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Abstract. We calculated and measured the density distribution and cloud size
of a trapped two-dimensional (2D) 6Li Fermi gas near a Feshbach resonance
at low temperatures. Density distributions and cloud sizes were calculated for
a wide range of interaction parameters using a local density approximation
(LDA) and a zero-temperature equation of state obtained from quantum Monte
Carlo simulations reported by Bertaina and Giorgini (2011 Phys. Rev. Lett.
106 110403). We found that LDA predictions agree well with experimental
measurements across a Feshbach resonance. Theoretical results for Tan’s contact
parameter in a trapped gas are reported here along with predictions for the static
structure factor at large momentum which could be measured in future Bragg
spectroscopy experiments on 2D Fermi gases.
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1. Introduction

The striking capability to manipulate and control ultracold atomic 6Li and 40K Fermi
gases has enabled the experimental investigation of strongly interacting two-component
Fermi gases [1, 2]. Using highly anisotropic pancake-shaped potentials to confine atoms
in the lowest axial mode [3–5], it has become possible to realize experimentally
two-dimensional (2D) Fermi systems. At low temperatures these can exhibit exotic
properties such as Berezinskii–Kosterlitz–Thouless (BKT) [6–8] or inhomogeneous Fulde-
Ferrell–Larkin–Ovchinikov (FFLO) superfluidity [9–12]. It has also been proposed that a 2D
interacting Fermi gas may provide useful insights into high-temperature superconductivity
[13, 14] and itinerant ferromagnetism [15, 16]. In recent years, a weakly interacting 2D Fermi
gas has been imaged in situ [3] and used to characterize the crossover from two to three
dimensions [5]. The observation of 2D confinement-induced resonances and measurement of
the molecular binding energy using rf spectroscopy of a strongly interacting Fermi gas was
reported recently [4]. However, the thermodynamic properties of strongly interacting Fermi
gases and fermionic mixtures [17] in reduced dimensions are yet to be fully explored.

On the theoretical side, numerous studies of 2D Fermi gases have been presented,
addressing superfluid transitions [7, 18], the effects of harmonic trapping [19] and population
and mass imbalance [8, 20, 21]. Of particular importance, the equation of state of a 2D uniform
Fermi gas was recently obtained through quantum Monte–Carlo (QMC) simulations [22]
through the crossover from a Bardeen–Cooper–Schrieffer (BCS) superfluid of Cooper pairs
to a Bose–Einstein condensate (BEC) of tightly bounded molecules [2]. Tan’s universal many-
body contact parameter was also found in 2D using the adiabatic relation [22, 23]. While most
theoretical studies have relied on a perturbative or mean-field approach, the ab initio QMC
results at zero temperature [22] should provide a quantitative description of the many-body
ground state of a strongly interacting 2D Fermi gas.
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In this work, we measure the density distribution and cloud size of a 2D trapped
6Li Fermi gas at low temperatures in the BEC–BCS crossover and compare the data with
theoretical predictions. The theoretical density distribution is calculated using a local density
approximation (LDA) [24], based on the zero-temperature QMC equation of state [22]. We
find good qualitative agreement between experiment and theory in the strongly interacting
regime near Feshbach resonance. When the atom number becomes large, we also observe
substantial deviation from the 2D equation of state when new transverse vibrational modes are
populated.

We also give theoretical predictions for Tan’s contact parameter in a trapped gas and
the static structure factor at large momentum, which could be measured in future Bragg
spectroscopy experiments on 2D Fermi gases. Non-trivial pair correlations are reflected in the
many-body part of the contact parameter. The many-body contribution to the contact exhibits
a maximum near the 3D Feshbach resonance. In the deep BEC limit, however, the two-body
contribution to the contact arising from the molecular state dominates.

This paper is structured as follows. In the next section, we introduce the LDA and the QMC
results for the zero-temperature equation of state for a uniform strongly interacting Fermi gas. In
section 3, we discuss the production of a strongly interacting trapped 2D Fermi gas of 6Li atoms
and how to calculate the density distribution and cloud size from the QMC equation of state
within LDA. The experimental procedure for the density measurements is briefly summarized.
In section 4, we present the theoretical density distributions and sizes and compare these with
the experimental measurements. In section 5 we find Tan’s contact and the large-momentum
static structure factor of a 2D trapped Fermi gas. Conclusions and future perspectives are given
in section 6.

