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Abstract
Real-time synthesis of legged locomotion maneuvers in challenging industrial settings is still an open problem, requiring
simultaneous determination of footsteps locations several steps ahead while generating whole-body motions close to
the robot’s limits. State estimation and perception errors impose the practical constraint of fast re-planning motions
in a model predictive control (MPC) framework. We first observe that the computational limitation of perceptive
locomotion pipelines lies in the combinatorics of contact surface selection. Re-planning contact locations on selected
surfaces can be accomplished at MPC frequencies (50-100 Hz). Then, whole-body motion generation typically follows
a reference trajectory for the robot base to facilitate convergence. We propose removing this constraint to robustly
address unforeseen events such as contact slipping, by leveraging a state-of-the-art whole-body MPC (CROCCODYL).
Our contributions are integrated into a complete framework for perceptive locomotion, validated under diverse terrain
conditions, and demonstrated in challenging trials that push the robot’s actuation limits, as well as in the ICRA 2023
quadruped challenge simulation.

Keywords
perceptive locomotion, model predictive control, contact planning, quadruped robots

1 Introduction

Reliable and autonomous locomotion for legged robots in
arbitrary environments is a longstanding challenge. The
hardware maturity of quadruped robots Hutter et al. (2016);
Unitree (2021); Boston Dynamics (2016) motivates the
development of a motion synthesis framework for appli-
cations including inspections in industrial areas Bellicoso
et al. (2018). Synthesising motions in this context requires
handling the issues of contact decision (where should the
robot step?) and Whole-Body Model Predictive Control
(WB-MPC) of the robot (what motion creates the contact?).

Each contact decision defines high-dimensional, non-
linear geometric and dynamic constraints on the WB-MPC
that prevent a trivial decoupling of the two issues: How
to prove that a contact plan is valid without finding a
feasible whole-body motion to achieve it? Even worse,
the environments we consider comprise holes and gaps,
introducing a combinatorics problem: On which contact
surface(s) should the robot step?

1.1 State of the art
The mathematical complexity of the legged locomotion
problem in arbitrary environments is such that an undesired
decoupling between contact planning and whole-body
control is required. Typically, a contact plan describing the
contact locations is first computed, assumed to be feasible,
and provided as input to a WB-MPC framework to generate
whole-body motions along it. As a result, the contact
decision must be made using an approximated robot model,
under the uncertainty that results from imperfect perception

Figure 1. Industrial staircase descent with onboard perception.
Video: https://youtu.be/bNVxTh0eixI.

and state estimation. The complexity of the approximated
model has, unsurprisingly, a strong correlation with the
versatility and computational efficiency of the proposed
approach.
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1.1.1 Offline contact planning with full kinematics
Early approaches to contact planning are robust and
complete, because they integrate a whole-body kinematic
model in the planning phase, with quasi-static feasibility
guarantees. These contact-before-motion approaches Bretl
(2006); Hauser et al. (2008); Escande et al. (2009)
mix graph-based search with contact-posture sampling
to explicitly tackle the problem’s combinatorics. Whole-
body feasibility is explicitly checked before validating
each new contact. The generality of these approaches is
unmatched, but the associated computational cost is high
(from minutes to hours), which prevents online re-planning.
The computation time can be reduced to a few seconds
by constraining the root’s path Bouyarmane et al. (2009),
and then by approximating the robot with low-dimensional
abstractions Tonneau et al. (2018a); Murooka et al.
(2021). These abstractions use hand-crafted heuristics for
collision avoidance and geometry Short and Bandyopadhyay
(2018), while dynamic feasibility is often asserted using
centroidal dynamics (e.g., Tonneau et al. (2018b); Fernbach
et al. (2020)). Such approximations proved unreliable
for the most challenging scenarios (such as car egress
motions Tonneau et al. (2018a)), mostly because of the
difficulty of approximating collision avoidance constraints.
Still, most “2.5D” environments (which can be accurately
represented with a heightmap) composed of quasi-flat
contact surfaces (i.e., a friction cone containing a gravity
vector) can be handled with such constraints Tonneau
et al. (2018a). Unsurprisingly, these environments, including
rubles, stepping stones and staircases, are the application
targets for most contributions in the literature.

1.1.2 Online contact planning with reduced dynamics
The combination of reduced dynamic models and simplified
collision constraints makes optimisation-based techniques
tractable. Optimal control is attractive as it allows us to find
solutions robust to uncertainties through the minimisation of
selected criteria. Sampling-based approaches, instead, only
look at feasibility. To model the combinatorics, the first
approach is to relax the problem by modelling the discrete
(boolean) variables that represent the contact decisions
with continuous variables, resulting in a formulation
that can be readily solved by off-the-shelf nonlinear
programming (NLP) solvers Mordatch et al. (2012); Winkler
et al. (2018). However, there is no guarantee that the
system’s dynamic constraints will be satisfied even with
reduced models, with contacts potentially planned where
no surfaces exist Song et al. (2021). Alternatively, Linear
Complementary Constraints (LCP) can be used to accurately
model contact constraints, but they are notoriously difficult
to handle by NLP solvers Posa et al. (2014). In both cases
learning initial guesses can help the solver converge to a
feasible solution Melon et al. (2020, 2021). The second
approach is to explicitly handle combinatorics using Mixed-
Integer Programming (MIP). MIP solvers tackle contact
planning problems for bipeds Deits and Tedrake (2014) and
quadrupeds Aceituno-Cabezas et al. (2018), provided that
the underlying optimisation problem is convex, which results
in a conservative approximation of the dynamics Ponton
et al. (2021). Monte Carlo Tree Search (MCTS) has recently
been proposed as a promising alternative to MIP that

could provide a relevant trade-off between exploration and
exploitation Amatucci et al. (2022). In this work, we choose
MIP for planning contacts as it has experimentally led to
the most effective results in terms of computation time and
reliability Risbourg et al. (2022).

1.1.3 Perceptive locomotion with instantaneous deci-
sions Whether the environment is fully known or not
impacts on the validity of a method. Reactive perceptive
pipelines exist on the LittleDog robot Zucker et al. (2011);
Kolter et al. (2008); Kalakrishnan et al. (2011) and have
inspired further works Fankhauser et al. (2018a). However,
they all require high-precision terrain pre-mapping and an
external motion capture system. When the environment is
not fully known, it is typically modelled as an elevation map
by fusing depth sensor information within proprioceptive
information Fankhauser et al. (2018b); Miki et al. (2022).
Recent approaches propose to directly optimise the next
contact position, the torso orientation and obstacle avoidance
for the foot trajectory based on this input Jenelten et al.
(2022); Grandia et al. (2020, 2023). The approaches share
similarities with the framework we propose in terms of the
model’s proposition. However, their main difference is that
they focus on planning the immediate contact location and
posture, which is why we argue that a preview window of
several steps ahead is required for the scenarios we consider.
As discussed in Section 9, we believe that combining these
approaches is a promising research avenue.

1.1.4 Whole-body predictive control relying on CoM
motions Because of the nonlinearity induced by any
changes to the contact plan, the WB-MPC rarely challenges
the step locations, even though the approximations do not
guarantee feasibility. The uncertainties resulting from state
estimation and environment perception motivate frequent re-
computation of the contact plan, which is not possible as
their frequency is usually low (about 5Hz in Song et al.
(2021)). Furthermore, the WB-MPC is usually additionally
constrained to track a reference trajectory for the Centre Of
Mass (COM) or the base Carpentier and Mansard (2018);
Mastalli et al. (2020a) to facilitate convergence, but we argue
that this tracking is problematic when perturbations such
as contact slipping occur. Our conclusion is that the use
of reduced models for contact planning necessarily leads
to errors in the WB-MPC that result in slipping contacts.
In the current state of the art, reduced models appear
necessary for satisfying real-time constraints. Mitigating
this issue involves allowing to adapt a contact plan at a
higher frequency. However, it involves writing a WB-MPC
that robustly accommodates these errors and gives as much
freedom as possible when following a contact plan.

