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Abstract
The relevance of low-code / no-code development has grown sub-

stantially in research and practice over the years to allow non-

technical users to create applications and, therefore, democratise

software development. One problem in this domain still persists:

many platforms remain low-code as the underlying modeling layer

still requires professionals to write/design a model, often using

Domain Specific Languages (DSLs). With the rise of generative

AI and Large Language Models (LLMs) and their capabilities, new

possibilities emerge on how Low Code Development Platforms

(LCDPs) can be improved.

This paper shows how the capabilities of LLMs can be leveraged

to turn DSL-based low-code platforms into true no-code. We an-

alyzed how textual modeling can be replaced by generating the

required model using LLMs. We conducted a user experiment to

compare textual modeling with the use of LLMs for that task. Our

results show that task completion time could be significantly im-

proved, and the majority of users prefer using the LLM-aided mod-

eling. Based on these findings, we discuss the integration of these

techniques into an existing low-code platform to transform it into

true no-code.

CCS Concepts
• Software and its engineering→ Software development tech-
niques.

Keywords
LLM,AI, low-code development platform,meta-model, model-driven

engineering, DSL
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1 Introduction
With information’s increased value, developing software tools to

manipulate, store, and analyze it has become a challenging task.

The ability to quickly make decisions based on the collection of

heterogeneous, possibly large amounts of data originating from

different sources in real-time requires complex representations and

advanced analysis tools that are nowmore and more integrated into

large Information Systems (ISes), making their development even

more complex. In addition, due to the market pressure, companies

must reduce production cycle times. This has a negative impact on

developers, who have to constantly innovate to develop software

applications faster while maintaining robustness.

This paper intends to address this challenge by combining two

paradigms, namely Low Code Development Platforms (LCDPs) and

Large Language Models (LLMs). On the one hand, LCDPs promote

the development of fully functional and customizable applications,

using visual abstractions and graphical user interfaces while requir-

ing a small amount of code [3]. Leveraging LCDPs for developing

software systems is appealing to end-users with no programming

skills who want to have a key role in the process of creating their

systems. However, transitioning from “low-code” to “no-code” is

still a research challenge as code is still required to i) formally de-

scribe the data entities to manipulate and their relationships; ii)

describe how data is aggregated to be presented onto the screen;

and iii) describe how an IS can be generated from a conceptual

model. Several attempts (e.g., [13]) have been made using custom

Domain Specific Languages (DSLs) while others rely on the UML

and UML profiles [5]. In either case, knowledge of data modeling is

still a requirement for users of LCDPs.

On the other hand, the recent advancements in research and

development of LLMs open new perspectives in terms of software

production from textual specifications. Yet, as pointed out several

times in the literature [25, 37], LLMs often produce suboptimal

results when used to generate code, forcing developers to spend

time reviewing the code generated by the LLMs, thus reducing

the possible benefits of using them. One reason that can explain

the lack of performance from LLMs is the high expressiveness

that general-purpose programming languages such as Java can

offer. This limitation is, however, counterbalanced in the context of

low-code development as the expressiveness a LCDP can offer is

often curbed by the number of available commercially off-the-shelf

functionalities (e.g., widgets in the context of Web Information

Systems (WISes)), along with their customization capabilities the

LCDP’s User Interface (UI) can offer.

Research questions and contributions: The main research question

addressed in this paper is:

RQ1. How can existing LCDPs benefit from generative AI and
LLMs?

To answer RQ1, this paper presents an approach to how LLMs

can be integrated into model-based LCDPs. The approach’s goal is

to consume users’ specifications in natural language and produce

models conforming to textual notation. These models can then

be further processed in the respective LCDP to generate, e.g., the

application from it. The approach is independent of any of the

chosen Model-Driven Engineering (MDE) technologies (EMF/Xtext
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or others) used in the running example and the case study, see

Section 4.

In order to evaluate our approach, we present in this paper the

results of a user experiment where we compared the perceived us-

ability and task completion time of manually creating textual mod-

els by hand with generating them from an LLM based on the user’s

specifications in natural language. We used for that the OpenAI

API [23] with model version GPT-4o. The results of the user ex-

periment show that our approach could significantly improve the

task completion time in the chosen case study while not impacting

usability. The results, logs, and implementation of our approach

can be found in the supplementary material [11].

This main research question led to the formalization of two

subsidiary questions:

RQ2. Can LLMs completely remove the necessity for coding in
existing DSL-based LCDPs?

To address RQ2, we conducted an explorative study to verify that,

although the task of generating code conforming to a DSL using an

LLM that was not trained for it is not trivial, the correct definition

of the prompt used to interact with the LLM significantly impacts

the capabilities of the LLM to produce models that are syntactically

valid. During the user experiment, we observed that using our

defined prompt template, all generated models were syntactically

valid. However, being syntactically valid does not mean that they

match the user’s specification in natural language. In this paper, we

discuss how our approach contributes to the semantic validation of

the generated models.