2. Local density approximation and a two-dimensional (2D) uniform Fermi gas in the
Bardeen–Cooper–Schrieffer–Bose–Einstein condensate crossover

The equation of state of a strongly interacting Fermi gas in homogeneous space provides a
convenient way to calculate the density distribution in a harmonic trap using the LDA [24].
The basic idea is that for a sufficiently large number of particles in a slowly varying trapping
potential Vext(r), we may treat the trapped Fermi system as a collection of many independent
units that behave locally as a uniform Fermi gas. The correlation between different units, for
example the surface energy of each unit, is assumed to be negligibly small. Therefore, the local
chemical potential of a unit at position r may be written as

µ(r)≡ µ [n(r)] = µ− Vext(r), (1)

where n(r) is the local density and µ is the chemical potential at the trap center. At zero
temperature the local chemical potential µ[n(r)] of the locally uniform unit depends on the
local density n(r) only. Hence, given the local equation of state µ[n(r)] at position r, we could
solve inversely the density n(r)= n(µ− Vext(r)). The chemical potential at the trap center µ
is set by the normalization condition

∫
drn(r)= N , where N is the total number of particles.

The LDA has been shown to work well in a wide range of situations [24]. It is valid for either
non-interacting or strongly interacting Fermi gases in different geometries from 3D to 1D.

The essential ingredient of the LDA is the local uniform equation of state µ(n). For a
non-interacting two-component (spin-1/2) 2D Fermi gas at zero temperature, the chemical
potential is simply the Fermi energy µ= EF = h̄2k2

F/(2m), where m is the mass of fermions
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and the 2D Fermi wave vector is given by kF = (2πn)1/2. Therefore, the non-interacting
chemical potential is proportional to the density, µ= π h̄2n/m. The mean energy per particle is
E/N = h̄2k2

F/(4m)= EF/2.
For an interacting 2D Fermi gas in the BEC–BCS crossover, the energy per particle E/N

has been calculated by Bertaina and Giorgini [22] as a function of the interaction strength, by
using the fixed-node diffusion Monte Carlo method. Here, we extract the chemical potential
from the QMC data of the energy per particle, since µ= ∂E/∂N . A suitable parameterization
of the QMC data for E/N is therefore needed, as we discuss in detail below.

In the 2D BEC–BCS crossover, a peculiar feature of the contact interactions (between two
fermions with unlike spins) is that any attraction, however small, will support a two-particle
bound state with energy εB = −4h̄2/[exp(2γ )ma2

2D], where γ ' 0.577 216 is Euler’s constant
and a2D is the 2D s-wave scattering length [14, 25]. This is in sharp contrast to the 3D BEC–BCS
crossover, where a two-body bound state appears on only one side of the Feshbach resonance
where the 3D scattering length is positive [2]. The scattering length in 2D a2D is always positive
due to the existence of the bound state. The unitarity limit with an infinitely large scattering
length (a2D → +∞) is in fact trivial: it corresponds simply to the non-interacting (BCS) limit. In
the opposite (BEC) limit with infinitely small scattering length (a2D → 0+), where the energy of
the bound state is infinitely large, two fermions are tightly bound to form a composite molecule.
There will be a repulsive interaction between two composite molecules, characterized by an
effective scattering length ad > 0.

The interaction strength in 2D may be expressed as a dimensionless interaction parameter
η = ln(kFa2D). The weakly interacting BEC and BCS limits correspond to η→ −∞ and
η→ +∞, respectively. The strongly interacting crossover regime occurs at about η = 0, where
a2D ∼ k−1

F .
We interpolate the QMC data for the 2D equation of state (E/N − εB/2)/EFG in the

BCS–BEC crossover with a smooth, continuous analytical function f (η) that consists of three
parts. On the BEC side in the range η <−1/2 we use the equation of state for a gas of composite
molecules with a molecular scattering length ad [22]:

E

Nd
− εB =

2π h̄2nd

md

1

ln
[
1/na2

d

] {
1 −

ln ln
[
1/nda2

d

]
− (lnπ + 2γ + 1/2)

ln
[
1/nda2

d

] }
, (2)

where md = 2m and Nd = N/2 are, respectively, the mass and number of molecules, and
nd = n/2 is their density. By assuming that ad/a2D = αm ≈ 0.6 [22], equation (2) turns
into

fBEC

(
η <−

1

2

)
'