1.2 Contribution
This paper extends our published conference paper Risbourg
et al. (2022), where we propose a contact repositioning
module between the contact surface planner and the MPC
to adapt to the robot’s estimated state and perceived
environment uncertainties. To achieve this, we decouple
the contact surface selection from the control, but not the
computation of the contact position on that surface, which
we instead update synchronously with the MPC output and
updated state of the robot, at 50Hz. As such, the contact
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repositioning module is our primary contribution. This work
is thus to be considered as an experimental and theoretical
extension in the following manner.

We propose a novel, complete perceptive locomotion
architecture comprised of the following features: terrain
segmentation, real-time surface selection and footstep
planning, free-collision foot-swing planning, and whole-
body MPC which considers torque limits and generates local
controllers. It relies on four technical contributions:

(i) a theoretical contribution to the decoupling between
contact planning and WB-MPC,

(ii) an empirical demonstration of the added value of WB-
MPC in perceptive locomotion,

(iii) a convex segmentation approach using onboard terrain
elevation maps, and

(iv) exhaustive hardware trials on challenging terrains
demonstrating increased capabilities for the ANYmal
B robot.

Finally, we extend the plane segmentation algorithm Fal-
lon and Antone (2019), which decomposes potential contact
surfaces into a sequence of convex surfaces needed by our
contact planner. We use the Visvalingam–Whyatt and Tess2
algorithms to correctly handle overlapping surfaces and
conservatively reduce the complexity of the scene, leading
to a more versatile and robust environment construction. Our
framework results in state-of-the-art locomotion capabilities
under a wide range of conditions, robust to strong perturba-
tions including sliding contacts and missed steps during stair
climbing.

The reader should note that we have incorporated a
feedback WB-MPC Mastalli et al. (2022, 2023) into our
framework, as opposed to the more conventional approach
in our previous work, which involved MPC with reduced
dynamics followed by a WBC running at a higher frequency.
Constraining only the end-effector trajectories, instead of the
CoM motions, allows the WB-MPC to freely accommodate
substantial perturbations and perception errors, and to
maximise the robot’s capabilities by optimising its posture.
While a subset of our experimental results are shared by both
papers, their contributions are orthogonal.

2 Architecture overview
An overview of the locomotion pipeline is presented in
Fig. 2. Walkable surfaces are described via convex planes
extracted from the terrain elevation map at 1Hz. Given
the current state of the robot (position / orientation of the
base, position of active contacts) and a desired velocity
(joystick input), a mixed-integer program is used to select
the convex surfaces on which the next 6 or 8 steps will
occur, depending on the gait used. A new surface plan
is computed at the beginning of each new phase, which
corresponds to approximately 3-5 Hz in our experiments.
Given the next contact surfaces, the trajectory of each end-
effector is updated at 50Hz, before each iteration of the
whole-body MPC. The control policy is then sent to the robot
with a Riccati gain controller. State estimation is performed
onboard at 400Hz by fusing inertial sensors from IMU and

odometry provided by the ANYbotics software Bloesch et al.
(2012). Finally, a LIDAR is used to correct the drift of these
measurements by analysing fixed points in the environment.

3 Definitions and notations
In line with the notations used in our previous work Risbourg
et al. (2022), the robot state is formally described by the:

• Centre Of Mass (COM) position, velocity and
acceleration c, ċ and c̈, each in R3;

• base transformation matrix in the world frame;

• 3D position of each end-effector in the world frame;

• gait, i.e., the list of effectors currently in contact, as
well as the contacts to be activated and deactivated
over the planning horizon.

The horizon n is defined as the number of future contact
creations considered. In the case of the trotting gait, a horizon
n = 6 describes three steps, as at each step two contacts are
created simultaneously.

At the Surface Selection planning stage, motion is
decomposed into contact phases. Each contact phase is
associated with a number of feet in contact and one or more
contacts are broken/created at each phase. In the case of a
trotting gait with a horizon n = 6, it corresponds to three
contact phases since two feet move at the same time. For a
walking gait, the horizon n = 8 contains 8 contact phases
since only one foot moves at a time.

The environment is the union of m+ 1 disjoint quasi-
flat* contact surfaces S =

⋃m
i=0 Si. Each set Si is a polygon

embedded in a 3D plane, i.e.,

Si := {p ∈ R3|Sip ≤ si} , (1)

where Si ∈ Rh×3 and si ∈ Rh are respectively a constant
matrix and a vector defining the h half-space bounding
surface.

The contact plan is described as a list of contact surfaces
Sjk ∈ S, 1 ≤ j ≤ l with l being the total number of end-
effectors and k being the k-th contact phase.

4 Perception
This section reviews the Elevation map and Convex Plane
Segmentation components of the architecture (Fig. 2).

4.1 Sensors
Regarding the proprioceptive sensors, the state is estimated
by fusing leg odometry and the Xsens MTi-100 IMU Bloesch
et al. (2012). Additionally, a rotating Hokuyo UTM-30LX-
EW lidar sensor is placed at the back of the robot to correct
the drift of the state estimation with an iterative closest point
(ICP) method Hutter et al. (2017). A single depth camera
Intel RealSense D435, mounted at the front of the robot,
extracts height information from the surrounding area into
a point cloud. High-accuracy presets are used on the camera
to prioritize the accuracy of the point cloud over speed. This

∗ie such that its associated friction cone contains the gravity vector.
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Figure 2. Overview of our perceptive locomotion pipeline. Around 1Hz, the perceptive elements Elevation map and Convex Plane
Segmentation extract convex planes from the surrounding environment (Section 4). The Surface Selection block, running around
5Hz (depending on the gait chosen), chooses between them the next surfaces of contact (Section 5). At the frequency of the MPC,
50Hz, Footstep and Collision free-trajectory elements generate the curve for each moving foot (Section 6). Finally, the
Whole-Body MPC and Riccati gain controller synthesise the motion (Section 7).

increases the quality of the elevation map and no filters are
needed to post-process the point clouds. However, this preset
degrades the frequency in our setup to a range between 2 and
5Hz for point cloud collection.

4.2 Contact surfaces extraction
The probabilistic and local mapping method in Fankhauser
et al. (2018b) converts point cloud data into an elevation map
locally around the robot’s pose. Including proprioceptive
localisation from kinematic and inertial measurements
produces an estimate of the surroundings as a 2.5D
heightmap. Potential surfaces are then extracted with the
Plane-Seg algorithm Fallon and Antone (2019) by clustering
planar points with similar normals. The planes are extracted
without memory and therefore the surfaces can change
suddenly with each height map update. The quality and
consistency of the surfaces then depend entirely on the
quality of the height map, as developed in Sec. 9.

4.3 Refinement and margin of safety
Post-processing of Plane-Seg planes is essential to ensure
safe footstep decisions. We have added it for three reasons.
First, the complexity of the contact surfaces (i.e., the number
of points) has a significant impact on the computation time of
the surface selection algorithm. We propose conservatively
approximate surfaces with more than 8 vertices with an 8-
vertex polygon. Filtering is also done to remove unreachable
surfaces. For example, the plane extraction method could
return overlapping surfaces when considering a staircase.
Here, the ground surface is often detected below the steps
and planning a footstep inside it will obviously result in
failures. Finally, a safety margin is applied, around 4 cm
on each surface, to avoid putting feet on the edges of the
surfaces. This can be harmful in the event of estimation
errors. This margin is also useful to avoid knee collisions
of the knees with the environment, which are not explicitly
accounted for.

