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Abstract

In this paper, we explore a quantitative approach to querying
inconsistent description logic knowledge bases. We consider
weighted knowledge bases in which both axioms and asser-
tions have (possibly infinite) weights, which are used to as-
sign a cost to each interpretation based upon the axioms and
assertions it violates. Two notions of certain and possible an-
swer are defined by either considering interpretations whose
cost does not exceed a given bound or restricting attention
to optimal-cost interpretations. Our main contribution is a
comprehensive analysis of the combined and data complexity
of bounded cost satisfiability and certain and possible answer
recognition, for description logics between ££ and ALCO.

1 Introduction

Ontology-mediated query answering (OMQA) is a frame-
work for improving data access through the use of an on-
tology, which has been extensively studied by the KR and
database communities (Poggi et al. 2008; Bienvenu and Or-
tiz 2015; Xiao et al. 2018). Much of the work on OMQA
considers ontologies formulated in description logics (DLs)
(Baader et al. 2017). In the DL setting, OMQA consists
in finding the answers that are logically entailed from the
knowledge base (KB), consisting of the ABox (data) and
TBox (ontology). Due to the use of classical first-order se-
mantics, whereby everything is entailed from a contradic-
tion, classical OMQA semantics fails to provide informative
answers when the KB is inconsistent.

The issue of handling inconsistencies, or more gener-
ally unwanted consequences, in DL KBs has been explored
from many angles. One solution is to modify the KB in
order to render it consistent, and there has been signifi-
cant research on how to aid users in the debugging process,
e.g. by generating justifications that pinpoint the sources
of the inconsistency (Parsia, Sirin, and Kalyanpur 2005;
Pefialoza 2020). This line of work mostly focuses on help-
ing knowledge engineers to debug the TBox before de-
ployment in applications, but some recent work specifi-
cally target ABoxes (Baader and Kriegel 2022). How-
ever, in an OMQA setting, where the ABox can be very
large and subject to frequent updates, it is unrealistic to
assume that we can always restore consistency. This has
motivated a substantial line of research on inconsistency-
tolerant semantics to obtain meaningful answers from in-

consistent KBs, surveyed in (Bienvenu and Bourgaux 2016;
Bienvenu 2020). Many of these semantics are based upon re-
pairs, defined as inclusion-maximal subsets of the ABox that
are consistent w.r.t. the TBox. Two of the most commonly
considered repair semantics are the AR semantics (Lembo
et al. 2010), which asks for those answers that hold in ev-
ery repair, and the brave semantics (Bienvenu and Rosati
2013), which considers those answers that hold in at least
one repair. Note that the work on repair-based semantics
typically assumes that the TBox is reliable, which is why re-
pairs are subsets of the ABox, with the TBox left untouched.
A notable exception is the work of Eiter, Lukasiewicz, and
Predoiu (2016), which considers generalized notions of re-
pair for existential rule ontologies composed of hard and soft
rules, in which contradictions may be resolved by removing
or minimally violating soft rules.

In this paper, we explore a novel quantitative approach
to querying inconsistent description logic KBs, which
combines the idea of soft ontology axioms from (Eiter,
Lukasiewicz, and Predoiu 2016) with a recent cost-based ap-
proach to repairing databases w.r.t. soft constraints (Carmeli
et al. 2021). The idea is to associate with every TBox axiom
and ABox assertion a (possibly infinite) weight. ‘Hard’ ax-
ioms and assertions, which must be satisfied, are assigned a
weight of oo, and the remaining ‘soft’ axioms and assertions
are assigned weights based upon their reliability, with higher
weights indicating greater trust. The cost of an interpretation
is defined by taking into account the number of violations of
an axiom (assertions can be violated at most once) and the
weights of the violated axioms and assertions. When de-
termining the query answers, we shall use the cost to select
a set of interpretations, either by considering all interpreta-
tions whose cost is below a given threshold, or considering
only those interpretations having an optimal (i.e. minimum)
cost. We shall then consider both the certain answers, which
hold in all of the selected interpretations, and the possible
answers, which hold w.r.t. at least one selected interpreta-
tion. When restricted to consistent KBs, the optimal-cost
certain and possible semantics coincide with the classical
certain and possible answer semantics, cf. (Andolfi et al.
2024). By varying the cost bounds, we can identify answers
that are robust (i.e. hold not only in all optimal-cost interpre-
tations but also ‘close-to-optimal’ ones) or rank candidate
answers based upon their incompatibility with the KB.