0.5

3.55 − 2η

[
1 −

ln (3.55 − 2η)− 2.80

3.55 − 2η

]
. (3)

On the BCS side, for η > 2.72 we consider a Padé-type approximate function

fBCS (η > 2.72)=
1 + a1η

−1 + a2η
−2

1 + b1η−1 + b2η−2
, (4)

where the Padé coefficients a1 = 0.164 106, a2 = 0.702 385 and b1 = 1.164 11, b2 = 2.405 27
are obtained by minimizing the standard deviation between the QMC data and the values of the
function (4) under the constraint of fBCS(η→ +∞)→ 1 − 1/η, which is required in a weakly
interacting normal Fermi liquid in 2D. In the crossover regime between the BEC and BCS limits,
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Figure 1. Interpolating energy function f (η) for the equation of state of a 2D
Fermi gas in the BEC–BCS crossover. The red solid line on the BEC side
is a fit corresponding to an equation of state of a gas of composite bosons,
equation (3). The blue line on the BCS side is the Padé-type approximation
function of equation (4) that minimizes the standard deviation with respect to the
QMC data [22]. The dot-dashed line in the crossover regime is a polynomial fit
ensuring the continuity of the function and its first and second derivatives at the
two connection points, see equation (5). The black circles show the QMC data
of the equation of state. The chemical potential derived from the interpolating
energy function is plotted by the thin black line.

we use a sixth-order polynomial function

fcrossover

(
−

1

2
6 η 6 2.72

)
=

6∑
i=0

ciη
i . (5)

The coefficients are selected to provide the fit best to the QMC data and to ensure continuity
of the equation of state function and of its first and second derivatives at the two connection
points η = −0.5 and η = 2.72. We find that c0 = 0.200 219, c1 = 0.154 862, c2 = −0.014 4822,
c3 = 0.070 831, c4 = −0.019 77, c5 = 0.008 911 72 and c6 = −0.001 085 48.

As shown in figure 1, the interpolating function f (η) for the equation of state provides an
excellent fit to the QMC data. By using µ= ∂E/∂N , we find that

µ− εB/2

EF
≡ fµ(η)= f (η)+

1

4

d f (η)

dη
. (6)

The dimensionless chemical potential fµ(η) is shown in figure 1 by a thin black line.

3. A 2D strongly interacting Fermi gas in harmonic traps

3.1. Achieving the 2D regime

For an atomic Fermi gas in a harmonic trap, the 2D regime is achieved if the chemical potential
µ and temperature T are sufficiently small compared to the excitation energy in one dimension
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(z). We consider a spin-1/2 Fermi gas of N 6Li atoms with equal spin populations in a highly
oblate harmonic trap,

V 3D
ext (r)=

1
2m

[
ω2

x x2 +ω2
y y2 +ω2

z z2
]
, (7)

where ωx ≈ ωy = ω⊥ and ωz are the trapping frequencies in the radial (x, y) and axial (z)
directions, respectively. The trap aspect ratio λ= ωz/ω⊥ � 1.

The basic requirement for achieving a 2D trapped Fermi gas may be estimated by
considering first the zero-temperature and non-interacting limits, in which the properties in a
2D harmonic trap,

Vext(r)= mω2
⊥
(x2 + y2)/2 = mω2

⊥
ρ2/2, (8)

can be conveniently understood using LDA. As µ= π h̄2n/m in an ideal 2D uniform Fermi
gas, we obtain that n(r)= mµ(r)/(π h̄2)= m[µ− Vext(r)]/(π h̄2). In other words, we expect a
Thomas–Fermi (TF) distribution,

n(r)= nTF

(
1 −

ρ2

ρ2
TF

)
, (9)

where nTF is the TF peak density and ρTF is the TF radius. Once the distance ρ is larger
than the TF radius, the density is necessarily zero. The TF peak density and radius are
related to the chemical potential by µ= π h̄2nTF/m and µ= mω2

⊥
ρ2

TF/2, respectively. Using the
normalization condition

∫
drn(r)= N , it is straightforward to obtain that nTF = N 1/2/(πa2

⊥
)

and ρTF = (4N )1/4a⊥, where a⊥ ≡ [h̄/(mω⊥)]1/2 is the characteristic oscillator length in the
radial direction. The 2D chemical potential or Fermi energy EF is given by µ= EF =

√
Nh̄ω⊥.