4.3.1 Vertices number reduction The number of vertices
is first reduced using the conservative Visvalingam–Whyatt
line simplification algorithm Visvalingam and Whyatt

(1993). It eliminates progressively the points from a line
that forms the smallest area with its closest neighbours as
described in pseudo-code 1. No hyperparameters other than
the final number of points (which is 8) are needed. Fig. 3a
shows an example of this reduction.

Algorithm 1 Pseudo-code for Visvalingam–Whyatt line
simplification

1: List of n vertices : L = [P0 . . . Pn]
2: while len(L) > nmax do
3: for i ∈ [0, len(L)− 2] do
4: Compute area of [Pi, Pi+1, Pi+2]
5: end for
6: Remove Pi+1 corresponding to the smallest area.
7: end while
8: return L

4.3.2 Safety margins On this updated contour, an inner
and an outer margin are computed parallel to each edge as
shown in Fig. 3b. The inner margin allows the robot to step
into a safe area. The outer margin artificially increases the
size of the obstacle to prevent the end-effector from getting
too close of the obstacle. This is done to avoid collisions
while computing swing-foot trajectories. These two margins
are used to avoid stepping on the corner of an obstacle due
to state estimation errors and for collision avoidance with the
body.

4.3.3 Convex decomposition Starting from the lowest
surface, the overlapping surfaces are removed and a convex
decomposition is performed on the resulting contour using
the Tess2 algorithm azrafe7 (2013) as shown in Fig. 4a.
Smaller areas under 0.03 m2 are deleted. Algorithm 2
gives the pseudo-code of this post-processing. In addition, a
rectangle is added below the robot’s position, at the estimated
height of the feet. This is to ensure that there is always a
surface under the robot’s feet if the elevation map has not
been built. This surface is treated differently in the process to
avoid overlapping it with real obstacles but has been removed
from the pseudo-code for clarity.
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(a) (b)

Figure 3. Reduction to an 8-vertex polygon using the
Visvalingam–Whyatt algorithm on an initial 20-vertex polygon on
the left 3a. Applying inner and outer margins to an 8-vertex
polygon 3b.

Algorithm 2 Pseudo-code for surface processing

1: for all surfaces do
2: Reduce nb of points with Visvalingam’s algorithm.
3: Compute inner and outer contour.
4: end for
5: Li ← List of surfaces in ascending order of height.
6: Lf ← Empty list.
7: while Li is not empty do
8: Get first surface Sf and remove it from Li.
9: Lo ← Empty list.

10: for all surface in Li do
11: if surface.outer intersect with Sf .inner then
12: Increment Lo with outer contour.
13: end if
14: end for
15: if Lo is not empty then
16: Convex Decomposition between Sf .inner and Lo.
17: Remove small areas.
18: Add remaining surfaces in Lf .
19: else
20: Add Sf .inner in Lf

21: end if
22: end while
23: return Lf

(a) (b)

Figure 4. Example of surface processing and convex
decomposition. These two figures represent the same 3D scene
with 2 air overlapping the ground surface. On the right Fig. 4b,
the scene is viewed from a top perspective.

5 Surfaces selection
Given the current state of the robot (active contacts and
position, COM location), the environment given as a union of
non-intersecting surfaces, as well as a desired target velocity
for the robot and a desired gait, our Surface Selection
(Fig. 2 - yellow) algorithm computes a feasible contact plan,
composed of n contact surfaces that the robot should step on
for the planning horizon (Sec. 3). We set n = 8 for a walking
gait and n = 6 for a trotting gait in our experiments. The
surface selection algorithm is executed between 3 and 5Hz.
This means that the contact plan is updated before each new
step is made by the robot. The frequency depends on the gait
and each optimisation starts at the beginning of each step.

The algorithm is implemented as a Mixed-Integer Program
(MIP) Deits and Tedrake (2015). We use the SL1M
formulation of this algorithm Song et al. (2021), with
adaptations to better match the desired robot behaviour.
These adaptations are in Risbourg et al. (2022) and are
described here for completeness. In this previous work, the
number of contacts optimised was set to 4 for the Solo
robot Grimminger et al. (2020). Here the ANYmal’s robot
dynamics are slower and the timing between each new
contact is longer†. This gives more time for computing the
contact plan, allowing us to increase the planning horizon.
We refer the reader to Risbourg et al. (2022) for empirical
justifications for these choices.

We first describe how the potential contact surfaces
are pre-filtered to improve the algorithm’s computational
performance without loss of generality. We then provide
the mathematical formulation of the Surface Selection
algorithm. We conclude this section with the details of the
cost function used in this optimisation problem.

5.1 Pre-selection
We first pre-filter the number of contact surfaces using the
robot’s range of motion (ROM) to reduce the combinatorics.
To do so, a CoM trajectory is extrapolated from the joystick
velocity command (Fig. 5a) over the contact phases. The
position of each state and the yaw angle (orientation around
the z-axis) are integrated from the linear and angular (yaw
only) desired velocity. The roll (orientation around the x-
axis) and pitch (orientation around the y-axis) angles of the
guide are computed as the average slope of the terrain around
the robot position, given by solving (Fig. 5a)

min
n

∥An−B∥2

with ∀ i, j ∈ Nx ×Ny, A[i+ jNx, : ] = [xi, yj , 1.],

B[i+ jNx] = elevation(xi,yj),

where xi and yj are respectively the positions on the x
and y axis around the robot’s position with a user-defined
resolution of (Nx, Ny) ∈ N+2. The elevation function gives
the terrain height at the position (xi, yj) and can be obtained
directly from the heightmap or by evaluating the convex
plane corresponding to this 2D position. n = [a, b, c] ∈ R3

†The duration of a step was set to 160ms on Solo whereas it is set to 600ms
for a walking gait and 300ms for a trotting gait on ANYmal.
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(a) (b) (c)

Figure 5. (a) CoM extrapolation along the horizon. (b) ROMs of the 4 effectors for the current state. (c) ROMs along the horizon for
the front right foot.

is the vector optimised to form the plane of equation ax+
by − z + c = 0. The experiments use 10× 10 as resolution.
For each extrapolated state c∗j (8 states for a walking gait as
n = 8 and 3 for a trotting gait as n = 6 but two feet contacts
are created at each phase), the 6D configuration is given by:

c∗j =


x0 +

∫ tj
0
(v∗x cos(ψ̇

∗t) + v∗y sin(ψ̇
∗t))dt

y0 −
∫ tj
0
(v∗x sin(ψ̇

∗t)− v∗y cos(ψ̇∗t))dt
axj + byj + c+ href

arctan(b)
− arctan(a)
ψ0 + ψ∗tj

 , (3)

where the state is described using a 3D position [xj , yj , zj ]
and 3 Euler angles. The current extrapolated positions xj
and yj are used to compute the configuration height. v∗x, v∗y
are the x-y linear velocities and ψ̇∗ the yaw angular velocity
coming from the joystick input. href = 0.48 is the robot’s
nominal height. tj is the step duration, manually defined for
each gait.

For each c∗j , the ROM of each moving leg is intersected
with the surfaces. The ROM is approximated by a convex set
and represented by the green surfaces in Fig. 5b. Only the
surfaces that intersect this ROM are selected. The distance
between two convex sets is computed efficiently with the
GJK algorithm Gilbert et al. (1988) from the PINOCCHIO
and HPP-FCL libraries Carpentier et al. (2019). In our
experiments, this usually reduces the number of potential
surfaces from 20 to 3 for each moving foot on average. This
significantly reduces combinatorics (from about 20n to 3n

possible combinations).