RQ3.What are the required steps to transform model-based LCDPs
into true no-code by using the capabilities of LLMs?

Finally, we discuss in this paper the opportunities and challenges

in integrating generative AI in MDE processes and its benefits for

LCDP end users and practitioners (RQ3). In particular, we discuss

how the integration can not only benefit the user of such platforms

to describe applications in a no-code approach but also how devel-

opers of such platforms can take advantage of LLMs to facilitate

the customization capabilities.

Paper structure: the remainder of this paper is structured as fol-

lows: Section 2 provides background; Section 3 presents the for-

mulated approach; Section 4 details the user experiment; Section 5

gives some pointers to turn low-code into no-code using LLMs;

Section 6 discusses the current status of the implementation and

future work; Section 7 presents related work; Section 8 concludes.

2 Foundations
This section gives an overview of the relevant foundations and

background required for the present work.

2.1 Low-/No-Code Development
LCDPs allow citizen developers (developers with little or no soft-

ware engineering background [22]) to rapidly deliver, set up, and

deploy applications, reducing the amount of hand-written code to

a minimum [29]. Therefore they are appealing to a larger group

of stakeholders, as less or no software engineering knowledge is

required to develop applications that meet the stakeholders specific

needs.

One relevant aspect of LCDP is the rapid creation, deployment,

and release of new versions of the created application. As web-

based systems are often easier and cheaper to deploy than desktop

ones [31], they are more aligned with low-code development [28].

LCDPs facilitate development through, e.g., drag’n’drop-oriented

interactions or the composition of pre-built components or widgets.

Ideally, the development process and editors are built into a single

application and UI, therefore further guiding the user through de-

velopment and sometimes even deployment. Further specification

and customization can sometimes be added through textual speci-

fication, or the whole composition/modeling process is based on

textual modeling. Business logic is usually described by workflows

or processes using Business Process Model (BPM) and Notation

(BPMN 2.0) [21] or equivalent languages. One important benefit of

low-code tools lies in their high potential in terms of customization

of the UIs to fit end-users specific needs [29]. However, implement-

ing low-code customization capabilities in an end-user UI is not

trivial. MDE has the potential to facilitate that task.

2.2 Model-driven Engineering (MDE)
MDE is nowadays an established discipline for developing complex

software systems [19] by reducing platform complexity through

adding a layer of abstraction on top of the programming languages

[15, 30]. In MDE conceptualmodels are primary artifacts in software

development processes, and techniques such as model transforma-

tion are used to progressively refine abstract models into working

software solutions [15]. These system models can be represented

by a variety of languages, such as UML or even custom DSLs, that

are defined to model a specific problem.

Therefore, a meta-model (aka. abstract syntax) is the key ingre-

dient to formalize models. A meta-model is a set of meta-classes
which represent the concepts that define the domain and relations
that specify how the concepts can be bound together in a model.

Furthermore, a set of well-formed rules restrict the way concepts

can be assembled to form a valid model.

Different meta-modeling frameworks exist to specify meta-mo-

dels, e.g., Eclipse Modeling Framework (EMF) [34] and MetaEdit+

[14]. Dedicated to web-based technologies, new frameworks have

emerged, e.g., EMF-REST [8], Ecore.js
1
, the JavaScript Modelling

Framework (JSMF) [33], and FlexiMeta [12]. One or many concrete

syntaxes can then be specified for the samemeta-model based on the

abstract syntax defined using, e.g., the frameworks above. These can

be graphical or textual. Using Xtext [9] (a grammar-based approach),

for instance, the meta-model and a concrete textual syntax can be

defined at the same time [26]. The combination of a meta-model

with one or more concrete syntaxes is often also named a DSL and

part of LCDPs.

Running Example DSL. The running example used in the user

study in Section 4 uses a DSL to define web forms [13]. The meta-

model in a graphical notation gives an overview of the available

concepts, see Figure 1. It allows the definition of web forms in a

row-based layout. Several widgets can be defined, e.g., a text or a

1
A JavaScript implementation of the Eclipse Meta-Object Facility (MOF).
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Layout Rowrows

[*]

widgets

[1..*]

imports[*]

stylings

[*]

Import

importURI : String

Styling

name : String

width : String

height : String

padding : String

border : String

font-size : String

font-family : String

color : String

background-color : String

border-radius : String

margin : String

Widget

references : EStructuralFeature[]

label : String

icon : String
styling

[0..1]

TextInput

placeholder : String

RichTextEditor

placeholder : String

Textarea

placeholder : String

Calendar Combobox

DateInput TagsInput

Figure 1: Running example: overview of the layout meta-model (extended version of [13]).

calendar input. This DSL can be used for both textual and graphical

modeling. However, for the running example, the meta-model is

defined using Xtext. This means that a textual concrete syntax for

creating models is already defined. An example model using this

syntax is provided in Listing 1.