The characteristic Fermi temperature is TF = EF/kB and the Fermi wave vector kF in 2D
harmonic traps is given by kF = [2m EF/h̄

2]1/2
= (4N )1/4a−1

⊥
.

As the lowest excitation energy in the z-direction is h̄ωz, one finds that the 2D regime
can be reached if µ, EF < h̄ωz and T < h̄ωz/kB. The former condition requires that the total
number of atoms N must be less than a 2D critical number, N2D, equal to the number of
single particle states with energy less than the lowest lying state with one transverse excitation.
It is straightforward to show that N2D = λ2. In our experiment with 6Li atoms, the trapping
frequencies are ωz ' 2π × 2800 Hz and ω⊥ ' 2π × 47 Hz, leading to λ≈ 60, a⊥ ≈ 6.0µm and
N2D ≈ 3600.

3.2. Achieving the strongly interacting regime

Experimentally, the strongly interacting regime is reached by tuning an external magnetic field
B near a Feshbach resonance (B0 = 834 G) for 6Li atoms, for which the s-wave scattering length

a3D (B)= abg

(
1 +

1B

B − B0

)
[1 +α (B − B0)] (10)

can be changed precisely to arbitrary values [26]. Here, abg = −1405a0 with a0 ≈ 0.529 ×

10−10 m is the background scattering length, 1B = 300 G is the width of Feshbach resonance
and α = 0.0004 G−1. In our highly oblate geometry, the tight confinement in the z-direction
induces a bound state in the 2D x–y-plane. Therefore, one can express the 2D scattering length
in terms of the 3D scattering length [1, 28]

a2D = az

(
2
√
π/b

eγ

)
exp

[
−

√
π

2

az

a3D

]
, (11)
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Figure 2. The dimensionless interaction parameter ln(kFa2D) of a trapped 2D
interacting Fermi gas near a Feshbach resonance. The vertical dotted line
indicates the resonance position. Here, we calculate the Fermi wave vector
kF at N = N2D = 3600 by using kF = (4N )1/4a−1

⊥
. The 2D scattering length is

calculated using equation (11) with az ≈ 770 nm for ωz = 2π × 2800 Hz.

where az ≡ [h̄/(mωz)]1/2 and b ≈ 0.915. In figure 2, we plot the dimensionless interaction
parameter η = ln(kFa2D) as a function of the magnetic field at the 2D critical number of atoms,
N = N2D = 3600. As indicated by the dotted line, at the location of the 3D Feshbach resonance
(B = B0), the interaction parameter η ≈ 1.

3.3. Theoretical density distributions

Let us now consider the density distribution of an interacting 2D Fermi gas in the BEC–BCS
crossover within LDA. The simple relation n(r)= mµ(r)/(π h̄2), useful for the ideal gas, is no
longer applicable. We have to obtain numerically the local density from the local chemical
potential by using the fµ-function, defined in equation (6). That is, we need to solve the
following equation to find the density n(r):

µ(r)= µ− mω2
⊥
(x2 + y2)/2 (12)

=
εB

2
+
π h̄2

m
n(r) fµ

[
ln

√
2πn(r)a2D

]
. (13)

In the inversion procedure, our analytic interpolating fµ-function appears to be very convenient.
The density distribution n(r) is calculated for an initially chosen value of chemical potential µ.
We then adjust µ to satisfy the number equation

∫
drn(r)= N . At the final stage, we quantify

the cloud size using root mean square (rms) radius,√〈
ρ2

〉
=

[∫
drn(r)(x2 + y2)∫

drn(r)

]1/2

. (14)
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correspond to the weakly interacting BEC (η = −3) and weakly interacting BCS
(η = +3) sides. The black dotted line stands for a strongly interacting crossover
Fermi gas (η = 0).