We perform a comprehensive analysis of the complex-
ity of the main decision problems in our setting, namely,
bounded-cost satisfiability of weighted KBs and recogni-
tion of certain and possible answers w.r.t. the set of k-cost-
bounded or optimal-cost interpretations. Our study covers
lightweight and expressive description logics, ranging from
EL | to ALCO, and queries given either as instance (IQs) or
conjunctive queries (CQs). We consider both the combined
and data complexity measures, as well as the impact of unary
and binary encodings of the cost bound and weights. Our
results are summarized in Table 1. For combined complex-
ity, most problems are EXPTIME-complete, except for those
involving certain answers to CQs, which are 2EXPTIME-
complete. For data complexity, we identify problems which
are (co)NP-complete, @g-complete, and Ag-completel, de-
pending on the encoding and maximal value of the weights.

The paper is organized as follows. Following the prelim-
inaries in Section 2, we introduce in Section 3 our formal
framework and the associated decision problems. Sections
4 and 5 present respectively our combined and data com-
plexity results. We discuss related work in Section 6 and
conclude in Section 7 with some directions for future work.

Onmitted proofs are provided in the appendix of the long
version (Bienvenu, Bourgaux, and Jean 2024).

2 Preliminaries
We briefly recall the syntax and semantics of DL.

Syntax A DL knowledge base (KB) K = (T, A) consists
of an ABox A and a TBox 7, both of which are constructed
from three mutually disjoint countable sets N¢ of concept
names (unary predicates), Ngr of role names (binary predi-
cates), and N, of individual names (constants). The ABox
is a finite set of concept assertions of the form A(a) with
A € N¢,a € Ny and role assertions of the form R(a,b) with
R € NRg, a,b € N,. The TBox is a finite set of axioms whose
form depends on the DL in question. In ALCOQu TBox
axioms are concept inclusions C' C D where C and D are
complex concepts formed using the following syntax:

C:=Al{a}|T|L|CAC|CUC|~C
| 3R.C | VR.C' |[< nR.C' |> nR.C

where A € N¢, a € Ny, R € Ngr U {U}, with U the special
universal role.”

The DL ALCO is the restriction of ALCO Qu disallow-
ing the use of qualified number restrictions (< nR.C or
> nR.C) and of the universal role U. The DL ££ | further
disallows the use of universal restrictions (VR.C'), negations
(=C), unions (C U C) and nominals ({a}).

We denote by Ind(A) (resp. Ind(K)) the set of individuals
that occur in A (resp. in K), and by sig(7T") (resp. sig(K)) the
set of concept and role names that occur in 7 (resp. in /C).

'AD is the class of decision problems solvable in polynomial
time with access to an NP oracle, and ©% (aka AL [log n]) the sub-
class allowing only logarithmically many NP oracle calls.

?Usually the universal role cannot occur in qualified number re-
strictions (< nR.C or > nR.C') but nominals allow us to simulate
such number restrictions as explained in (Ortiz and Simkus 2012).

Semantics  An interpretation has the form Z = (A%, 1),
where the domain A is a non-empty set and .~ maps each
a € Nytoa? € AZ, each A € Nc to AT C AZ, each
R € Ngto RT C AT x AT and interprets the univer-
sal role U by UZ = AT x AZ. The function .7 is ex-
tended to general concepts, e.g., (A3R.D)Y = {c | 3d €
DT : (¢,d) € RT}; {a}? = {a®}; TT = AL; 1T = 0
(< nR.C)t = {c| #{d € C* | (¢,d) € R} < n} and
(> nR.C)T ={c| #{d € C* | (¢,d) € RT} > n}. An
interpretation Z satisfies an assertion A(a) (resp. R(a, b)) if
a € A% (resp. (a,b) € R?); we thus make a weak version of
the standard names assumption (SNA).? T satisfies an inclu-
sion C C D if CT C D and {a}* = {a} for every nominal
occurring in C or D. We write Z |= 7 (resp. Z = a) to in-
dicate that Z satisfies an axiom 7 (resp. assertion «). An
interpretation Z is a model of K = (T, A), denoted Z |= KC,
if Z satisfies all inclusions in 7 (Z = T) and all assertions
in A(Z = A). AKB K is consistent if it has a model.