5.2 Surface Selection algorithm as a MIP
The surface selection module computes a contact plan for the
robot that satisfies linearized kinematic constraints Tonneau
et al. (2018b); P.-B. (2006). In the following, we recall the
mathematical formulation of the problem as a mixed-integer
program (MIP). This MIP outputs the contact surfaces
selected. It also computes the 3D locations of footsteps
as a by-product. However, they are discarded as the target
footsteps will be adapted at a higher frequency by the
footstep planner.

5.2.1 Contact constraint representation The perception
pipeline provides a set of m+ 1 ∈ N+ disjoint quasi-flat

Figure 6. Environment S with 3 contact surfaces for a walking
gait (1 foot moving at a time). Circles: initial position; squares:
next steps locations.

surfaces, which define the environment S, and the motion
is decomposed into n contact phases (Sec. 3), as shown in
Fig. 6. To constrain a point p ∈ R3 to be in contact, we must
write:

∃ i,Sip ≤ si ⇔ S0p ≤ s0 ∨ · · · ∨ Smp ≤ sm. (4)

The or constraint is classically expressed as an integer
constraint using the Big-M formulation Lofberg (2022) as
follows. We introduce a vector of binary variables a =
[a0, . . . , am] ∈ {0, 1}m+1 and a sufficiently large constant
M ∈ R+,M >> 0. (4) is equivalently rewritten as:

∀i,Sip ≤ si +M(1− ai);
m∑
i=0

ai = 1. (5)

Under this formulation if ai = 1, then p belongs to Si (and is
thus in contact). Instead, if ai = 0 for a sufficiently large M
then the constraint Sip ≤ si +M(1− ai) will be satisfied
for any value of p, in other words, the constraint is inactive.∑n

i=0 ai = 1 implies that ∃i, ai = 1. The obtained behaviour
is thus the desired one: if (5) is true then p is in contact with
a surface.

5.2.2 Problem formulation The final MIP problem is
obtained by combining contact and surface constraints as
follows. For simplicity, and without loss of generality, we
assume that the candidate contact surfaces are the same for
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each step.

find P,A = [a0, · · · ,am] ∈ {0, 1}(m+1)×n

min l(P)

s.t. KP ≤ k,

P ∈ C,
∀j ∈ {0, . . . , n− 1} :

∀i,Sipj ≤ si +M(1− aji );
m∑
i=0

aji = 1,

(6)

where P = [p0 . . . pn] ∈ R3×n is the vector comprising the
variable n next foot positions (6 or 8 in our experiments);
aj = [aj0, . . . , a

j
m] is the vector of binary variables associated

with the j-th optimised foot position; l(P) is an objective
function; C is a set of user-defined convex constraints (in
our case, constraints on initial contact positions); K and k
are constant matrix and vector representing the linearised
kinematic constraints on the position of each effector with
respect to the others P.-B. (2006); Tonneau et al. (2018b);
Winkler et al. (2018).

5.2.3 Cost function details As mentioned in Risbourg
et al. (2022), two quadratic costs are used in the problem.
The first attempts at regularising the footstep locations using
Raibert’s heuristic. Since the optimisation is triggered at the
beginning of each step (between 3 and 5Hz), and not at each
time step (50Hz), an approximation of the Raibert heuristic
is applied. The idea is to interpolate the base position
given the desired velocity and place the foot accordingly to
the estimated hip position. The second term penalises the
distance between the hip and the foot location. This aims at
penalising solutions close to reaching the robot’s kinematic
limits.

l(P) =

n∑
j

w1∥pj − p∗
j∥2x,y + w2∥pj − p∗

hip,j∥2, (7)

where p∗
j

is the extrapolated foot position taking into account
the linear and angular reference velocity at the corresponding
contact phase. The weights w1 and w2 are set to 1 and 0.5.
This penalisation only considers the ℓ2 norm on the x- and
y-axis. Similarly, p∗

hip,j is the extrapolated hip position from
the desired velocity. The computation of the reference foot
location is detailed in Sec. 6.

6 Foot trajectory generation

Our Footstep and Collision free-trajectory (Fig. 2 -
red) algorithms compute the end-effector trajectory as
a Bezier curve given the current robot state (COM
position/orientation), the next moving foot within the
horizon of the MPC, the contact plan obtained by the Surface
Planner, the timings of contact depending on the gait chosen,
as well as a desired target velocity for the robot. At the
MPC frequency, set to 50Hz, a first quadratic program (QP)
computes the next foot location and a second QP calculates
its trajectory during the flight. Their formulation differs from
our previous work Risbourg et al. (2022) as the base velocity
is not optimised here. The total computation time for the

foot trajectory is negligeable in the pipeline, as evidenced
by Table 2.

6.1 Foot position optimisation
We use an alternative to Raibert’s heuristic Raibert (1986) as
it is commonly done on quadruped robots Kim et al. (2019);
Di Carlo et al. (2018); Léziart et al. (2021). In our case, we
are simply interested in coherent foot locations according to
the base position, reference velocity and gait period. The
measured velocity is not part of this heuristic, making it
a feed-forward strategy. Instead, our MPC plans the CoM
trajectory (Sec. 7). A target 2D position of the foot p∗ is
computed as follows:

p∗ = phip +
Ts
2
vref +

√
h

g
vref × ωref , (8)

where Ts is the stance phase time extracted from the phase-
based gait pattern, vbase, and vref are respectively the current
base velocity and the reference velocity commanded by the
user. Finally, h, g and ωref are respectively the nominal height
of the robot, the gravity constant and the reference angular
velocity around the z-axis. The estimated hip position at
contact phip accounts for the accumulated delay in the
estimation of the base position, since the moving average
is used to reject oscillations of the same period as gait, as
discussed in section 8.7. The final position p is the closest
to p∗ that lies on the selected surface S under the locally-
approximated kinematic constraints K:

min
p

∥p− p∗∥2 (9a)

s.t. Sp ≤ s, (9b)
p ∈ K. (9c)

The difference with our MIP optimisation lies in the 50Hz
computation frequency. As a result, the footstep is constantly
updated relative the base position.

6.2 Collision free trajectory

Figure 7. Adaptation of the end-effector trajectory to climb a
step. The active constraint corresponds to the half-plane
crossed by the reference trajectory -red curve-. Both curves are
discretised to perform the optimisation and the orange points
highlight the ones under constraints.

A collision-free trajectory p(t) : R→ R3 connects the
current foot location to the optimised location. p(t) aims at
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following a reference trajectory while avoiding obstacles and
keeping computational time low as it is parameterized using
a Bezier curve of degree d on the Bernstein basis (Bi)i≤d:

p(t) =

d∑
i=0

Bd
i (
t

T
)Pi, (10)

where P =
[
P0 . . . Pd

]T
are the d+ 1 control points and

T is the total time of the trajectory, empirically set to 600 ms.

6.2.1 Reference trajectory The trajectory pref (t) : R→
R3 is composed of a degree 6 polynomial curve of degree 6
on the z-axis and a degree 5 one on the x and y axes. All of
which have with the first 3 control points fixed to ensure the
continuity in position, velocity and acceleration of the curve
from the current state. End velocity and acceleration are set
to 0 to avoid slippage at the end position. Additionally, the
height at T

2 is fixed on the z-axis, constraining all degrees of
freedom.