Besides defining the structure of the form and the type of widgets,

the DSL allows us to define to which data model attributes the

widget is linked using the references attribute. This means that

another input for the running example is a data model, which can

also be defined in a textual syntax and, therefore, generated by an

LLM if required. The experiment used two data models, one for a

conference event and one for a hair salon. Therefore, the widget

entity features the attribute references of type EStructuralFeature in
case of a definition of the data model using Ecore. Lastly, a widget

has an icon and a label to customize and adjust the form. From

the layout created from Listing 1 we used MDE techniques (see

Section 3) to generate the preview in Figure 2. Only the last two

rows (4 widgets) are contained in the example DSL code in Listing 1

for space reasons. One of the contributions of this paper is to replace

the textual creation of this model with LLMs.

2.3 Large Language Models (LLMs)
LLMs can be used to generate text based on an input provided by

the user. This means, that given a sequence of input tokens, LLMs

can estimate the probability of the next output token. They can be

customized for specific tasks using fine-tuning, which updates the

weight of parameters and, therefore, influences the token genera-

tion [27]. These capabilities, especially with the upcoming general

large language models like ChatGPT [24], created a variety of use

cases, from generating programming code or texts to proofreading

or error detection and many more [36]. To extend these capabilities,

several methods exist to adjust or improve the generated output.

As mentioned above, fine-tuning is one. However, it comes with a

significant drawback as for effective fine-tuning big datasets are

required. Creating them can be quite costly [20, 32].

// missing row 1 (2 widgets) for space reasons
row {

text input {
references Event.location
label "Location"
icon "icon-location-pin"
placeholder "Enter the location"

}
combobox {
references Event.type
label "Type of Event"
icon "icon-options"
placeholder "Select the event type"

}
}

row {
calendar {
references Event.begin Event.end
icon "icon-calendar"
label "Event Dates"
placeholder "Choose the event dates"

}
textarea {
references Event.cfp
label "Call for Papers"
icon "icon-doc"
placeholder "Enter the call for papers"

}
}

Listing 1: Example of a model conforming to the layout meta-
model given in Figure 1 in an arbitrary Xtext concrete syntax.
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Figure 2: Preview of the layout model given in Listing 1 (the
first row is hidden in Listing 1 for space reasons).

An alternative method is prompt engineering. A prompt is the

information provided to the LLM, which can, in particular, contain

instructions or a framing for a specific context. When generat-

ing code, for instance, these instructions could define a code style,

etc. [36]. Prompt engineering is the technique of defining/creating

prompts for the required task. Using prompt engineering, competi-

tive results compared to fine-tuning can be achieved with a usually

lower effort [32]. Prompt engineering can reach from simply adding

small instructions to generic prompts to providing sophisticated

templates that structure the requests and add additional information

or instructions to improve results [36].

3 Approach
Integrating LLMs into LCDPs changes the way how the user in-

teracts with the platform. This also depends on how the LCDP is

structured and how the development process already looks. We

assume in this section that the production of an application, e.g., a

WIS, in an LCDP is similar to the way an application is produced fol-

lowing conventional MDE processes: i) the specifications of the user

are captured; ii) models of the desired application are created; and

iii) an implementation is produced, either through code generation

or model interpretation.

In this section, we propose an approach (see Figure 3) where the

modeling step is replacedwith generating the requiredmodels using

LLMs. The input of the approach is the user’s specifications of the

desired application in natural language (step 1). Then, the chosen

LLM is queried (step 2), which generates the models (step 3). Finally,

the models are processed (step 4), and the desired application is

produced (step 5).

The proposed approach is platform-independent: it does not

require a specific LLM to be used since it does not require a specific

training phase; it does not depend on a specificmodeling framework

since the heart of the approach only relies on models conforming

to dedicated textual syntaxes that any kind of parsers could process.

Finally, it does not restrict the way an application is produced from

the models, being, e.g., code generation or model interpretation. In

our experiments, we used the OpenAI API [23] with model versions

GPT-3.5 Turbo, GPT-4 Turbo, and GPT-4o for the user study as a

third party LLM, Xtext for the definition of the textual notations

that were used, and the LCDP presented in [13] to generate the

resulting WIS.