Queries We consider conjunctive queries (CQs) which
take the form g1, where 1 is a conjunction of atoms of
the forms A(t) or R(t,t'), where ¢,t' are variables or in-
dividuals, and ¢ is a tuple of variables from ¥. A CQ is
called Boolean (BCQ) if all of its variables are existentially
quantified; a CQ consisting of a single atom is an instance
query (1Q). When we use the generic term query, we mean
a CQ. For a BCQ ¢ and an interpretation Z, we denote by
T |= q the fact that 7 satisfies g. A BCQ ¢ is entailed from
K, written K = ¢, if Z |= ¢ for every model Z of K. A BCQ
q is satisfiable w.r.t. IC if there exists a model Z of X such
that Z |= ¢. For a non-Boolean CQ ¢[Z] with free variables
Z = (x1,...,%), a tuple of individuals @ = (a1, ...,ax)
is a certain answer for ¢[Z] w.rt. K just in the case that
K E qld], where g[a] is the BCQ obtained by replacing
each x; by a;. Tuple @ is said to be a possible answer for
q[Z] w.r.t. K if the BCQ ¢[d] is satisfiable w.r.t. K. Observe
that certain and possible answer recognition corresponds to
BCQ entailment and satisfiability respectively.

To simplify the presentation, we shall focus on BCQs.
However, all definitions and results are straightforwardly ex-
tended to non-Boolean queries, and we shall thus sometimes
speak of ‘query answers’ when providing intuitions.

3 Weighted Knowledge Bases

We consider a quantitative way of integrating the notion of
soft constraints by giving weights to axioms and assertions.
Intuitively, these weights represent penalties associated to
each violation of the axioms or assertions. They will allow
us to assign a cost to interpretations based upon the axioms
and assertions they violate, and use this cost to select which
interpretations to consider when answering queries.

Definition 1. A weighted knowledge base (WKB) K, =
(T, A),w) consists of a knowledge base (T, A) and a cost
Sunction w : T U A — Nso U {+o0}. We denote by T

3The usual SNA requires that a© = a for every a € Nj, hence
that N, C AT , so all interpretations have an infinite domain. To
be able to bound the size of interpretations, we adopt this ‘weak’
version of the SNA, used e.g., by Lutz, Maniére, and Nolte (2023).



(resp. Aoo) the set of TBox axioms (resp. ABox assertions)
that have an infinite cost and let Koo = (Too, Aso). We
sometimes use wy, as a shorthand for w(x).

Example 1. Consider the following WKB about visa re-

quirements to enter some country c: K, = ((T,A),w)
where T = {11, 72,73}, A= {a1,a2} and
71 =VisaMNoVisa C L w(r) = o0
T =3hasNat.{c} M3hasNat.{b} C L w(m) =00
73 =VhasNat.—~{c} C Visa w(rs) =1
ay =hasNat(p, b) w(ag) =

as =NoVisa(p)

Two ‘absolute’ constraints T1 and To express that one cannot
both need a visa (Visa) and not need one (NoVisa) and that
it is not possible to have both nationalities (hasNat) ¢ and b.
A ‘soft’ constraint T3 expresses that someone that does not
have nationality ¢ normally needs a visa. The ABox states
that a person p has nationality b and does not need a visa,
and the second assertion is more reliable than the first one.

To measure how far an interpretation is from being a
model of the KB, we rely on the following sets of violations.

Definition 2. The set of violations of a concept inclusion
B C Cin an interpretation L is the set

’UZ'OBgc(I) = (B M ﬁC)I.
The violations of an ABox A in an interpretation T are
vioa(T) ={a € A|T £ a}.

These sets of violations can be used to associate a cost to
interpretations, by taking into account the weights assigned
by the WKB to the violated inclusions and assertions.

Definition 3. Let KC,, = ((T, A),w) be a WKB. The cost of
an interpretation Z w.r.t. IC,, is defined by:
> e

costi,, () = Z wrlvior (Z)] +
TET acvios ()

We say that K, is k-satisfiable if there exists an interpreta-
tion T with costi,(Z) < k and define the optimal cost of
K., as optc(K,) = ming(costx,, (T)).