6.2.2 Collision avoidance The trajectory p(tk) is a 3D
curve of degree d = 7 that follows pref (t) while avoiding
collisions. To do so, we enforce collision avoidance along the
foot trajectory. This is achievable iteratively Campana et al.
(2016) by solving a sequence of QPs and adding constraints
where collisions occur. For computational efficiency, we
empirically identify the points likely to be in a collision and
add collision constraints to them (Fig. 7 - Yellow dots). These
nc + 1 points p(tk) = AkP,∀k ∈ [0, . . . , nc] are linearly
defined by Bezier’s control points, with Ak ∈ R3×(d+1). We
choose the active constraint to be the half-space traversed by
the reference curve (Fig. 7 - pink half-space). We thus write
∀k,Si

mp(tk) ≥ sim, where Si
m ∈ R3 and sim ∈ R define

what constitutes the current half-space. All the collected
constraints are then stacked into a single matrix and vector
G and h, leading to the QP:

min
p

nc∑
k=0

∥p(tk)− pref(tk)∥2 (11a)

s.t. p(0) = pref(0), p(T ) = pref(T ), (11b)
ṗ(0) = ṗref(0), ṗ(T ) = 0R3 , (11c)
p̈(0) = p̈ref(0), p̈(T ) = 0R3 , (11d)
GP ≤ h. (11e)

This approach can be expanded to avoid local obstacles
along the trajectory by imposing constraints that depend
on the environment’s heightmap. Currently, our trajectory
avoidance is based only on obstacles perceived as walkable
surfaces, which has been found to work effectively in
many scenarios. Nevertheless, if an obstacle is along the
trajectory but not detected as such, it will not be avoided.
This highlights the importance of including height-map
information when available.

7 Motion Generation
Given the current state of the robot (6D position and
velocity), the next contact sequence and the end-effector
trajectories, our Whole-Body MPC (WB-MPC) and Riccati

gain controller elements (Fig. 2 - red and violet) generates
the motion of the legged robot. The WB-MPC optimises a
trajectory at 50Hz and the Riccati gain controller applies it
at 400Hz.

7.1 Optimal control formulation
The legged robot generates motions through a model
predictive controller that relies on the robot’s full-body
dynamics. The formulation is based on two previous papers
Mastalli et al. (2022, 2023). We solve the optimal control
(OC) problems using Crocoddyl’s advanced solvers Mastalli
et al. (2020a). Our pipeline relies on two different OC
formulations based on forward and inverse dynamics. Both
yield similar performances, demonstrating our method’s
generality. Both formulations can be written as Mastalli et al.
(2022, 2023):

min
{q,v},{τ}or{v̇,λ}

ℓN (xN ) +

N−1∑
k=0

∫ tk+1

tk

ℓk(qk,vk,λk, τ k) dt

(12a)

s.t. qk+1 = qk ⊕
∫ tk+1

tk

vk+1 dt,

vk+1 = vk +

∫ tk+1

tk

v̇k dt,[
v̇k

−λk

]
=

[
Mk J⊤

c

Jc

]−1 [
τ b

−ac,

]
(forward dyn.)

or
ID(qk,vk, v̇k,λk) = 0, (inverse dyn.)

where the robot state x = (q,v) contains the generalized
position and velocity vectors. More precisely, q ∈ SE(3)×
Rnj with the generalized velocity lying in the tangent space
v ∈ se(3)× Rnj where nj is the number of articulated joints
and ⊕ denotes the integration operator in SE(3) inspired by
Blanco (2010) and used in Mastalli et al. (2020a).

For the forward-dynamics formulation, the input com-
mand is u = {τ} corresponds to the joint torques. k, Mk and
Jc corresponds to the discrete-time tk, the generalised mass
matrix and the contact Jacobian, respectively. τ b includes
the joint torque command, Coriolis and gravitation terms
and ac is the desired acceleration which results from the
rigid contact constraint (contact point velocity is null) and
includes the Baumgarte stabilisation term Baumgarte (1972).
The impulse dynamics described in more detail in Mastalli
et al. (2022) which allow velocity changes at impact have
also been omitted from the formulation. This contact dynam-
ics formulation comes from the application of the Gauss prin-
ciple of least constraint P.-B. (2006), as described in detail
in Budhiraja et al. (2018). By handling this constraint in
the backward pass, the decision variables can be condensed
with forward dynamics Mastalli et al. (2022); Budhiraja et al.
(2018); Mastalli et al. (2020a) and contact forces can be
removed. This drastically reduces the number of decision
variables.

Regarding the inverse-dynamics formulation, where u =
{v̇,λ}, the contact forces and the acceleration become
decision variables of the problem Mastalli et al. (2023); Erez
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and Todorov (2012). We can perform efficient factorizations
by applying nullspace parametrization as proposed in
Mastalli et al. (2023). Furthermore, an alternative inverse
dynamic equation that allows us to remove joint torques from
the control vector is possible. Both strategies reduce the size
of the problem needed to enable MPC applications.

Table 1. Details of the costs used in the OCP

Name Formulation Cost

State bound xmin ≤ x ≤ xmax 103

Base orientation reg. log(p−1
base) [0R3 102 102 0]

Base velocity reg. ∥ṗbase∥ 10

Joint position reg. ∥qak − qaref∥ 0.01

Joint velocity reg. ∥q̇ak∥ 1

Torque reg. ∥uk∥ 0.1

Force reg. ∥λCk
∥ 1

Friction cone CλCk
≤ c 10

Feet position track. log(p−1
Gk

pref,Gk
) 106

Feet velocity track. ṗref,Gk
− ṗGk

104

Regularisation terms included in the cost function ℓ
are summarized in Table 1. These different formulations
are transcribed into quadratic terms, where qa, q̇a ∈ R12

are respectively the actuated joint positions and velocities.
pbase ∈ SE(3) describes the base pose in the world frame.
pGk
⊖ pref,Gk

= p−1
Gk

pref,Gk
represents the pose error in

SE(3) of the feet relative to the reference position. It is
penalised by considering it in its tangent space Blanco
(2010) with the log function that maps SE(3) to se(3). Feet
position and velocity tracking error are expressed in the
robot’s inertial frame. The base position is not penalised
whereas its rotation is penalised around the x- and y-axis
only, corresponding to the roll and pitch angles. C and c
are the matrix and vector of the linearised friction cone. Ck
represents the set of feet in contact with the ground and
inversely Gk is the set of feet in the swing phase for the node
k. Costs are set to zero if the corresponding feet are in the
contact phase.

7.2 Riccati-gain controller

OC formulations with reduced-order dynamics require an
instantaneous whole-body controller for tracking computed
forces and maintaining robot balance Mastalli et al. (2020b);
Léziart et al. (2021); Kim et al. (2019). Such instantaneous
controllers may compete with the MPC policy and not
necessarily generate the motion predicted by them Léziart
et al. (2022). At a higher cost in computing time, which has
a non-negligible influence, many benefits can appear when
including whole-body dynamics in the OC problem, e.g.,
imposing the joint effort limits. Another benefit is to derive
local feedback controllers from optimisation principles. This

control policy looks like this:

τ d = τ ff +K(x⊖ x∗), (13a)

= −Quu
−1Qu −Quu

−1Qux(x⊖ x∗), (13b)

where ⊖ denotes the SE(3) error. Quu, Qu and Qux are
respectively the partial derivatives of the value function for
the joint-effort command and the state Mastalli et al. (2022).
While the MPC runs every 0.02 s (50Hz), the discretisation
is set to 0.01 s. Instead, the low-level Riccati-gain controller
runs at 400Hz, and an interpolation step is necessary. For
this, the feedback term is computed by using an interpolation
of the reference state x∗ by integrated the dynamic with the
contact model dynamic 12. The optimal effort command is
then provided at 400Hz in addition to a joint impedance
controller based on the joint command and velocity obtained
from x∗.

