

n
= − (n)2

2 P~ni : Pe : E (29)

This equation, like expression 20, corresponds to a scalar product between the tensors resized as

vectors in Bechterew’s basis [42]. The system can then be written as:
∆ni

n
= − (n)2

2 〈P
i
kl〉 [Pe] {Epq} (30)
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with the components of the projector:

〈P ikl〉 = 〈 P i11 P i22 P i33
√

2P i23
√

2P i31
√

2P i12 〉 (31)

the photoelastic index tensor Pe, in Bechterew [42] basis, is written:

[Pe] =



p11 p12 p12 0 0 0

p12 p11 p12 0 0 0

p12 p12 p11 0 0 0

0 0 0 (p11 − p12) 0 0

0 0 0 0 (p11 − p12) 0

0 0 0 0 0 (p11 − p12)


(32)

and {Epq} the components of the strain tensor E written as a column vector:

{Epq} =



E11

E22

E33
√

2E23
√

2E31
√

2E12


(33)

In order to assess the approximation consisting in equating ~eθ to ~ni, an axisymmetric simulation

was carried out with a mode propagating in a plane of normal ~e3. A strain E11 is imposed along

the axis ~e1. Since the strain is axisymmetric, the same strain is applied along the ~e2 axis.

The trajectory followed by the mode is always a circle. This simulation allows to test only the

hypothesis made on the variation of the optical index. The previous expressions are adapted to

this geometrical configuration. Thus the resized projectors as vectors in Bechterew basis [42] are

in this case:

P [~e⊥
3 ] = I − ~e3 ⊗ ~e3 =

〈
1 1 0 0 0 0

〉
(34)

and

P [~e3] = ~e3 ⊗ ~e3 =
〈

0 0 1 0 0 0
〉

(35)

According to the equations, 3 and 30 :

∆L
L

= E11 + E22

2 ; ∆n
n

= −n
2

2 (p12E11 + p12E22 + p11E33) (36)

By adding the geometric and photoelastic effect, the wavelength shift is written:

∆λ
λ

= E11 + E22

2 − n2

2 (p12E11 + p12E22 + p11E33) (37)
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For the axisymmetric simulation with E11 = E22, this expression becomes:
∆λ
λ

= E11 −
n2

2 (2p12E11 + p11E33) (38)

The difference between the simulation results performed using COMSOL and considered as

the reference and the simplified analytical expression is given in Figure 5 as a function of the

diameter of the sphere. As expected, the larger the sphere, the lower the angular aperture and

thus the lower the difference between the analytical approximation and the numerical simulation.135

For a 100 µm sphere, the difference is of the order of 4%, whereas for a 500 µm sphere, it is lower

than 1%.
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Mode angular width (°)
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Figure 5: (a) Relative wavelength shift calculated by simulation or using the simplified analytical expression as a

function of the diameter of the sphere (for E11 = 2000 10−6, n = 1.45 and p12 = 0.27). (b) Difference between

the wavelength variations calculated by simulation or using the simplified analytical expression as a function of

the diameter of the sphere.

The approximated expression 30 can therefore be used. It enables a linear relation between

the refraction index variation and the strain tensor components with an error that remains low

provided that the sphere is not too small.140

5. Towards a strain measurement device using WGM propagation along 6 different

circles

The choice of the measurement planes which defines the components of the normals and

therefore the components of the projectors P i⊥kl and P ikl must be made in such a way that the
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system is inversible. Among all the combinations, it is preferable to choose a regular distribution145

of the planes in space so that the behaviour of the sensor is not affected by its orientation with

respect to the main directions of the strain field E0. The best solution is to measure perimeter

variations in planes perpendicular to the normals of a dodecahedron:

~n1 = (0, ϕ, 1)/
√

2 + ϕ

~n2 = (0, ϕ,−1)/
√

2 + ϕ

~n3 = (1, 0, ϕ)/
√

2 + ϕ

~n4 = (1, 0,−ϕ)/
√

2 + ϕ

~n5 = (ϕ, 1, 0)/
√

2 + ϕ

~n6 = (ϕ,−1, 0)/
√

2 + ϕ

(39)

where ϕ = (1 +
√

5)/2 is the golden ratio. The architecture representing this solution is shown

in Figure 6. With this configuration of sensors, the system 21 becomes:

Figure 6: Distribution of the measurement perimeters on a 6-ring sensor, as also presented in [44] or in [45] for a

hollow structure.