Remark 1. Note that costi,(Z) will be oo if any infinite-

weight assertion or inclusion is violated in T and/or if any

inclusion has an infinite set of violations in T.

Example 2 (Ex.1 cont’d). Consider the following interpre-

tations over domain AT = {p, b, c} that correspond to dif-

ferent possibilities for p’s nationalities and need for a visa.

e Case p has nationality b and needs a visa: hasNat? =
{(p,b)}, Visa™ = {p} and NoVisa™ = (. T? violates
only g so costi, (1Y) =2

e Case p has nationality b and does not need a visa:
hasNat™ = {(p,b)}, Visa”™ = () and NoVisa™ = {p}.
I violates only T3 so costx, (1) = 1.

e Case p has nationality c and needs a visa: hasNat?e =
{(p,c)}, Visa’e = {p} and NoVisa® = (). I? violates
only a;y and az so costi,(IYV) = 3.

e Case p has nationality ¢ and does not need a visa:
hasNat’e = {(p,¢)}, Visa’™ = () and NoVisa™ = {p}.
7 violates only oy so costi,, (I7) = 1.

e Case p has nationality b and c¢ and does not need a
visa: hasNat®e = {(p,b), (p,c)}, Visa’s = () and
NoVisaZte = {p}. I} violates T so costi,, (I].) = oc.

Since K, is inconsistent and the smallest weight is 1, it fol-

lows that I}' and I are of optimal cost and optc(K,,) = 1.

It is now possible to define variants of the classical certain
and possible answers, by considering either only interpre-
tations whose cost does not exceed a given bound, or only
optimal-cost interpretations. For simplicity, we state the def-
initions in terms of BCQ entailment.

Definition 4. Let g be a BCQ and K, = ({T, A),w) be a
WKB. We say that q is entailed by K, under

* k-cost-bounded certain semantics, written K, =¥ q, if
T = q for every interpretation T with costi,(Z) < k;

* k-cost-bounded possible semantics, written IC, \:’; q, if
T |= q for some interpretation T with cost () < k;

* opt-cost certain semantics, written KC,, EP! q, if T |= q
for every interpretation T with costi,(Z) = optc(Ky);

* opt-cost possible semantics, written IC,, |:§”t ¢ ifTEq
for some interpretation T with costi,(Z) = optc(Ky).
Example 3 (Ex.1 cont’d). Since optc(K,,) = 1, weights of
axioms different from T3 and o are greater than 1 and 1}
and I" are interpretations of cost 1 that violate T3 and oy re-
spectively, it follows that interpretations of optimal cost vio-
late exactly one axiom in {13, a1 }. In particular, they all sat-
isfy ao, i.e., K, EP' NoVisa(p). Since all interpretations
of minimal cost satisfy 71, it follows that K., F=5P* Visa(p).
On the other hand, we obtain that K,, |=9P* hasNat(p, b)
(because of I}') and KC.,, |:;pt hasNat(p, ¢) (because of I7?).

If we now consider interpretations of cost bounded by 2,
we obtain that K., 2 NoVisa(p) and K., |=3 Visa(p) (be-
cause of Ip)), hence we cannot conclude anymore whether
p needs a visa or not using the certain semantics. However,
we can still exclude some statements even under possible se-
mantics. For example, K, 12 hasNat(p, ¢) A Visa(p), since
this holds only in interpretations of cost at least 3.

When the underlying KB is consistent, the certain and
possible optimal-cost semantics coincide with classical
query entailment and query satisfiability (or classical certain
and possible answers in the case of non-Boolean queries):

Proposition 1. Ler K, be such that optc(K,,) = 0. Then:
* Ko EP qiff K q
* Ko =97 q iff q is satisfiable w.r.t. K

It is also interesting to consider how the k-cost-bounded
semantics vary with different values of k:

Proposition 2. Consider a WKB K,, BCQ q, and k > 0.
s IfK, EF q, then I, |:’§/ qforevery0 <k <k
« If Ko £ g, then K, l#gl qforevery0 <k <k
Moreover, K., [ q and Ko, =E q if k < opte(K,,).