8 Results

8.1 Implementation
Communication between each module is achieved via a low-
latency ROS communication layer (TCP, no-delay) Quigley
(2009). Three onboard computers (Intel(R) Core(TM)
i7-5600U CPU @ 2.6GHz) share the main tasks of
locomotion, perception and estimation. Point-cloud frame-
work, heightmap generator, state estimation and Riccati-
gain controller are performed onboard. We used an
additional computer (Intel(R) Core(TM) i5-8365U
CPU @ 1.60GHz) to extract the segmented planes from
the heightmap, post-process the extracted surfaces and run
the mixed-integer program in a different thread. A final
computer (Intel(R) Core(TM) i9-9900KF CPU @
3.60GHz) is used to run the MPC which sends the plan to
the Riccati-gain lower controller at 50Hz.

8.2 Experiments
The pipeline has been tested in various scenarios, first
with onboard perception and then with a model of the
environment. This is to emphasize the motion gener-
ation part and break away from the perception con-
straints. During all experiments, the user commands the
robot’s velocity with a joystick. Some of the experi-
ments (1.3, 1.4 and 2.1) were conducted using the inverse
dynamic formulation and presented in the related paper
Mastalli et al. (2023) as evidence of the formulation’s
effectiveness. We present these experiments again in this
paper to specifically highlight the planning aspect. We
release the environments tested for this paper in a pub-
lic repository (https://github.com/thomascbrs/
walkgen-environments). The source code for our
planner is available as an open source package (https:
//github.com/loco-3d/sl1m.git) and we will
release the rest of our code upon acceptance of the paper.

8.2.1 Using onboard perception We evaluated our com-
plete pipeline on three major scenarios, listed below.

• Experiment 1.1 (Fig. 1): The first experiment is
a 5-minute experiment, representative of the type
of environment our perceptive locomotion pipeline
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 8. Screenshots of different experiments highlighting our architecture’s capabilities. The first three rows of results were
obtained using the onboard camera and a complete perception pipeline for active obstacle detection. Rows (d), (e), and (f) were
performed without perception setup but instead used a pre-computed model of the environment to overcome the perception system
limitations and test the controller’s limits. The last two rows were obtained through simulation to further test our pipeline in
challenging scenarios. Video accessible at https://youtu.be/bNVxTh0eixI.

enables. The robot starts at the bottom of an industrial
staircase with 7 steps, each 17 cm high and 29 cm

deep. The average terrain slope is 30 degrees. Once
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at the top, the robot makes a U-turn on the industrial
platform and performs its descent.

• Experiment 1.2 (Fig. 8-a): The second scenario
corresponds to two platforms of 1 by 1 meters
connected by a piece of wood placed diagonally to the
right of the assembly. Once the robot is on the first
platform, we manually remove the ground from the
contact surface list to prevent the robot from moving
forward. A 20x30 cm block was then added to the
left of the assembly, and after a few seconds, the
platform is detected and the robot moved forward. This
demonstrates the pipeline’s reactive capabilities.

• Experiment 1.3 (Fig. 8-b): It is the same configuration
as the previous experiment with 2 pieces of wood
connecting the two platforms. This experiment
highlights the accurate execution of footstep plans.

• Experiment 1.4 (Fig. 8-c): Using the robot onboard
perception, the final experiment aims to mix various
terrains types and heights. Since the metallic plate was
not fixed, it slid at the end of the experiment, showing
the stability of the controller.

8.2.2 Using a model of the environment To further
evaluate the locomotion capabilities of our pipeline, we
conducted additional experiments in which the contact
surfaces are known a priori, and not given by Plane-Seg. The
robot’s pose with respect to the world frame is still estimated
using the onboard sensors (LIDAR and proprioceptive
sensors) and in general, the rest of the framework remains
the same.

• Experiment 2.1 (Fig. 8-d) : The first experiment was to
climb stairs with 2 missing steps. We removed steps 2
and 6 of the stairs. It corresponds to climbing a slope
of 30 degrees with two gaps of 34 cm. This pushes the
robot to its kinematic and the actuation limits. This,
therefore, highlights the benefit of taking into account
the entire robot model to plan the motion and adapt
the posture. This justifies our approach, as discussed
in Sec. 8.5.

• Experiment 2.2 (Fig. 8-e): The second experiment is
similar and corresponds to descenting stairs with 1
missing step (step 6). It corresponds to crossing a slope
of 30 degrees with a gap of 34 cm.

• Experiment 2.3 (Fig. 8-f) : The last experiment was
conducted on a platform of size 1m × 1m and 38 cm
in height. It is higher than the robot’s height in its
nominal position. It is the only experiment where we
had to increase the safety margin around the obstacle
(outer margin in Sec. 4) to 12 cm since the robot’s
shoulders are at the same height as the obstacle and
collide with it.

8.2.3 Simulation experiments A final set of experiments
were run in the PYBULLET simulator Coumans and
Bai (2016–2021) to show more dynamic gaits such as
trotting. This was done to illustrate the diversity of terrains
the framework can target. The setup and communication
protocol are identical to the one used on the hardware and
described previously in Sec. 8.1.

• Experiment 3.1 (Fig. 8-g): The first experiment
corresponds to a set of stepping stones of different
sizes and heights crossed with a trotting gait.

• Experiment 3.2 (Fig. 8-h): The second experiment
involves the ICRA 2023 Quadruped Challenge, which
comprises a parkour task featuring a range of
obstacles, including pallets, inclined ramps, rounded
rubber ramps, and a stack of plastic crates. This
challenge serves as a valuable benchmark for
evaluating our pipeline capabilities. For most parts,
our pipeline navigates parkour using a dynamic trot.
For some of them, we had to marginally modify some
parameters. The wooden pallets with gaps between the
wooden slats imply many potential surfaces for each
contact, up to 12, even in the pre-selection section.
Hence, we had to reduce the surface planner’s horizon
to optimise the next 4 contact sequences (and not 6
as used previously). Step height need to be increased
by up to 25 cm on flat terrain with wood panels
of 20 cm. It would be ideal to include height map
directly in trajectory optimization. This is rather than
solely relying on surfaces for obstacle avoidance. as
discussed previously in Sec. 6. Furthermore, when
dealing with a stack of plastic crates, adapting the gait
to a walking gait (in which only one foot moves at a
time) is more stable and enables safe passage across
the terrain, compared to a more dynamic trotting gait.

8.3 Evaluation of the perception pipeline

Figure 9. Perception output during experiment 1-(ii) before
ground removal. Black surfaces: initial convex surfaces;
coloured surfaces: filtered.
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Figure 10. Height map and resulting surfaces during
experiment 1-(i) (first row) and experiment 1-(ii) (second row).
(https://youtu.be/bNVxTh0eixI).

In this section, we evaluate the perception pipeline,
from the heightmap to the resulting surfaces filtered and
reshaped for security margins. Fig. 9 shows the scene during
experiment 1.1, before the manual removal of the ground.
The necessity of the filtering routine, described in Sec. 4 is
highlighted in this example since the convex planes extracted
from the height map overlap. Additionally, we note that
the security margin is applied inside the obstacles to avoid
walking on the edges. This is due in part to estimation errors,
which are around evaluated to 3-4 cm. More height maps
and resulting potential surfaces are shown in Fig 10, taken
from experiments 1.1 and 1.2. It is interesting to note the
evolution of the terrain estimation around the robot during
these experiments. When climbing or descending stairs, the
robot’s camera only identifies the next 1 or 2 stairs ahead.
During the second experiment 1.2, where an obstacle was
added in front of the robot, it took several iterations of the
probabilistic algorithm to update the heightmap with the
detected object and consequently 2 to 3 seconds to obtain
a feasible surface to walk on.