The capabilities of the approach to generate correct models, i.e.,

from both a syntactical and a semantic point of view, depends on

two main factors: first, the user specification alone is not enough

for the LLM to generate syntactically verified models for DSLs it

was not trained for. To improve this step, we enriched the prompt

containing not only the user’s specifications but also all relevant

information an LLM requires to generate valid models. Second, due

to the non-deterministic nature of an LLM to produce code from

a natural language specification, some validations must be done

to ensure that the resulting models fulfill the user’s expectations.

To do so, we implemented a feedback loop (step 6) where the user

has the possibility to inspect the results (the generated model, the

application or both) and make changes.

3.1 Prompt Engineering
When using new, small, or proprietary LCDPs, it is quite likely

that no data, examples, or information at all was included in the

training data sets these models were trained on. This limits the

applicability of LLMs for LCDPs. One way to inform the LLM about

the LCDP’s internals and resources could be fine-tuning by creating

a big training data set and adjusting the model’s context. However,

this approach may be too expensive [20, 32]. As mentioned earlier,

prompt engineering overcomes these drawbacks, as it does not

require large training data sets and is less compute-intensive than

fine-tuning. This technique is particularly suitable in the context

of DSLs, which are reasonably small – or at least smaller than

their general-programming counterparts –, dedicated languages

for specific domains.

Example
Models

Desired System
(Natural

Language)

User

(1) specifies

Integrated Prompt

LLM

(2) queries

(3) generates

Model
LCDP processes

(5) produces

Application

Low-Code Development Platform

Grammar

inspects (and redefines) (6)

(4) process

Figure 3: Overview of the proposed model-based approach
integrating LLMs for developping no-code applications.
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Using the following information:
[Additional Information]*
And this Xtext grammar as the grammar for the DSL:
[Xtext Grammar]
And the following additional information:
[Additional Information]*
[I give you the following example: [example]]+
Please create a new example that conforms to the
text below:
[User specification in natural language]
The content, naming of variables, etc., can be
freely chosen.
No additional text, explanation,etc.
Do not add markdown tags or anything.

Listing 2: Prompt template with placeholders that can be
used to generate textual models.

The structure of the prompt has an important impact on the

LLM that may (positively or negatively) impact the outcomes of

the LLM. It has to be meticulously designed and tested to assess

its efficiency, hence the notion of prompt engineering. This section
discusses the design of the prompt template we used in the context

of our approach.

Listing 2 details the template we defined for our approach. It

consists of predefined instructions (in black) and placeholders for

information and resources (in blue). An arbitrary amount of ad-

ditional information, such as resources that should be referenced,

other models (like the data model used in the running example and

the experiment in Section 4), etc., can be inserted at two locations

if required. As the input of an LLM is a text string, it is important

that all information contained in the prompt can be serialized to

text. In MDE, a textual representation of models (and metamodels)

is the norm. This representation can be a custom textual syntax or

for graphical DSLs a serialization into common formats, e.g., XMI,

JSON [13, 4, 16].

The template proposed in Listing 2 assumes that the DSL’s syntax

is defined with Xtext [9] and that the examples given are encoded

according to this grammar. However, we found out during our tests

that replacing the Xtext grammar with, e.g., Extended Backus-Naur

Form (EBNF), and providing additional information like the data

model required for our running example in different representa-

tions (serialized Ecore models - XMI or textual representation of

Fleximeta models) also provided comparable results. Therefore,

the template proposed in this paper is not strictly dependent on

the technologies we used, and even though we did not further in-

vestigate our findings, we are confident that alternative prompt

templates would also work to generate the desired models. Com-

paring different templates is outside the scope of this paper, and

evaluating their impacts on the generated models is future work.

During our experiments, we observed that only providing the

(Xtext) grammar to the LLM is not enough to produce syntactically

valid models. We found out that providing at least one example

model conforming to the DSL‘s grammar considerably increased

the quality of the produced models, and we recommend providing

enough examples to cover the different parts of the grammar. It

is worth noting that one limit of LLMs is the context size, which

restricts the amount of data we can provide the LLM with. But,

over the past years, the context size of mainstream LLMs such as

ChatGPT exponentially grew, making the context size no longer

a practical limit. However, mainstream LLMs and APIs, such as

OpenAI API [23], rely on a financial model where the user is billed

according to the consumed number of (both input and output)

tokens. In the future, we plan to explore other LLMs, including

open-source LLMs such as Mistral [18] or Llama 3 [17].

3.2 Incremental Process
Providing a good prompt template is enough for the LLM to produce

syntactically valid models with respect to the DSL definition, but

it does not provide any guarantees that the produced models are

semantically correct with respect to the user’s specifications. This

requires a validation from the user. To do so, we implemented in

our approach a feedback loop (see Fig. 3) where the user has the

possibility to inspect the results and apply changes. In the tool

described in Section 4, the user’s feedback can be integrated in

two different ways: either by making manual changes directly to

the generated models or by refining his/her demand in the prompt.