BCS IQA®, CQAZ IQAZ IQAI‘;Pt, CQA;;Pt IQAgPt CQAgPt
Combined EXPTIME EXPTIME EXPTIME 2EXPTIME EXPTIME EXPTIME 2EXPTIME
Data NP NP cONP AB* /@D AB-hard* /©3"  AB-hard* / ©3'

Table 1: Overview of complexity results for description logics between ££1 and ALCO. All bounds are tight except the two ‘-hard’ cases.
Lower bounds hold even if the weights (and the input integer in the case of combined complexity) are encoded in unary, except those marked
with *. Upper bounds hold even if the weights (and the input integer in the case of combined complexity) are encoded in binary. ': e5-
complete if the finite weights on the assertions are either bounded (independently from |.4]), or encoded in unary.

The preceding result shows, unsurprisingly, that k-cost-
bounded semantics are only informative for & > optc(KCy,).
Increasing k beyond optc(K,,) leads to fewer and fewer
queries being entailed under the k-cost-bounded certain se-
mantics, which may be useful in identifying query answers
that are robust in the sense that they continue to hold even if
we consider a larger set of ‘close-to-optimal’ interpretations.
By contrast, as k grows, so does the set of entailed queries
under k-cost-bounded possible semantics. Being quite per-
missive, the opt-cost and k-cost-bounded possible semantics
will entail many queries, and thus are not suitable replace-
ments for standard (certain answer) querying semantics. In-
stead, non-entailment under these semantics can serve to
eliminate or rank candidate tuples of individuals (or the cor-
responding instantiated Boolean queries) based upon how
incompatible they are w.r.t. the expressed information.

Relationship With Preferred Repair Semantics We
show that opt-cost certain semantics generalizes the <,-
AR semantics defined by Bienvenu, Bourgaux, and Goas-
doué (2014) for KBs with weighted ABoxes, where w :
A — Ny models the reliability of the assertions while the
TBox axioms are considered absolute. In this context, <,,-
repairs are subsets of the ABox consistent with the TBox
and maximal for the preorder defined over ABox subsets
by A1 <, A if ZaeAl we < ZaeAg we. A BCQ
q is entailed under <,-AR (resp. <,-brave) semantics if
(T, A') = q for every (resp. some) <,-repair A’ of A.

Proposition 3. Ler K, = ((T, A),w) be a WKB such that

T is satisfiable, w(T) = oo for every 7 € T and w(«) # o
for every a € A, and let q be a BCQ.

Ko EX q <= (T, A) E<,arq

Proof sketch. Since T is satisfiable, there is a model Z of T,
and since w(a) # oo for every o € A, costi,(Z) # oo. It
follows that optc(KC,,) # oo and that every Z of optimal cost
is such that Z |= T and costic,, (Z) = 3_,cpio (1) Wa-
Hence, for every Z of optimal cost, A" = A\ vio4(Z) is
a <,-repair. Indeed, since Z = (T, A’), (T, A’) is consis-
tent. Moreover, Y . 1 Wa = Y qcqWa — costi,, (Z) and
costrc,,(Z) is minimal, so » . 4 W is maximal. It also
follows that every <,-repair A’ is such that ), wo =

ZaeA‘*’a — opte(Ky).

Note however that opt-cost possible semantics, does not
generalize <,,-brave, but only over-approximates it:

<T7 A> ':Sw—brave q — Ko }:Zpt q.

Indeed, we have shown that to each <, -repair corresponds
at least one interpretation with optimal cost but given an in-
terpretation Z with optimal cost w.r.t. K, = ((T,A),w),
if B € Nc\ sig(K) and b € N;\ Ind(K), then one can
add b% to BT without changing the cost of Z w.r.t. K, so
K. EP" B(b) while (T, A) F<,,brave B(D).

Decision Problems In our complexity analysis, we will
consider the following decision problems:

* Bounded cost satisfiability (BCS) takes as input a WKB
K., = ({T, A),w) and an integer k and decides whether
there exists an interpretation Z with costx (Z) < k.

* Bounded-cost certain (resp. possible) BCQ entailment
(CQA? (resp. CQAD)) takes as input a WKB K, =
(T, A),w), a BCQ ¢ and an integer k and decides
whether K, |=F ¢ (resp. Ko, =5 9).

* Optimal-cost certain (resp. possible) BCQ entailment
(CQA%* (resp. CQAJP)) takes as input a WKB K, =
((T,A),w) and a BCQ ¢ and decides whether K, =" ¢
(resp. Ko (227" ).