8.4 Computation performance
Table 2 presents the computation time statistics for each
module of the pipeline during experiment 1.1, i.e., climbing
up and down stairs with active perception.

8.4.1 Surface Processing It takes 90ms on average to
post-process the incoming surfaces from perception with
Algorithm 2 presented in Sec. 4. In comparison of the plane’s
update frequency, which is between 0.5Hz and 1Hz with an
non-optimised code, it represents roughly an increase of 5-
10%.

8.4.2 Surface Selection Surface selection, as described
in Sec. 5 encompasses the pre-selection step to reduce

Table 2. Computing time

Name Mean Min Max

Surface Processing

Number of surfaces processed 23.71 8. 45.

Surface processing [ms] 88.89 19.49 164.22

Surface Selection

Number of potential surfaces 3.08 1. 9.

Pre-selection [ms] 17.16 5.47 47.46

MIP [ms] 98.62 32.95 253.15

Foot Trajectory

Foot location [ms] 0.14 0.08 0.74

Foot trajectory [ms] 0.082 0.007 0.33

Motion Generation (MPC)

Solve time [ms] 9.29 8.02 13.52

Total time [ms] 13.27 8.76 18.50

the number of potential surfaces considered by the mixed-
integer program. It takes around 120ms to find the next
surface of contact in this experiment. Pre-selection reduces
the potential surfaces from 23 to 3 for each foot. During
this experiment, we optimise over 8 contact phases, which
correspond to 8-foot positions optimised with a walking gait
(1 contact is created/broken for each contact phase). The
mixed-integer optimisation starts at the beginning of each
upcoming foot trajectory and the next surface information
needs to be received before the beginning of the upcoming
cycle. In this experiment, the foot trajectory is 600ms, which
is enough for the maximum time taken. However, for a
trotting gait, the foot trajectory is set to 300ms. We must
reduce the number of foot locations to 6, thus allowing 3
contact phases (2-foot locations optimised for each contact
phase) to ensure a safe margin regarding the computing
time. We note that the computing time of mixed-integer
optimisation depends heavily on the number of potential
surfaces for each contact and the number of contact locations
optimised. For a detailed analysis of the MIP computation
times, we refer the reader to Song et al. (2021).

8.4.3 Foot trajectory The foot trajectory encompasses the
optimisation of the footstep inside the attributed surface and
the end-effector curve optimisation as described in Sec. 6. It
represents only 1% of every MPC step.

8.4.4 Motion generation (MPC) On average the MPC step
takes around 13ms, including the update of the optimal
control problem and solving this latter with 1 iteration which
takes around 9ms. This is below the maximum 20ms time
required for an MPC running at 50Hz.

8.5 Analysis of the whole-body MPC
In scenarios involving climbing steps, the torque limit is
reached on at least one actuator in each of these experiments.
It is in this case that the whole-body MPC becomes
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Figure 11. Posture adjustment (experiment 2.1). The hind right leg reaches the torque limits on both HFE (hip flexion/extension)
and KFE (knee flexion/extension) when crossing the gap. This corresponds to the peak torque at 52s. The whole-body MPC adjusts
the body posture to compensate. The body leans forward and lowers as much as possible, reaching the kinematic limit of the hind
leg to reduce torque on it. (https://youtu.be/bNVxTh0eixI).

crucial as it adjusts body posture to reduce joint torques.
Experiment 2.1 is a representative case. First, we observe
that the COM motion leans forward and close to the
feet, almost in contact with the stairs, at the moment of
giving the last motion to cross the gap (Fig. 11). The
torque limit is reached on both joints of the hind right leg
during this motion, as shown in Fig. 12. We analyse the
following quantities: torques, angular position and angular
velocities at the HFE joint (hip flexion/extension) and the
KFE joint (knee flexion/extension). The HAA joints (hip
abduction/abduction) are less prone to reach torque limits.
While crossing the gap, we can observe two torque peaks
that correspond exactly to the robot configuration shown
in Fig. 12. In this instance, the overshoot of the torque
command above the joint limits (a few Nm) can be attributed
to two main reasons. First, the constraints on torque limits
can be violated (Sec. 7) as the Riccati controller guarantees
joint limits within a neighbourhood.

8.6 Evaluation of the collision-free foot
trajectory

The end-effector trajectory is re-computed at 50Hz in order
to get robust tracking. Some minor modifications were
necessary when transitioning from simulation to hardware.
An offset of -1 cm has been added on the z-axis to
accommodate for perception errors, reaching 2/3 cm at the
end of our longest experiments (1.1), and ensuring contact
creation occurs. A finer control of the feet’s trajectory
according to the contact detection was not necessary in our
case, as the whole-body MPC is robust to state estimation
errors (Sec. 8.8). Additionally, the swing-foot trajectory
and footstep are no longer updated once 70% of the flight
phase has passed in order to avoid a sliding contact after
a sudden change in the target position. Finally, the end-
effector velocity feedback is not taken into account in the
optimisation due to large uncertainties about the end-effector
velocities. The foot velocity is therefore assumed to be
tracked properly and the initial velocity while re-computing
the curve is taken from the previous control cycle.

Fig. 13 shows a swing-foot trajectory while the robot
crosses an obstacle of 20 cm and while climbs the stairs
during experiment 1.1. We observe the state estimation errors
on the foot position when landing on the ground, resulting in
the foot slightly bouncing.

(a) (b)

(c)

Figure 12. Torque, angular position and velocities of the joints
HAA (hip abduction/abduction), HFE (hip flexion/extension) and
KFE (knee flexion/extension) of the hind right leg during
experiment 2.1. Blue quantities are computed by the state
feedback controller and orange ones are measured on the
robot. The maximum torque limit is approximately 40Nm and is
represented by red dashed curves. Each actuator can reach 12
m.s-1. Two torque peaks reaching the boundaries can be
observed around the 40 s and 52 s which correspond to the
robot configurations shown above.
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(a) (b)

Figure 13. Side view of the front-left foot’s trajectory while
crossing a 20 cm obstacle (left) and the staircase (right) using a
walking gait pattern at a reference velocity of 0.1 m.s−1. The
grey curves on the left graph are reference Bezier curves
computed during each control cycle. Their transparency
indicates the prediction horizon. More transparent curves
represent further predictions for the future. Grey areas on the
right correspond to the cumulative position of surfaces detected
by the camera.

Figure 14. Screenshots of the motion resulting from our OCP
regularization setup for a walking gait pattern. The blue area
between represents the support polygon and the yellow circle is
the Centre Of Pressure (COP) applied.

8.7 Evaluation of the velocity tracking and
design choices

Not constraining the robot’s pose and velocity to follow a
reference trajectory has a significant impact on the COM
trajectory, especially in a walking gait pattern when only one
foot is lifted at a time (Fig. 14). Indeed, Fig. 15-(a) shows that
the base trajectory during a forward walk oscillates in a range
of 10 cm around the middle of the feet positions. However,
constraining the base position and velocity would result in a
fixed base orientation. This can be explained by the motion
stability found in the optimization process. The centre of
pressure is well located in the middle of the support polygon.
The COM position is dragged inside this region resulting
in this wave motion. Since it is a periodic motion, the state
position has been filtered with a moving average for the walk
period (Fig. 15), rejecting all frequencies in synchronisation

(a)

(b)

(c)

Figure 15. Base trajectory during a forward walking gait of
period 2.4s. The joystick command is in 2 separate steps of
0.05m.s−1 and 0.1m.s−1 along the x-axis. To reject
disturbances, the filter is a moving average on the walk period.
(a) base position on the ground floor plane. (b) and (c) base
velocity along respectively the x and y axes. Small disturbances
at first in the filtered quantities are due to the filter initialisation
phase.

with the gait. This behaviour does not appear with a trotting
gait since two opposite legs are left at the same time and the
resulting oscillation is much smaller.