Obviously, the former is dedicated to MDE practitioners, while the

latter better fits the expectations of end users with no modeling

background. This requires the LCDP to produce a preview of the

application produced from the models.

This has an impact on the prompt discussed in the previous sub-

section: not only the current prompt should be sent to the LLM, but

also information about the history of the conversation, similar to

the mechanisms applied when using tools like ChatGPT. Therefore,

the template presented in Listing 2 presents only the beginning

of the conversation and is further completed with the user’s mes-

sages refining the original request and responses from the LLM

interleaved with each other.

It is worth noting that this impacts the context size, as it will

continuously growwith the number of user-requested changes. But,

as mentioned earlier, recent technological advances in mainstream

LLMs reduce the importance of this cap, and as soon as the context

window‘s limit is reached, the provided history could be reduced

(e.g., by deleting the oldest messages).

4 Experiment Design
To evaluate the effectiveness and usability of integrating LLMs into

existing LCDPs (RQ1), a user studywas conducted. The user study’s
focus was the comparison of textual modeling with the creation

of the desired model and, therefore, application using LLMs and

natural language specification.

Implementation. For this comparison, we chose a simple low-

code approach that allows the definition of web forms that are

connected to a data model. We integrated a chat interface into

the UI, see Figure 4 that is similar to ChatGPT’s user experience.

The chat interface can connect to different LLM-versions like GPT-

3.5-turbo or GPT-4o. For the experiment, we used only OpenAI’s

models. However, the approach, in general, is not limited to Ope-

nAI’s APIs. To improve the generated results, an engineered prompt

as described in Subsection 3.1 was used. This means that the user

input was inserted at the correct location in the defined prompt

before being sent to the API. The response from the LLM was then

directly inserted into the low-code editor, see Figure 5 on the left,



Hagel et al.

Figure 4: User Interface of the user experiment implementation (Condition 1) - LLM Chat Interface on the left, preview of the
generated form on the right

which resulted in the generation of the desired web form in our

implementation. Additionally, the response was displayed in the

green chat box of the chat interface; see Figure 4 on the left. The

web form is only generated if the generated DSL code is syntax

error-free. If errors exist, they are displayed to the user in a similar

way as in an IDE. The error detection was based on the grammar

of the used Layout DSL in this experiment. The implementation

preserved the history of the session, which means that users were

able to reference previous generations or the current state of the

model for error correction or improvements, see Figure 4.

The creation of web forms using the low-code approach and the

chat interface was compared with the manual creation of the DSL

code / the models. To create the web forms manually, a code editor

was included in the UI, see Figure 5 on the left. Users could create

textual models, which immediately generated the preview on the

right as soon as the model was syntactically correct.

Participants. We conducted the experiment with 18 participants

(9 male, 9 female), aged 18-44 (M=26,78, SD=7,69). All participants

were part of computer science research groups in Grenoble Com-

puter Science Laboratory (LIG). A minority (3 out of 18) had ex-

perience in modeling and DSLs. The chosen low-code approach /

DSL was unknown to every participant. Most of the participants

(66.6%) stated that they use LLMs like ChatGPT Very Frequently or

Frequently. The experiment was conducted as a supervised within-

subjects design. Each participant was exposed to both interactions

and had to create forms using the chat interface and the manual

textual modeling. The participants were randomly split into two

groups. One group started with the chat interaction, whereas the

other started with the manual modeling.

Experiment Setup. The experiment was conducted in a lab un-

der supervision. For every participant, the same technical setup

(computer, monitor, etc.) was used. The main interaction happened

through the keyboard and mouse. As the participants were inter-

national and, therefore, preferred different keyboard layouts, we

provided a suitable keyboard and settings as requested by the par-

ticipant. Every participant used both conditions (chat and manual

creation). At the beginning of the experiment we provided a general

introduction to the experiment, the used DSL / low-code platform,

the user interface etc. The participants had to create web forms for

two data models, which were also provided in graphical (Ecore) and

textual (Fleximeta) notation. The data models were also explained

to the participants. The grammar (Xtext) of the DSL was also pro-

vided. Written scenarios described the web forms that had to be

created, containing all the information required to create them and

how they had to look. The written scenarios were provided to the

participants one by one for each task. As an additional resource,

the participants received documentation of the DSL and examples.

Furthermore, an overview of the possible widgets and how they

could be configured was provided. If the participant had questions

about the mode, the experiment, or the resources provided, these

questions were answered. For each interaction, the participant re-

ceived another introduction about how the user interface works

and what is expected. In total, each participant had to create 6 web

forms, 3 for each data model and interaction. One task for each of

the two conditions was to get familiar with the low-code approach

and how the tooling works. Therefore, the data for the results is

based only on two tasks for each condition. Each scenario had the

same size and expected the same amount and variety of widgets.