In figure 3, we plot the theoretical density distributions at three values of the interaction
parameter η, which correspond to the weakly interacting BEC and BCS sides, and the strongly
interacting crossover regime. The density and distance from the center of the cloud are plotted
in units of the TF density nTF and the TF radius ρTF, respectively. One finds that with decreasing
the interaction parameter η from the BCS side to the BEC side, the 2D cloud becomes denser
and narrower in size, as anticipated. On the BEC side, our analytic interpolating fµ-function
leads to the following asymptotic behavior:

n (ρ)

nTF
=

√
2 ln

(
2π

αm

)
− 4η−

[
2 ln

(
2π

αm

)
− 4η

]
ρ2

ρ2
TF

, (15)

where αm = ad/a2D ≈ 0.6 is the ratio between 2D molecular and atomic scattering length.
Hence, with decreasing η (→ −∞) the peak density increases as [−4η]1/2 and the radius of
the cloud decreases as [−4η]1/4. On the other hand, on the BCS side the density distribution
converges to the ideal Fermi gas result of equation (9),

n (ρ)

nTF
=

(
1 +

1

2η

)
−

(
1 +

1

2η

)2
ρ2

ρ2
TF

. (16)

In accord with these asymptotic density distributions, the cloud sizes are given by(√〈
ρ2

〉)
BEC√〈

ρ2
〉
IG

=
1

[2 ln(2π/αm)− 4η]1/4 (17)
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and (√〈
ρ2

〉)
BCS√〈

ρ2
〉
IG

=

√
2η

(2η + 1)
, (18)

in the BEC and BCS limits, respectively. Here,
√〈
ρ2

〉
IG

= ρTF/
√

3 is the rms cloud size of an
ideal 2D Fermi gas. We have checked that these analytic results agree well with our numerical
calculations in the appropriate limits. We have also checked the sensitivity of the calculated
density profiles to the form of the equation of state. The widths of the theoretical density profiles
do not vary by more than 5%, which is small on the scale of the width changes as the interaction
strength is varied over the range considered here.

3.4. Experimental measurements

To measure the density distribution of a strongly interacting 2D Fermi gas, we use an
experimental setup similar to the one used in our previous work [5]. In brief, we start with a
cloud of approximately 1 × 105 6Li atoms in the two hyperfine states |F = 1/2,m F = ±1/2〉 in
a far detuned 3D optical dipole trap. The cloud is evaporatively cooled to the lowest possible
temperature near the Feshbach resonance. At this stage, the number of atoms is controlled by
further lowering the trap depth to spill atoms out of the dipole trap. We then ramp on a 2D optical
trap in 200 ms to create a highly oblate trap with trapping frequencies ωz ' 2π × 2800 Hz
and ω⊥ ' 2π × 47 Hz, which gives an aspect ratio of approximately 60. Finally, we tune the
interaction strength by adiabatically ramping the external magnetic field to 810, 834 and 992 G,
where the cloud is held and imaged. The dimensionless interaction parameters ln(kFa2D) at these
fields are about −0.5, +0.6 and +5, respectively.

The critical number of atoms for reaching the 2D regime is N2D ≈ 3600. Depending on the
depth of the dipole trap, the final number of atoms in the cloud can be varied in the range of
500–5000 atoms. The final temperature of these small 2D and quasi-2D clouds is difficult to
determine when interactions are present. However, we anticipate it to be approximately 0.1 TF,
based on applying the same preparation procedure to clouds with a larger atom number.

Before the imaging, we allow a short time of flight (500µs). This allows us to resolve the
density distribution in the tightly confined z-direction, since this time scale is long compared
to 1/ωz ≈ 57µs. It is, however, very short compared to 1/ω⊥ ≈ 3.4 ms and therefore, the cloud
distribution in the radial direction is essentially equivalent to the in situ profile. The imaging
beam propagates roughly along the radial x-direction, which means that there is an automatic
integration over the x-direction for the total density distribution. We then integrate these
distributions over the z-direction to generate a double-integrated column density ñ(y). The rms
cloud size is calculated from the first moment of the 1D profile 〈ρ2

〉 =
∫

dyñ(y)y2/
∫

dyñ(y).
Theoretically, we perform the same integration procedure in the x-direction for the 2D density
distribution. This should lead to the same distribution as the experimentally measured double-
integrated column density ñ(y).