We will also consider the restrictions of the Boolean query

entailment problems to the case of instance queries, denoted
by IQAL, IQAY, IQA2P" and IQAYP respectively.

Complexity Measures It is customary to consider com-
bined complexity and data complexity when studying de-
cision problems related to query answering over DL KBs.
Data complexity considers only the size of the ABox while
combined complexity takes into account the size of the
whole input. In the case of WKBs, we consider the as-
sertion weights as part of the ABox and inclusion weights
as part of the TBox. We will use the following notation:
given a WKB K, = ((T, A),w), |A| (xesp. |T|, |K|) is the
length of the string representing A (resp. T, K), where el-
ements of N¢, Nr and N, are considered of length one, and
| Aw| (resp. | Tol, |Ku]) is the length of the string represent-
ing the set {(o,w(a)) | @« € A} (resp. {(7,w(7)) | T € T},
{(x,w(x)) | x € TUA}), where elements of N¢, Ng and N,
are considered of length one and weights are encoded either
in unary or in binary. Note that if the TBox contains qual-
ified number restrictions, the numbers can also be encoded
in unary or binary. We will also make this encoding distinc-
tion for the integer k taken as input by some of the decision
problems we consider. If |k| denotes the size of the encod-
ing of k, k = |k| when encoded in unary and k& < 2kl when
encoded in binary. Finally, for a BCQ g, |g| is the length of
the string representing ¢ where elements of N¢, Ng, N; and




variables are considered of size one. Note that when we use
| - | over a set which is not a (weighted) ABox or TBox, we
simply means the set cardinality.

4 Combined Complexity

In this section we study the combined complexity of
bounded cost satisfiability and certain and possible answer
recognition, for DLs between ££, and ALCO. The first
line of Table 1 gives an overview of the results.

4.1 Upper Bounds

To characterize the cost of interpretations, we define the no-
tion of k-configuration. Intuitively, a k-configuration speci-
fies how to allocate a cost of k between possible violations.

Definition 5 (k-configuration). Let K, = ((T,.A),w) be
a WKB and k be an integer. A k-configuration for KC,, is a
Sunction v : T U A — N such that:

* (1) € Nforeveryt €T,

* v(a) € {0,1} for every a € A,

* 2eruaY(X)wy < k.

An interpretation T satisfies the k-configuration ~ if
[vior(Z)| < ~(7T) for every T € T and T = « for every
a € A such that y(«) = 0.

The definition of k-configurations implies in particular
that v(x) = 0 for every x € Too U Awo.

Lemma 1. Let K, be a WKB and I be an interpretation.
costic,(Z) = min{k | Iy k-configuration s.t. T satisfies v}

Proof. If T satisfies a k-configuration v, costx_(Z) < k.
Indeed, for every 7 € T, |vio-(Z)| < ~(7), and for every
a € viog(Z), v(a) = 1 because y(a) = 0 implies Z = a.
Thus costic,(Z) < > eV (Twr + D peaV(@wa <
k. Moreover, if costx, (Z) = k, we can define a k-
configuration +y such that 7 satisfies v by setting y(7) =
|vior(Z)| for every 7 € T, and v(a) = 0if Z E «q,
~v(a)) = 1 otherwise for every a € A. O

We now define a new KB in a more expressive DL in such
a way that the models of the new KB will be interpretations
that satisfy a given k-configuration.

Given a concept inclusion 7 = B C C we define the
violation concept V; := B I —=C such that for every inter-
pretation Z, it holds that vio, (Z) = V.Z.

Definition 6. Let K, = ((T,A),w) be an ALCO WKB, k
an integer and vy a k-configuration for K,. We define the
ALCOQu KB K., = (T, Ay) associated to K., and v as:

Ty =Toc U{TE<A(r) UV, | T €T\ T}
Ay ={a € A| y(a) =0}

Proposition 4. Let K, be a WKB and +y be a k-configuration
for K,,. For every interpretation Z, T |= K iff T satisfies .

Proof. Suppose Z |= K.,. Forevery 7 € T \ Too, since Z |=
T C< y(1)U.V,, then |vio, (Z)| = |[VZ| < (7). For every
T € Too, since T = Too, [vior(Z)| = 0 = (7). Finally, as
7 = A,, T satisfies all o € A such that y(a) = 0.