After each condition (1 + 2 tasks), the participant had to answer

a questionnaire, including the System Usability Scale (SUS) ques-

tions, to assess the perceived usability. In total, the duration of each

experiment was 70-90 minutes.

Task. The task was to create web forms according to a speci-

fication defined in a scenario. In total, 6 scenarios were defined,
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Figure 5: User Interface of the user experiment implementation (Condition 2) - Low-Code Editor for the Layout DSL on the left,
preview of the generated form on the right.

therefore 6 tasks, and had to be completed by each participant. The

scenarios described the data model attributes the web forms had to

ask for. The different scenarios used two different data models. One

is for a hair salon appointment/management tool, and one is for

a conference event management tool. Furthermore, the scenarios

contained a broad specification on the desired layout itself (e.g., use

only one widget per row to create a mobile-first form). The partic-

ipants were asked to read the scenario and ask questions if they

had any. Then, the participants had to create the form using the

chat interaction or manual modeling. The layouts were not strictly

defined. A task/scenario was successfully completed as soon as all

specified widgets were correctly included in the form. Furthermore,

the labels and placeholders had to be defined appropriately for the

semantics of the widget’s data attribute. Also, the icon had to be

set appropriately. A generated form from scenario 1 is visible in

Figure 2. It is used to create a new conference event in a conference

event management tool. An example of a prompt that generated this

form/the respective DSL code (see Listing 1) is visible in Listing 3.

Metrics. During the experiment, we measured the following met-

rics:

Create a form to create a new conference event.
The form should ask for the event's name, its
acronym, the location and the type of the event.
The form must only allow possible choices for the
type of the event.
Lastly the form should ask for the events dates
and the call for paper.
Use two widgets per row.

Listing 3: Example prompt that generates a web form for
scenario/task 1

• (M1) Task completion time: Measured from the first key-

stroke in the tool until the generated or created form ful-

filled the task’s requirements.

• (M2) Personal preference: Evaluated through a question in

the questionnaire filled out by the participant after finishing

all tasks.

• (M3) Usability: Evaluated through an SUS [1] score ques-

tionnaire that was filled out after each condition.

The decision why we started the timer of M1 at the first keystroke
in the tool and not the moment when the user received the task

was made because each user had to read through the material, and

some had questions, which we did not want to measure in this

experiment. Rather, we decided to measure the time from when the

user understood the task until it was completed. We informed the

participants that they should start with the task as soon as they

understood the task and had no questions.

Hypotheses. We defined the following hypotheses prior to our

experiment:

• (H1) We expect that using the chat interaction to generate

the models is significantly faster than creating the models

manually.

• (H2) We expect that the majority of the participants will

prefer the chat interaction to the manual creation of models.

• (H3) We expect that the usability of interactions is consid-

ered good while the chat interaction will receive a better

usability rating.

Ethical Considerations. Before the experiment, participants were

informed about the scope and purpose and potential ethical consid-

erations. The risk was evaluated to not exceed the risk of living and

using computers. Every participant explicitly agreed to participate

in the study and allowed the results and artifacts to be published
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for research purposes. All data, logs, etc., are fully anonymized,

ensuring confidentiality.

Results. This paragraph describes the results of the conducted

user experiment:

Task completion time (M1): The results of the task completion time

for each scenario are depicted in the box plot in Figure 6. Scenarios 1,

2, and 5 in yellow, orange, and red, respectively, were the scenarios

for the creation of models using the chat interaction. Scenarios 4, 6,

and 3 in green, cyan, and blue, respectively, were the scenarios for

manually creating the models. The scenarios were also used in that

order, meaning that depending on the condition with which the

participant began, we started with scenarios 1 or 4 and continued

with 2 and 5, respectively, 6 and 3. This results in scenarios 1 and 4

being the test or learning tasks. The task completion times for these

two scenarios were also included in Figure 6 but are not included in

the further interpretation and evaluation of the results. We used a

paired t-test to evaluate the impact of different systems on the task

completion time. Results show a statistically significant difference

between the two processes.

𝑡 (17) = −8.55, 𝑝 < 0.001

The mean and the standard deviation of the task completion time

for the chat interaction and manual creation are the following

(the values origin from the combination of the two scenarios per

process):

• Chat: 𝑋 = 187.5, 𝜎
chat

= 44.35

• Manual Creation: 𝑋 = 421.56, 𝜎
manualCreation

= 32.49

The results indicate that using the chat interaction is significantly

faster than creating the models by hand.

Personal Preference (M2) and Perceived Usability (M3): We used a

paired t-test to evaluate the impact of the two different processes

on the perceived usability using an SUS score questionnaire. Re-

sults show no statistically significant difference between the two

processes.

