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TRAJECTORIES OF VECTOR FIELDS ASYMPTOTIC TO

FORMAL INVARIANT CURVES

O. LEGAL AND F. SANZ SÁNCHEZ

Abstract. We prove that a formal curve Γ that is invariant by a C∞ vector
field ξ of Rm has a geometrical realization, as soon as the Taylor expansion of
ξ is not identically zero along Γ. This means that there is a trajectory γ ⊂ Rm

of ξ which is asymptotic to Γ. This result solves a natural question proposed by
Bonckaert nearly forty years ago. We also construct an invariant C0 manifold S

in some open horn around Γ which is composed entirely of trajectories asymptotic
to Γ, and contains the germ of any such trajectory. If ξ is analytic, we prove that
there exists a trajectory γ asymptotic to Γ which is, moreover, non-oscillating
with respect to subanalytic sets.

Acknowledgement. This project is born during an enriching discussion with Fe-
lipe Cano. We would like to thank him for that and for his precious advises during
the progress of this work.

1. Introduction

In this article, we consider germs of smooth vector fields ξ ∈ DerR(C
∞(Rm, 0))

which admit an irreducible formal invariant curve, this is, a Γ ∈ (R[[t]])m such that

(ξ̂ ◦ Γ) ∧ Γ′ = 0, where ξ̂ ∈ DerR(R[[x1, . . . , xm]]) is the Taylor expansion of ξ. The
ordinary correspondance between formal series and asymptotic development incites
to believe there should be a a real curve γ ⊂ Rm invariant by ξ and asymptotic to
Γ. The main result in this paper proves that this intuition is actually true, under
the hypothesis (in general necessary) that Γ is not included in the formal singular

locus of ξ; that is, ξ̂ ◦ Γ 6= 0.

Theorem 1. Let ξ be the germ of a C∞ vector field at a ∈ Rm, and Γ a formal
curve at a, invariant by ξ, that is not included in the formal singular locus of ξ.
Then, there exists a germ of trajectory γ of ξ which is asymptotic to Γ.

In [5], Bonckaert solves the 3 dimensional case and asks whether this very natural
result can be generalized to higher dimension (see [5, Remark 2.4, p. 118]). A
broader question, already addressed in that paper in dimension three, is to describe
a realization of the “attracting basin” of Γ. We prove that such a realization exists
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as a topological manifold. In fact, there is one such manifold associated to each of
the two half-branches of Γ (the formal analogous of the connected components of
Γ\{0} when Γ converges). We postpone the precise definitions and a more accurate
statement to section 5:

Theorem 2. Let ξ be a C∞ vector field at a ∈ Rm, and Γ a formal curve at a,

invariant by ξ, such that ξ̂ ◦ Γ 6= 0. For each half-branch Γ+ of Γ there is a finite
order horn neighborhood V + of Γ+ and a connected topological submanifold S+ ⊂ V +

of positive dimension with the following property. For any b ∈ V +, the trajectory of
ξ issued from b is asymptotic to Γ+ iff b ∈ S+, and escapes from V + otherwise.

Over the field of complex numbers C, one usually considers holomorphic vector
fields and the theory of Borel-Laplace multi-summability answers the analogue ques-
tion. Indeed, a (complex) formal series Γ that is invariant by a (complex) analytic
vector field ξ, and not contained in ξ−1(0), can be proven to be of Gevrey type
and multi-summable. By a summation process as that proposed, among others, by
Balser [2], Braaksma [7], Ramis [25] or Malgrange [23] we get invariant complex
curves γ, defined and asymptotic to Γ on some sectors. However, even if ξ and Γ
are real, these complex curves might not provide a (real) asymptotic trajectory if
the so called anti-Stokes directions of Γ contain the real one. So even for real an-
alytic vector fields, the theory of multi-summability does not solve the problem we
address here. It should be mentioned that Ecalle proposed in [12] a strategy for a
real resummation (see also [13]). Our approach circumvent the theory of resurgent
functions.

Still in the real analytic setting, our result has application to tame geometry of
trajectories, in the vein of [27, 20, 21, 18, 19]. In the last section we prove the
following.

Theorem 3. Let ξ be a germ of analytic vector field at a ∈ Rm, and Γ a formal curve
at a, invariant by ξ, that is not contained in the singular locus of ξ. Then, there
exists a germ of trajectory γ of ξ asymptotic to Γ and subanalytically non-oscillating.

We now outline the main steps of the proofs of Theorem 1 and Theorem 2.
After a sequence of admissible transformations (blow-ups and ramifications), we

reduce the vector field ξ in a neighborhood of the formal curve Γ, in what we call
a Turrittin-Ramis-Sibuya form (TRS for short). This reduction is inspired by Tur-
rittin’s process [29] (see also Wasov [31] or [2]), developped for linear meromorphic
differential equations over C. Ramis and Sibuya used such normal forms for their
analysis of multi-summability of formal solutions of (non linear) meromorphic ODE’s
in [26]. López-Hernanz, Ribón, Sanz Sánchez, Vivas present in [22] a reduction of
the same nature for germs of holomorphic diffeomorphisms. For our purpose, it is
necessary to retain the real structure, so we build over Barkatou, Carnicero, Sanz
Sánchez [3] which gives a real reduction for linear formal meromorphic differential
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systems. Our reduction to real (TRS)-form for a C∞ vector field along a formal
invariant curve is presented in section 2.