{
∆Li
Li

}
= 1

2

{
∆Li
πR

}
= 1

2 [ML] {Ei} (40)

14



where the matrix [ML], according to the property ϕ2 − 1 = ϕ, is written:

[ML] = 1
2 + ϕ



2 + ϕ 1 1 + ϕ −
√

2ϕ 0 0

2 + ϕ 1 1 + ϕ
√

2ϕ 0 0

1 + ϕ 2 + ϕ 1 0 −
√

2ϕ 0

1 + ϕ 2 + ϕ 1 0
√

2ϕ 0

1 1 + ϕ 2 + ϕ 0 0 −
√

2ϕ

1 1 + ϕ 2 + ϕ 0 0
√

2ϕ


(41)

and150

{Ei} =



E11

E22

E33

E23

E31

E12


(42)

A similar relationship can be established between the components of the strain tensor and

the wavelength variations resulting from the index variations ∆ni
n (see equations 30, 31 and 32).



∆n1

n1

∆n2

n2

∆n3

n3

∆n4

n4

∆n5

n5

∆n6

n6


= − (n)2

2


Mn




Pe





E11

E22

E33

E23

E31

E12


(43)

with [Mn], the matrix composed by the projectors P~ni along the 6 normals ~ni, i.e.:

[Mn] = 1
(2 + ϕ)



0 1 + ϕ 1
√

2ϕ 0 0

0 1 + ϕ 1 −
√

2ϕ 0 0

1 0 1 + ϕ 0
√

2ϕ 0

1 0 1 + ϕ 0 −
√

2ϕ 0

1 + ϕ 1 0 0 0
√

2ϕ

1 + ϕ 1 0 0 0 −
√

2ϕ


(44)
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In the equations 40 and 43, the writing in tensor basis is no longer used. The multipliers
√

2 of

the Eij terms are integrated in the matrices [ML] and [Mn] in order to obtain a relation between

the components of the strain tensor and the WGM shifts that can be easily inverted. Finally,

this relationship can be written as:{
∆λi
λ

}
= [ML]− n2[Mn][Pe]

2 {Ei} = [M ]
2 {Ei} , i ∈ 1..6 (45)

where [M ] has the following form:

[M ] =



M1 M2 M3 −M4 0 0

M1 M2 M3 M4 0 0

M3 M1 M2 0 −M4 0

M3 M1 M2 0 M4 0

M2 M3 M1 0 0 −M4

M2 M3 M1 0 0 M4


(46)

with :
M1 = 1− n2p12

M2 = 1− n2[(1 + ϕ)p11 + p12]
2 + ϕ

M3 = (1 + ϕ)(1− n2p12)− n2p11

2 + ϕ

M4 =
√

2ϕ
2 + ϕ

[
1 + n2(p11 − p12)

]
(47)

To obtain the components of the strain tensor from the resonant wavelength variations, the

relationship 45 must be inverted:

{Ei} = 2[M ]−1
{

∆λi
λ

}
, i ∈ 1..6 (48)

which is only possible if the determinant D of the matrix [M ] is not zero. This determinant is

as follows:

D = −8M3
4 (M3

1 +M3
2 +M3

3 − 3M1M2M3) = 32
√

2ϕ5

(ϕ+ 2)5P1(p11, p12, n)5P2(p11, p12, n) (49)

with

P1(p11, p12, n) = n2(p11 − p12) + 1

P2(p11, p12, n) = n2(p11 + 2p12)− 2
(50)

The determinant therefore becomes zero when P1 = 0 or P2 = 0. This means that for some

sets of parameters {p11, p12, n}, the effect of the geometry change ∆L/L on the wavelength
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shift of WGM is partially compensated by the photoelastic effect ∆n/n. The coloured maps in155

Figure 7 represent the sets of parameters for which these polynomials are zero. These are the

configurations to be avoided for the realisation of a 3D strain sensor.
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Figure 7: In colour are represented the points of the space of parameters {p11, p12, n} for which the determinant of

the matrix [M ] is zero. The color-bar indicates the value of the index n to be avoided for a given set of parameters

{p11, p12}.

The matrix [M ]−1, if it exists, has the following form:

[M ]−1 =



m1 m1 m3 m3 m2 m2

m2 m2 m1 m1 m3 m3

m3 m3 m2 m2 m1 m1

m4 −m4 0 0 0 0

0 0 m4 −m4 0 0

0 0 0 0 m4 −m4


(51)
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where:
m1 = 4M3

4
D

(M2M3 −M2
1 )

m2 = 4M3
4

D
(M1M3 −M2

2 )

m3 = 4M3
4

D
(M1M2 −M2

3 )

m4 = − 1
2M4

(52)

6. Sensitivity analysis

The objective of this section is to study the influence of the different parameters involved in

the measurement on the accuracy of the measurement. First of all, it should be reminded that160

the radius of the sphere conditions the validity of the approximation as shown on the figure 5.

This approximation leads to a systematic error that must be corrected before analysis.