𝑡 (17) = 1.0095, 𝑝 = 0.3268

The mean and standard deviation of the SUS score for chat interac-

tion and manual creation are the following:

• Chat: 𝑋 = 80.0, 𝜎
chat

= 10.74

• Manual Creation: 𝑋 = 75.83, 𝜎
manualCreation

= 9.47

We can see that the average SUS score of both processes is be-

tween good and excellent using the categorization of Bangor et al.

[1] with the chat interaction having a slightly higher mean. The

standard deviation is almost the same. In literature, an average SUS

score of 70 is considered average and a passing criterion for user

interactions [1]. Both processes scored above that.

The questionnaire also assessed the personal preference of the par-

ticipants, as every participant was exposed to both conditions. 15

out of 18 participants preferred the chat interaction.

Discussion. In the user study, the chat interaction to generate

the models performed significantly better in task completion time

compared to the manual modeling. The perceived usability, though

having a higher mean, is not significantly better. However, par-

ticipants reported that they explicitly liked the direct feedback

Scenario 1(*)

Conference creation

Scenario 2
Session chair registration

Scenario 3

Paper submission

Scenario 4
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100

200

300

400

500

600

700

T
a
s
k
c
o
m
p
l
e
t
i
o
n
t
i
m
e
(
s
)

Figure 6: Box Plot of the task completion time of scenario
1 to 6. Results for test scenarios (*) are not accounted in the
paired t-test evaluation. Scenarios in bold corresponds to
tasks involving the LLM.

provided by the implemented UI when creating the models manu-

ally. Both ways of creating the desired models scored between Good
and Excellent on the SUS scale/mapping to adjectives [1]. Therefore,

our results are consistent with (H1) where we suspected that gener-
ating the models based on natural language is faster than manual

textual modeling. As 15 out of 18 participants preferred the chat

interaction, our results are also consistent with (H2). (H3) has to be

partly rejected. Both ways of modeling received a rating of at least

good, though the chat interaction did not receive a significantly

better usability score.

In conclusion, our results show that using LLMs with a suitable

enriched and structured prompt as defined in Subsection 3.1 seems

to be a good way to improve the efficiency of the modeling step

and, therefore, the whole low-/no-code development process. Fur-

thermore, a well-working integration does not reduce the perceived

usability but rather adds a new way of using an existing LCDP. This

answers RQ1. However, we expect that the benefits that LLMs can

have on LCDPs are not limited to that.

5 Transformation from low-code to true
no-code

Based on the conducted integration of ChatGPT into the layout

web-form LCDP as well as an ongoing integration into an extension

of that [13], the following section describes a set of prerequisites,

steps, and challenges that we identified throughout our analysis

and the conducted user study. These learnings and steps combined

with the results of the experiment answer RQ3.

Prerequisites. For most LCDPs, we assume that available state-

of-the art LLMs will not be able to generate correct models out-of-

the-box. As described in subsection 3.1, prompt engineering can be
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used to enable the LLM to generate correct models. However, we

experienced that a set of resources seems to be crucial to program
the LLM appropriately for that task [36]. We identified that (i) the

language’s grammar and (ii) examples that cover most or ideally all

features of the modeling language should be included. This means

that these resources must be prepared and defined. For LCDPs

which do not use a modeling language with a graphical syntax, this

can mean that defining it could be helpful. In many cases, this can

be easily achieved, for instance, using Xtext when using modeling

languages from the EMF ecosystem [26]. In other cases, this step

could require more integration work, and Xtext could still be helpful

in defining the language’s grammar.

Steps. For properly using LLMs in LCDPs we think that it is

crucial to directly integrate them into the existing tools, similar to

Github Copilot [10] for IDEs. One indicator for this conclusion is

the results of the user experiment, see section 4, where the SUS

score was quite similar for using textual modeling and generating

the models using the chat interface. Without integration, this would

most likely mean additional steps for the user, which we expect

will reduce the perceived usability and efficiency. For a successful

integration, we therefore propose the following steps: (1) Define

the LLM that should be used; (2) Create or define the required re-

sources and conduct tests until the generated results match the

requirements. This step could require several iterations. Then, (3)

integrate them into the prompt. Find and implement an appropriate

user interface within the existing LCDP. One example can be seen

in Figure 4. This highly depends on the possibilities of the platform

itself. (4) Directly integrate the generated models into the UI by

adding a preview as in Figure 4 or a graphical or textual representa-

tion of the generated model. (5) Use a stateful chat interface that is

session-based. This ensures that the user can reference the previous

generation and interact with and redefine it.

Challenges. We experienced challenges such as ensuring a high

rate of correct generations, which is essential for a well-working

user experience. This also depends on the complexity of the used

modeling language. Using a prompt template as defined in Subsec-

tion 3.1 or a modified version can help. However, examples should

be wisely chosen so as not to unnecessarily increase costs when

using billed APIs.