Conversely, suppose that Z satisfies . For every 7 € T \
Toos |VZ| = |vio (Z)| < v(7) thus Z = T C < y(7)U.V,.
For every 7 € T, |[vior(Z)] < v(r) = 0thus Z = 7.
Therefore Z |= 7,. As T satisfies all @ € A such that
v(a) =0, wealsohave Z = A, s0 Z = K,. O

This construction allows us to decide bounded cost satis-
fiability via ALCO Qu satisfiability.

Theorem 1. BCS for ALCO is in EXPTIME in combined
complexity (even if the bound k and the weights are encoded
in binary).

Proof. Let K, = ((T,A),w) be a WKB and k be an in-
teger. By Lemma 1 and Proposition 4, /C,, is k-satisfiable
iff there exists a k-configuration v such that K, is satis-
fiable. The number of k-configurations ~ is bounded by
(k + 1)ITI21A1 (hence by 2!+ HITI+IALif k is encoded in
binary and |k + 1| is the length of the encoding of k + 1) as
there are at most &k + 1 possibilities for the value of (7) for
7 € T and 2 possibilities for the value of v(«) for a € A.
Moreover, for a given v, K, is of polynomial size and can
be constructed in polynomial time w.r.t. || and |k| by en-
coding the number restrictions in binary (since the numbers
occurring in such restrictions are bounded by k). Therefore,
as satisfiability in Z0OQ (which extends ALCOQu) is in
EXPTIME even with binary encoding in number restrictions
(Calvanese, Eiter, and Ortiz 2009), checking for every k-
configuration v whether K is satisfiable is a decision pro-
cedure for BCS that runs in exponential time w.r.t. combined
complexity. Note that the complexity results for ALCOQu
apply even if they are shown without the standard name as-
sumption because K, is satisfiable under our weak SNA iff
KyU{{a}n{b} C L |a,belnd(K), a#b} is satisfiable with-
out any assumption on the interpretation of individuals. [

To prove the upper bounds on query entailment, we need
to first show some results on the computation of the optimal
cost of an ALCO WKB. Since the number of violations of
a concept inclusion in an interpretation Z is bounded by the
cardinality of its domain AZ, the following proposition is
useful to bound the optimal cost of a WKB.

Proposition 5. Let IC be an ALCO KB. If K is satisfiable,
then it has a model T such that |AT| < |Ind(K)| + 2/7.

Proof sketch. We adapt the proof of ALC bounded model
property by Baader et al. (2017). It is based on the notion
of filtration that ‘merges’ elements that belong to the same
concepts and is easily extended to handle nominals. O

The following lemma is a consequence of Proposition 5
and the definition of the cost of an interpretation.

Lemma 2. The optimal cost for an ALCO WKB K, (such
that K, is satisfiable) is exponentially bounded in |IC,|
(even if the weights are encoded in binary).

Proof. Let K, = ((T, A),w) be an ALCO WKB such that
K is satisfiable. By Proposition 5, there exists a model Z



of Ko such that [AZ| < |Ind(K)| +2/71:=1.
costx,(T) = Z wrlvior (Z)] + Z Wa

TET acvios(T)

<UD w)+ Y wa
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It follows that optc(K,) < coste,(Z) < L
where L = (|T]|Ind(K)| + |T|2I71) max, e 7. (wr) +
|A| max,e 4\ A.. (Wa). Moreover, since the maximal (finite)
weights are at most exponential in |/C,,| (even if weights are
encoded in binary), L is exponential in |/C,,]|. O

Since the optimal cost is exponentially bounded and BCS
is in EXPTIME, we obtain the following result.

Lemma 3. Computing the optimal cost of an ALCO WKB
K. can be done in exponential time in the size of the WKB
|y | (even if the weights are encoded in binary).

Proof. Let K, = ((T, A),w) be an ALCO WKB. If K
is not satisfiable, optc(K,,) = co. Otherwise, by Lemma 2,
optc(K,,) < L for some L := 2P(Xe]) where p is a poly-
nomial function. To compute optc(K,,), one can check for
every 0 < ¢ < L whether there exists Z with costx, (Z) < 1.
By Theorem 1, each call to BCS takes exponential time
w.r.t. |IC,| and the size of the binary encoding of 4, which
is bounded by p(|K,|). The whole computation thus takes
exponential time w.r.t. |/C,|. O

We show that BCQ entailment (hence also BIQ entail-
ment) under our variants of the possible semantics can be
decided through an exponential number of calls to BCS.