Material n p11 p12 S1 S2 S3 S4

(pm/µε) (pm/µε) (pm/µε) (pm/µε)

Fused silica [46] 1.458 0.121 0.27 0.319 -0.051 0.178 0.324

Doped silica [47] 1.447 0.113 0.252 0.354 -0.030 0.207 0.336

PMMA [48] 1.49 0.3 0.28 0.28 -0.28 0.07 0.49

Diamond [49] 2.4 0.12 -0.32 2.13 0.21 1.4 1.68

Silicon Carbide [50] 2.6 -0.15 0.04 0.547 0.701 0.606 -0.134

Table 1: Optical constants and sensitivities of different materials

From an experimental point of view, the measurement consists in determining the wavelength

of a dip in the intensity of the light transmitted by the fiber which serves as a coupler. The

accuracy of the measurement therefore depends on the depth and width of the dip. With standard

detectors, a depth of -45 dBm is enough to detect the dip. The coupling has to be adjusted to

insure this minimal depth. The typical wavelength resolution is then of the order of 1 pm for

a width of a few hundred pm. This can easily be achieved since it corresponds to a quality

factor of the order of 105. In this framework, the sensibility of the measurement method is

given by the components of the matrix [M ] of equation 47. These components depend on the

18



refractive index and on the components of the photoelastic tensor. Few values of the latter are

available in the literature. They depend on the material and vary slowly with wavelength in the

transparency zone. For example the photoelastic constants of fused silica exhibit a 10% variation

between 650 nm and 230 nm, with a more pronounced increase in the vicinity of UV [51, 52].

The table 1 synthesizes these parameters for different materials such as p44 ' (p11−p12)/2 using

the classical Voight notation found in the literature, together with the associated sensitivities.

To better match the experimental protocol, the quantities Si = λMi/2 (with λ = 1500 nm)

are reported in this table since they directly give the wavelength shift induced by the strain

and associated to the component Mi. More precisely, from equation 45, it can be seen that the

wavelength shift measured for the mode 1 is given by:

∆λ1 = S1E11 + S2E22 + S3E33 − S4E23 + 0× E31 + 0× E12 (53)

The modes 1 is then completely insensitive to shear E31 and E12, whatever the material. In

the same way, mode 2 is insensitive to shear E31 and E12, mode 3 and 4 to shear E23 and E12,

and modes 5 and 6 to shear E23 and E31. For fused or doped silica, modes 1 and 2 are ten165

times less sensitive to strain along direction ~e2 than to strain along the other two directions.

Similar observations can be made for the other modes with direction ~e3 for modes 3 and 4 and

direction ~e1 for modes 5 and 6. For the considered materials, the best sensitivities are expected

for diamond. In a general manner, it can be seen from equation 47 that the sensitivities increase

with n2.170

The last step is to determine the influence of the uncertainties on the measured wavelengths

on the uncertainties on the components of the strain tensor. A statistical study can be done

as a first approach. A strain state is defined by randomly chosen the strain components in the

[−1000.10−6,+1000.10−6] range. Then, the expected wavelength shifts for the 6 gallery modes

are computed with the help of equation 45. In order to simulate the noise, a random value175

uniformly distributed in the range [−Noise,+Noise] is added to each shift and then the strain

components corresponding to this noisy set are computed with equation 48. This is repeated a

thousand times. It is then observed that, for each component, the difference between the mean

value of the noisy strain and the correct one is one or two order less than the standard deviation

of the distribution of noisy strain. This standard deviation can then be used as uncertainty.180

Finally, ten thousands states of strain were considered. An example of the distribution of the

uncertainties on the component E1 is shown on figure 8 for a doped silica sphere and a noise

equal to 1 pm. The mean value of this distribution corresponds to the uncertainty on E11.
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Figure 8: Distribution of uncertainties on E1 for fused silica and Noise = 1 pm
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Figure 9: Uncertainties on strain as a function of uncertainties on wavelength shifts
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The figure 9 shows the variation of the uncertainties on the strain with noise on wavelength

for different materials. The uncertainties of modes 1, 2 and 3 behave in exactly the same

way. So do the uncertainties of modes 4, 5 and 6. All vary linearly with the uncertainty on

the wavelength shift, with a slope that depends on the material. This can be easily explained.

Indeed, the wavelength measurements will be made with a spectrum analyser or a tunable source.