6 Discussion
Combining LLMs with MDE presents two benefits in the context of

low-code/no-code development. The first benefit targets end users

who can leverage generative AI to model their applications and

customize the interfaces to represent the data on the screen accord-

ing to their preferences. By properly integrating LLMs, this entire

process can be performed without modeling or coding experience

by only using natural language. This can open LCDPs to more users.

Furthermore, in the experiments we conducted, we observed that

models can be successfully generated using LLMs like ChatGPT

and the prompt template defined in Subsection 3.1. Implementing

this approach, the results of the conducted user study show that

the efficiency of the chosen LCDP could be significantly increased

without impacting usability. Furthermore, 15 out of 18 participants

preferred defining the system in natural language, which also high-

lights the need to integrate these mechanisms into LCDPs. These

improvements were possible without fine-tuning a model but only

by applying prompt engineering and the integration into the UI.

Removing the need for fine-tuning reduces not only the costs but

also the additional required environmental resources. However, the

evaluation of the approach lacks the comparison if LLMs could also

be used to reduce the customization complexity of LCDPs, which

could be an extended application. In [13], we presented a platform

where the graphical user interfaces can be easily modified by means

of drag’n’drop and by changing one widget by another. The experi-

ment should be extended to compare the two different modalities

(standard mouse and click capability vs. the use of LLMs).

The previous observation leads to a second, less obvious benefit

LCDP practitioners can take advantage of by extending the cus-

tomization capabilities of LCDPs. The customization capabilities are

often constrained by the set of, e.g., customizable widgets in the do-

main of WISes an LCDP has to offer, along with the user interfaces

to customize the appearance and behavior of those widgets [2]. As

expectations about LCDPs grow, widgets become increasingly com-

plex in size and customization capabilities, and LCDP developers

must make a trade-off between customization and the complexity

of the platform. A commonly accepted compromise is to implement

coarse-grained customization capabilities available through no-

code user interfaces and fine-grained ones only through extending

the created code or additional textual settings. Hence, improving the

usability of such interfaces for end-users LLM could play a relevant

role in facilitating the fine-grained customization of applications

when no alternative UI capabilities are available or too much work

to implement. Although we can’t answer RQ2 for all LCDPs, we
can for confidently say that it is indeed possible to eliminate cod-

ing entirely from DSL-based LCDPs by properly integrating the

capabilities of LLMs. However, the limitations of this approach will

likely co-develop with the limitations of state-of-the-art LLMs.

7 Related Work
This section reviews related work on the topic focussing on the

application of LLMs for DSLs and LCDPs. Busch et al. [6] present

a Low-/No-Code approach to creating applications using first, a

graphical model created by the user and second, a prompt frame.

This prompt frame is then filled with a natural language descrip-

tion of the user to extend the existing model with e.g., semantics.

The goal of the prompt is to generate code, which is added to the

code generated from the graphically defined model. Together, these

two pieces create the final application. The approach was success-

fully implemented in a running example to create a point-and-click

adventure game. Grammar Prompting by Wang et al. focuses on

the generation of grammar-based DSLs in general (not only DSLs

in the context of LCDPs) [35]. However, their approach could be

applied and useful when integrating LLMs into existing LCDPs as it

describes a way to create prompts that successfully generate DSLs

by only providing parts of the grammar. The full grammar is only

provided for small DSLs. This approach, similar to subsection 3.1,

also requires examples in the prompt, which are in contrast to this

proposal, labeled. They contain a query, a minimal provided gram-

mar, and the result. Their prompt template requests the LLM to first
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generate a minimal grammar before generating the actual DSL.

Besides these grammar and textual DSL based approaches, other

work focuses on the interpretation and translation of hand-drawn

models into more formal representations like UML models [7].

These sketches can then be used as input for an LLM to generate

UML models, which then form the input for LCDPs or a modelling

pipeline. Integrating this approach into LCDPs could just as well

improve the usability for MDE and low-code approaches.

8 Conclusion
In this paper, we presented an approach to transform DSL based

LCDPs into true no-code. The transformation is achieved by al-

lowing users to define the desired application in natural language,

from which first the models of the LCDP are generated, and the

LCDP then creates the desired application. The approach is vali-

dated through a user experiment with 18 participants, where results

show, that the task completion time could be significantly reduced

compared to manually using the LCDP without impacting the per-

ceived usability. We also presented a prompt template to generate

textual models/DSLs which can help when integrating LLMs into

existing LCDPs. In conclusion, LLMs can help to improve existing

LCDPs. They can be used to either replace or aid the modeling step

where the application is defined and improve the development time.
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