4. Comparison between theory and experiment

In figure 4, we compare the LDA column density ñ(y) (lines) with the experimental measure-
ments (solid circles) at three magnetic fields. To reduce the experimental noise, we average the
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Figure 4. Comparison between the theoretical LDA predictions (lines) and
experiment measurements (solid circles) for the column density ñ(y) at the
magnetic fields 810 G (a), 834 G (b) and 992 G (c). The optical density is shown
in arbitrary units as a function of the actual y-coordinate (in units of micrometer).

experimental density distributions over many images with a range of atom numbers that are all
well below N2D. Accordingly, the theoretical lines correspond to the average number of atoms,
while the standard deviation in the atom number is illustrated by shaded region. We observe
good qualitative agreement between theory and experiment with no adjustable parameters.
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Figure 5. The rms cloud size in units of the TF radius as a function of the
dimensionless interaction strength. The black line shows the theoretical LDA
prediction. The red circles, green squares and blue diamonds represent the
experimental data at the magnetic fields 810, 834 and 992 G, respectively. The
number of atoms at a given magnetic field can be varied, giving rise to slightly
different interaction parameters. In the inset, the actual rms cloud sizes are shown
as a function of the decimal logarithm of the atom number. The blue solid line
(the highest) is the LDA prediction for 992 G; the green dashed line (medium)
is for 834 G; and the red dot-dashed line (the lowest) is for 810 G. The vertical
dotted line in the inset indicates the position of the critical atom number.

The distributions become wider with increasing ln(kFa2D); however, there are notable discrep-
ancies between theory and experiment, particularly in the wings of the clouds. This is due to
a number of effects, including the finite imaging resolution and recoil-induced blurring during
the imaging pulse. The combination of these two artifacts is to lower the effective resolution
of the imaging system to approximately 6µm. This alone, however, is not enough to fully
account for the observed discrepancies. The remaining differences are most likely due to the
finite temperature of the clouds, which will show up most in the wings of the distribution.

In figure 5, we plot the rms cloud size of the 2D Fermi gas in units of the TF
radius as a function of the interaction parameter η = ln kFa2D. The lines and symbols show
the LDA predictions and experimental data, respectively. In the strongly interacting regime
at the magnetic fields B = 810 and 834 G, the LDA predictions agree quantitatively well with
the experimental data (solid red circles and green squares). At the high field B = 992 G, the
gas is more weakly interacting and the experimental data (blue diamonds) lie slightly above the
theory curve. In the inset of figure 5, we present the actual cloud size as a function of the number
of atoms. The agreement between theory and experiment near the Feshbach resonance (810 and
834 G) becomes more apparent.

In all three sets of measurements, the radial cloud size drops below the true 2D prediction
for the largest atom numbers. This happens when the first transverse excited state becomes
energetically accessible and leads to a drop in the growth rate of the radial cloud size.
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In this quasi-2D regime, shell structure associated with resolving the discrete transverse states
can dramatically affect the density profiles [5]. The atom numbers for which the radial width
departs from the 2D theory are slightly below what we would expect for an ideal Fermi gas.
This could be due to interactions or scattering resonances [27–31], but also may arise through
thermal excitations.

5. Contact parameter and the static structure factor

5.1. Tan’s contact parameter

For a strongly interacting Fermi gas with contact interactions, the asymptotic behavior of various
physical quantities in the limit of short distance or large momentum is governed by a single
parameter, called the contact, which measures the density of fermionic pairs within a short
distance. This was first discussed by Tan in 2008, when he derived a set of exact universal
relations for strongly interacting Fermi gases [23]. Being an important many-body parameter,
Tan’s contact is also related to the thermodynamics via the adiabatic relation [23]. The contact in
a homogeneous 2D Fermi gas was calculated by Bertaina and Giorgini [22]. Here we use these
results to find the contact and static structure factor in a trapped system. In 2D, the adiabatic
relation takes the form [32]

I =
2πm

h̄2

dE

d ln a2D
, (19)

where the derivative is taken at constant entropy. The calculation of Tan’s contact parameter for
a 3D strongly interacting Fermi gas was performed recently [33], by using a similar adiabatic
relation.

The zero-temperature contact of a homogeneous 2D Fermi gas can be calculated
by substituting our interpolated energy per particle E/N = εB/2 + EFG f (ln[kFa2D]) into
equation (19). We find that I = I2b + Imb, where

I2b

Nk2
F

=
2πm

h̄2k2
F

d [εB/2]

d ln a2D
=

8π

e2γ

1

[kFa2D]2 (20)

is the contribution from the two-body bound state and

Imb

Nk2
F

=
2πm

h̄2k2
F

d[EFG f (η)]

d ln a2D
=
π

2

d f

dη
(21)

is the contribution from the many-body correlations, respectively. The two-body contact I2b

increases monotonically from the BCS to the BEC limit. In contrast, the many-body contact
Imb should exhibit a maximum at the crossover regime, according to the behavior of the energy
f -function (see figure 1). As shown in figure 6 by a thin line, the maximum of the many-
body contact occurs at η ∼ 0.8, which is roughly the position of the Feshbach resonance (see
also [22]).