Theorem 2. CQAY and CQA" for ALCO are in EXPTIME
in combined complexity (even if the bound k and the weights
are encoded in binary).

Proof. Let K, = ((T, A),w) be a WKB, k an integer and
¢ = 3§y a BCQ with ¢y = A, ; where each ¢; is an
atom of the form A(¢) or R(¢,¢') with¢t,¢' € N;U 7.

Let Ny C N; \ Ind(KC) such that [Ng| = |, and for every
valuation v : § — Ind(K) U Ny let v(yp;) denote the fact
obtained by replacing each variable = by v(z) in ¢; and de-
finea WKB: K, = ((T,Ay),wy) with A, = AU{v(e;) |
1 < i < n} and w, extends w with w,(v(p;)) = oo for
1 < i < n. We show that K, |=F ¢ iff there exists v such
that K7, is k-satisfiable.

(<) If there exists v such that Kf), is k-satisfiable, let Z be
such that costcy (Z) < k. By construction of K, , T =
v(p;) for 1 < i < nsowisamatchforginZ,ie.,Z | q.
Moreover, costx.,, () = costiy (I) < k. Hence K, (=} ¢.
=) If I, ):’; g, there exists Z |= ¢ with costx_ () < k.
Let 7 be a match for ¢ in Z (note that w(c¢) = ¢ for every
¢ € Ny). Consider D7 := {n(z) | € y} \ Ind(K). Since
IDZ| < [Ngl, we can define an injective function f from D7
to Ng. Let v : ¥ — Ind(KC) U Ny such that v(z) = n(x) if
7m(x) € Ind(K) and v(z) = f(w(x)) otherwise, and define

T, by Ao = AT\ D7 U Ng, cfv = c for every ¢ € Ny,
and for every A € Nc and R € Ng, substitute w(z) € D;E
with v(z) in AT (resp. R%) to obtain AZv (resp. RZ*). By
construction of Z,,, Z,, = v(p;) for 1 < i < n. Moreover,
forevery « € A, 7, &= «aiff Z = « and for every 7 €
T, vio(Z,) = vior(Z) \ D7 U {f(e) | e € vio-(Z) N
D7} Hence costy (Zv) = costi,(Z) < kand K is
k-satisfiable.

Therefore, checking for every valuation v (there are at
most (|Ind(K)| + |¢|)!7 such valuations) whether K2, is k-
satisfiable (in exponential time w.r.t. |[K?, | and |k| by The-
orem 1, even with binary encoding of k and the weights)
yields an EXPTIME procedure to decide CQAZ.

Regarding CQAzpt, we obtain an EXPTIME decision pro-
cedure by first computing optc(K,) in exponential time
w.r.t. |KC,,| using Lemma 3, then applying the EXPTIME pro-
cedure for CQAJ using optc(K,,) as the bound (since by
Lemma 2 optc(KC,,) is exponentially bounded in |/C,,|, its
binary encoding is polynomial in |K,,|). O

Regarding our variants of the certain semantics, we need
to distinguish between 1Qs and CQs.

Theorem 3. CQAY and CQA°P* for ALCO are in 2EX-
PTIME in combined complexity and IQAY and IQA%"* for
ALCO are in EXPTIME in combined complexity (even if the
bound k and the weights are encoded in binary).

Proof. Let K, = ((T,A),w) be a WKB, k an integer and
q a BCQ. We have that KC,, =¥ ¢ iff T |= ¢ for every inter-
pretation Z with costx_(Z) < k. By Lemma 1, this is the
case iff for every k-configuration  of IC,, for every Z satis-
fying v, Z = ¢. By Proposition 4, this holds iff for every k-
configuration y of /C,,, for every Z = K, Z |= ¢. Hence we
obtain that K, =¥ ¢ iff K, = ¢ for every k-configuration
of IC,,. Therefore, checking for every k-configuration  for
K., whether K, |= q yields a decision procedure for CQA®.

To obtain that CQAY is in 2EXPTIME in combined com-
plexity and IQA® is in EXPTIME in combined complex-
ity, even if the bound k and the weights are encoded in
binary, we use the follo