8.8 Robustness of the pipeline

A crucial point is to understand the repeatability of our
experiments and how the locomotion controller adapts to
unforeseen events. We observed a significant difference
in the reliability whether on-board perception was used
or perfect knowledge of the environment was given. The
climbing stairs scenario was reliably repeated ten times
with active perception, with a 80% success rate, with errors
mainly due to state estimation errors and drift. For climbing
down the stairs the experiment was successfully repeated
twice, but perception issues made the experiment difficult,
as the camera position did not allow to clearly perceive all
the stairs on the way down, resulting in unfeasible contact
planning problems in some instances. In the absence of the
perceptive part (experiments 2.1, 2.2 and 2.3), when the
environment is perfectly known, the locomotion pipeline is
stable and the experiments were successfully carried out on
the first attempt and repeated twice.

An interesting point attributed to the whole-body MPC
is the ability to recover to unplanned situations, as in
experiment 2.2 when ANYmal misses a step during the
descent. Similarly, at the end of experiment 1.4, a metal plate
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slips when walking on it. In both cases, the robot recovered
properly (Fig. 16).

Finally, we refer the reader to our conference paper for an
extensive ablation study on effect of the different elements of
the pipeline on the success rate of the pipeline for the Solo
robot Risbourg et al. (2022).

Figure 16. Screenshots of the robot recovering from an
unplanned event. Top: the metal plate slips while the robot walks
on it. Bottom: the two front feet slip and miss the intended step.

8.9 Comparison with the state of the art
The end-to-end implementation of frameworks similar to
ours Grandia et al. (2023); Jenelten et al. (2022) are
not publicly available at the time of submission, neither
the associated benchmarks and the quantity of work and
resources to re-implement them is not reasonable, which
prevents a quantitative comparison of the approaches.

9 Discussion
In this paper, we propose a complete pipeline for perceptive
quadrupedal locomotion; from onboard perception to
locomotion generation and control. Our experimental
results highlighted capabilities such as crossing challenging
scenarios like climbing and descending industrial stairs or
obstacle parkour with moving obstacles. Therefore, we have
experimentally validated our architecture. This is based on
the strong design assumption that a high-level planner, such
as mixed-integer optimization, only selects the stepping
contact surfaces. The utility of mixed-integer optimisation
for design integration was partially validated in our previous
work Risbourg et al. (2022). We used a different robot
and integrated perception into our approach along with
more complex experiments which reinforced interest in our
decomposition.

9.1 Perception pipeline
We have demonstrated the efficacy of our perceptive
pipeline based on the probabilistic terrain mapping method
Fankhauser et al. (2018b) and the Plane-Seg algorithm Fallon
and Antone (2019) which allow us to obtain satisfactory
behaviour, in particular with our filtering work. Additionally,
we demonstrated that our architecture can successfully

navigate complex parkour terrains with moving objects or
industrial staircases. Still, while our architecture is capable
of navigating challenging scenarios when perception is
removed, improving perception capabilities could enhance
the overall robustness and reliability of the system. This
would be particularly beneficial in scenarios such as the
staircase where vision detection is restricted to only a few
steps ahead due to our single depth camera with a 20%
downward angle. Additionally, the algorithm used to extract
convex planes is not incremental and does not take into
account previously computed planes, making it vulnerable to
faulty scans in some cases. The implementation of a short
term memory for the plane decomposition system would
contribute to the robustness of the approach and will be
considered in future work.

9.2 Collision avoidance of the body
The trade-off proposed in our approach is to strongly
regularise the OCP around a reference end-effector trajectory
while avoiding obstacles, which proved to work in a wide
range of environments. This occurs even if a collision
with the environment is not specifically considered in our
approach. This could be considered within the MPC but
would require a dedicated study since it is a challenging
nonlinear optimisation problem. The safety margin around
obstacles was sufficient in almost all scenarios to avoid
collisions, except for the 40 cm step in 2.3, where we had
to increase these margins to 10 cm. As mentioned before,
our approach ensured that there was no collision in the end-
effector trajectory. It could have been done inside the MPC
with additional terms in the objective. However, this would
increase complexity and possibly affect convergence rates.
Knee collision is implicitly considered by the margin around
obstacles. However, this could be addressed explicitely by
planning the foot trajectory including the whole leg, as is the
case in Zucker et al. (2011), although re-planning at 50Hz
might become unfeasible.

9.3 Comparison with the state of the art
Two recent works Grandia et al. (2023); Jenelten et al.
(2022) present interesting similarities to our architecture.
We can first observe the decomposed approach used in both
cases with the foot location optimised outside the MPC. We
have underlined the technical difficulties that would allow a
objective comparison of the frameworks, although we would
like to integrate the publicly available perception module
proposed in Miki et al. (2022). However, this approach
does not return a selection of potential candidates surfaces
and only one candidate, such that further integration will
be required to make the approach compatible with our
framework.

9.4 Improvement points
As often occurs in model-based approaches to quadruped
robots, the main limitation is the gait fixed beforehand. It
would be interesting to replace the high-level planner with
an acyclic planner to optimise the timing of contacts and
the type of gait. This could lead to computing-time issues
especially due to the increase in problem complexity. To take
this further, it would be interesting to integrate this into a
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global planner to achieve autonomous behaviour. Although
we consider a stable walking gait necessary for the most
challenging scenarios, we also acknowledge the potential
benefits of implementing a trotting gait on the hardware.
However, transitioning to a trotting gait, which works well
in simulation, proved more challenging to implement on the
robot. We believe that this limitation could be overcome
with a faster controller and more integrative efforts. Finally,
our foot placement is based on Raibert’s heuristic, which is
optimal on flat ground when considering an inverse linear
pendulum model for the robot. We extend it in 3D which
produces satisfying foot placement as we demonstrated in
our experiment. Nevertheless, this remains a heuristic and
does not ensure the position of feet is feasible in terms of
torque power limit.

10 Conclusion
In this paper, we present a complete methodology for
crossing challenging terrains; from terrain perception to
locomotion generation and control. We have demonstrated
our pipeline on various terrains, such as an industrial
staircase or a parkour-type environment with a moving object
in the scene. These experiments have allowed us to further
validate our approach based on a sub-division of the global
problem. First, a high-level planner formulated as a mixed-
integer optimisation selects only the next surfaces of contact
with a horizon of a few contacts (6 to 8 in our experiments).
To achieve this, one must adapt the perception to extract
relevant potential surfaces as convex planes. For motion
generation, we rely on an efficient whole-body MPC and a
linear state feedback controller. Collision-free trajectory and
footstep adaptation on the high-level planner are optimised
separately. The OCP problem is then strongly regularized
around this reference end-effector trajectory while robot’s
posture is adapted by the MPC. This represents a wise choice
of design to leverage whole-body optimisation capabilities.
To move further, we would like to use a more complex
high-level planner to optimise contact timing to cross even
more challenging terrains, for example, dynamic motions
that include jumping over gaps or obstacles.
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