For a trapped interacting Fermi gas, we may calculate the contact by using the LDA density
distribution

IT =

∫
dr
I(r)
1V

= 2π
∫

dr
[
I

Nk2
F

]
(r)n2(r), (22)

where we have summed the local contact density, I(r)/1V = [I/(Nk2
F)](r)× n(r)k2

F(r), over
the whole space. It is easy to see that the two-body contact is not affected by the density average,
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bound state and the many-body part (see text), while the thick black line gives
the total contribution. For comparison, we show by a thin line the many-body
part of the contact of a homogeneous 2D Fermi gas.

so that IT,2b = I2b. However, the many-body part may be significantly affected. In figure 6, we
present the result for the contact of a trapped 2D Fermi gas at the BEC–BCS crossover, with the
many-body contact shown by a red dashed line. It has roughly the same shape as the many-body
contact of a homogeneous gas, with a peak appearing at η ∼ 0.8. However, the peak is about
half as high due to the average over the density distribution.

5.2. Spin-antiparallel static structure factor

Tan’s contact for a 3D strongly interacting Fermi gas has been measured in a number of
ways. One appealing method is to measure the spin-antiparallel static structure factor using
Bragg spectroscopy at large momentum [34], which has a 1/q tail with a prefactor given
by Tan’s contact [35]. In 2D, we may make a similar prediction. It has been shown that the
2D pair correlation function n(2)(r)∝ I ln2(ρ/a2D) [32]. The ln2(ρ/a2D) dependence can be
qualitatively understood from the two-body relative wave function ψrel(r)∼ ln(r/a2D), since
n(2)(r)∝ |ψrel(r)|

2. The spin-antiparallel static structure factor is simply the Fourier transform
of the pair correlation function. Thus, we find that

S↑↓ (q � kF)=
I
N

[
γ + ln (qa2D)

]
π 2q2

(23)

=

[
I

Nk2
F

] [
γ + ln (kFa2D)+ ln q̃

]
π 2q̃2

, (24)

where q̃ ≡ q/kF and γ = 0.577 216. Compared with the 3D case, the spin-antiparallel static
structure factor in 2D decays faster with increasing momentum q (q−2 compared to q−1).
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Figure 7. The LDA prediction for the spin-antiparallel static structure factor of
a trapped 2D Fermi gas in the BEC–BCS crossover, under our experimental
conditions of ωz ' 2π × 2800 Hz and ω⊥ ' 2π × 47 Hz for N = N2D =

3600 6Li atoms. We show the many-body contribution using the dashed lines.
The thick and thin lines give, respectively, the predictions at the transferred
momentum q = 5kF and 3kF.

In figure 7, we plot the theoretical prediction for the spin-antiparallel static structure factor
of a trapped 2D Fermi gas in the BEC–BCS crossover for momenta q = 3kF and q = 5kF. We
split the structure factor into the two-body and many-body parts, in accord with the previous
classification for the contact. Near the Feshbach resonance, the static structure factor at q = 3kF

is about 0.02, which magnitude is accessible within current experimental resolution [34].

6. Conclusions

To conclude, we have predicted theoretically and measured experimentally the density
distribution and cloud size of a low-temperature 2D harmonically trapped Fermi gas in the
BEC–BCS crossover. The theoretical calculations have been performed within an LDA, based
on the ab initio zero-temperature equation of state obtained from the fixed-node diffusion Monte
Carlo simulations [22]. The experimental measurements were carried out using a single 2D
Fermi cloud of 6Li atoms near Feshbach resonance. We found good qualitative agreement
between theory and experiment.

We have also calculated an important many-body parameter, Tan’s contact, and have
proposed that it can be straightforwardly measured using Bragg spectroscopy for the spin-
antiparallel static structure factor as in three dimensions. In future studies, it will be interesting
to study both experimentally and theoretically the density distributions at finite temperatures,
which may elucidate the fermionic BKT transition in two dimensions.
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