Whatever the device used, it will not be necessary to change the calibration in the range of

strains considered. It is therefore legitimate to consider the measured wavelength as the sum of

the correct wavelength and a random noise that depends only on the detection system:

{∆λ}meas = {∆λ}th + {Noise} (54)

then:

{E}meas = 2[M ]−1{∆λ/λ}meas = 2[M ]−1{∆λ/λ}th + 2[M ]−1{Noise/λ} = {E}th + {E}err (55)

The error made on the strain is simply that:

{E}err = 2[M ]−1{Noise/λ} (56)

Using the classical law of uncertainty composition:

σ (Ei) =

√√√√ 6∑
j=0

(
∂Ei
∂λj

)2
σ2(∆λj)

λ2
j

(57)

and assuming that the wavelength uncertainty is the same on all measurement channels: σ(∆λj) =

σ(∆λ) ∀j, it comes:

σ (Ei) = s σ(∆λ) with s =


s123 = 2

√
2

λ0

√
(m2

1 +m2
2 +m2

3) for i = 1, 2, 3

s456 = 2
√

2
λ0

m4 for i = 4, 5, 6
(58)

where λ0 is the resonant wavelength of the undeformed sphere.

The coefficients s123 and s456 for the materials considered in this study are reported on table 2185

and used to draw the straight lines in figure 9. They range from 0.4 µε/pm for the diamond to

6 µε/pm for the PMMA and are close to 2 µε/pm for the silica. To put it in perspective, with

a silica sphere, and with a conventional detector of resolution equal to 1 pm, the error on the

strain components is, after correction of systematic errors, of the order of 2 µε. This means that

this sensor is capable to give the six components of the strain tensor with an uncertainty of the190

same order of that of a classical strain gauge which only gives the strain along one direction.
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Material s123 s456

(µε/pm) (µε/pm)

Fused silica [46] 2. 2.2

Doped silica [47] 1.9 2.1

PMMA [48] 6.1 1.4

Diamond [49] 0.4 0.4

Silicon Carbide [50] 4.3 5.2

Table 2: Uncertainty coefficients

7. Conclusion

In this paper, the realization of a 3D strain sensor with a silica sphere as test body and 6

gallery modes as unidirectional strain gauges is studied. The direct model relating the strain

to the resonant wavelength variation is described and linearised. The inversion method is then195

presented.

The direct linear model is established by considering a single whispering gallery mode. Two

phenomena combine to change the resonant wavelength: a geometrical effect inducing a variation

in perimeter and a photoelastic effect inducing a variation in refractive index. From a geometric

point of view, when the sphere deforms, the perimeter of the circle covered by the gallery mode200

changes and may become an ellipse. The corresponding perimeter variation can be approximated

using the trace of the strain tensor. The relative error using this approximation is less than 10−7

for a strain (EII − EI) less than 1000 µε. Taking into account the photo-elastic effect is more

delicate. To establish a linear relationship between the strain and the wavelength variation, it is

necessary to use an approximation where the electric field of the wave is purely perpendicular to205

the plane in which the mode propagates. This approximation is more accurate as the radius of

the sphere increases. The relative error on the wavelength variation is of the order of 5 % for a

100 µm sphere and falls below 1% for a 500 µm sphere. Beyond the sensor application presented

here, this model can be useful to correct any measurement for the effects of strain when it is not

the quantity of interest.210

The direct model was then applied to 6 gallery modes regularly distributed on the sphere to

obtain a matrix relationship between the wavelength variation and the strain. This system is

inverted and the components of the matrix allowing to obtain the 6 components of the strain

tensor from the 6 wavelength measurements were given explicitly. In practice, this matrix
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contains only 4 different components and many zeros, so that the shear components depend215

on only two wavelength measurements along two different circles, while the other components of

the strain tensor depend on all 6 wavelength measurements.

Finally, in terms of sensitivity, it has been shown that the uncertainty in [µε] on the components

of the strain tensor is twice the uncertainty in [pm] on the wavelength measurement. To give an

order of magnitude, an uncertainty of 1 pm on the wavelength leads to an uncertainty of 2 µε,220

which makes the performance of the proposed sensor consistent with that of conventional fibre

optic sensors.

From an experimental point of view, it must be recognised that the development of such

a sensor is likely to be very complicated. The question of mode injection is a major problem,

especially as six modes have to be excited. However, there are already signs that this is possible.225

For example, the system described by Yan [53] where the sphere is covered by a drop of resin

which also traps the tap could be used with six tapers. Similarly, the system described by

Weigel [23] where a droplet of DDI solved in ethanol is inserted with help of a syringe in a

silicone matrix could be used with 6 optical fibers fixed in the matrix. In both cases, the final

size of the sensor, of the order of few hundreds of µm, would prohibits its use in biology at the230

cell level. But it could find applications in composites materials [54, 55] or bonded joints [56, 57]

where the measurement of shrinkage is of major importance.

In any case, as soon as the sensor can be manufactured, the analysis method described in

this article can be used as is.
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