Once the vector field is reduced, our general strategy to construct the curve γ is
to work inductively on the dimension of the ambient space, by restriction to a center
manifold, until this dimension drops to 1, or Γ is tangent to a non-zero eigenvalue
(see Lemma 20 in section 3). In ambient dimension m = 2, a vector field in TRS-
form is either hyperbolic or has a center manifold of dimension 1, so the result is
consequence of the classical theory of invariant manifolds (for instance in [15]). In
higher dimension, this approach leads to two main difficulties. At first, no smooth
center manifold exists in general (see [28]), so we have to consider vector fields of
finite differentiability class.

A more serious obstruction appears when the center manifold is the full ambient
space (all eigenvalues have zero real part) since in this case the induction is inter-
rupted. Thus, we need new arguments to treat the so called dominant rotation case,
excluded in Lemma 20. That is, when ξ has only eigenvalues with pure imaginary
initial part. In dimension 3, this situation corresponds to the rotation case of [5,
IV (2.2) p. 134], treated appart by Bonckaert and Dumortier in [6]. The strategy
proposed in that paper consists of building an invariant slow manifold – i.e., tangent
to the kernel of the linear part of ξ –, in a similar way center manifolds are con-
structed in the general theory. In higher dimension, different rotations with different
orders might compete with many real slow directions of different orders also, and
the calculation of the needed estimates seems impracticable.

To deal with it, we introduce in section 4 a special kind of transformations we call
straighteners. They act as a direct sum of plane rotations over a fibration transverse
to Γ so to annihilate the spiraling effect induced by the pure imaginary eigenvalues.
These transformations are strongly irregular and do not admit even a continuous
extension at the singular point. However, in a neighborhood of each half branch of
Γ, ξ has a lift of any finite differentiability class by the convenient straightener, and
this lift has no more dominant rotation, up to first reduce to a stronger TRS-form
(the class depends on the strength). From here, the induction can be continued.
This way, we produce trajectories with high but finite contact order with Γ.

Our final argument to get trajectories asymptotic to Γ is based on the existence of
the so called accompanying curves in the center manifold, that permits to show that
all trajectories with a sufficiently high contact with Γ have flat contact the ones with
the others (cf. points (ii) in Lemma 20 and Lemma 24). We recall in section 3 the
basics about accompanying curves, deduced from a fine treatment of the principle
of reduction to a center manifold by Carr [10]. This approach has already been used
by Cano, Moussu and Sanz in [9] for three-dimensional analytic vector fields. In this
paper, we adapt Carr’s construction in order to obtain, moreover, the manifold S+

of Theorem 2. A precise statement and the details are discussed in section 5.
It would be interesting to extend our result to more general type of series. For

instance, allowing real exponents, or for more general formal transseries. The later
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needs an extended notion of been asymptotic, a question that has been considered
by vdHoeven in [16] and by Ashenbrener, vdDries, vdHoeven in [1] in the context
of polynomial ODE’s over Hardy fields.

1.1. Notations. Consider a C∞ manifold M of dimension m and a ∈ M . We will
often put m = 1 + n and have a local system of coordinates (x, y1, . . . , yn) : M →
R1+n, centered at a, with a distinguished first coordinate. For short, we use a bold
letter to refer to the tuple whose components are written with the same letter and
subscripts: y = (y1, . . . , yn). We also use subscripts to indicate coordinates or tuples
of coordinates of a given object, e.g., a parametrized curve γ : R → M might be
written with no other precision as (γx, γy).

The differential of a map f at a point a is written df(a) ∈ (TaM)∗, where (TaM)∗

is the cotangent space of M at a; a might be omitted depending on the context.
We use symbolic powers for diagonal k-tuples, that is, dkf(a)(v(k)) is the value of
the k-th differential of f over the k-tuple of direction (v, v, . . . , v) ∈ (TaM)k. Given
coordinates (x,y), the dual basis of (dx, dy) is denoted (∂x, ∂y) = (∂x, ∂y1 , . . . , ∂yn).
We write the action of derivations as a product or with parenthesis, so ∂y(f) =
df(∂y) = (∂y1f, . . . , ∂ynf), not to be mixed up with the composition, e.g., ξ ◦γ is the
value of ξ ∈ DerR(C

∞(M)) over the parametrized curve γ; for the later we might
also use restriction notations, e.g., ξ|a is the value of ξ at a. We use a generic ·
symbol to indicate a dot product on diverse tuples (matrix, vectors, . . . ). Together
with the bold notations and automatic definitions by subscript, we get compact
expressions like ξ = ξx∂x + ξy · ∂y, where ξx = ξ(x) and ξy = ξ(y) are implicitely
defined once ξ ∈ DerR(C

∞(M)) and (x,y) are given.
We use multi-index for higher order derivatives, this means, if α = (α0, . . . , αn) ∈

N1+n we set |α| =
∑n

j=0 αj and (x,y)α = xα0yα1

1 . . . yαn
n and then

∂
|α|
(x,y)α = (∂x)

α0(∂y1)
α1 . . . (∂yn)

αn .

The jet jkf at (0, 0) of order k of a function f is the polynomial

jkf(0, 0)(x,y) =
∑

j≤k

1

j!
djf(0, 0)((x,y)(j)) =

∑

|α|≤k

1

|α|!
(∂

|α|
(x,y)αf)(0, 0)(x,y)

α,

and the Taylor expansion of f is written f̂ . We identify polynomials and polynomial
functions, so R[x,y] is seen as a subset of both formal series R[[x,y]] and smooth
functions C∞(R1+n). We write Rk[x] for the set of polynomials of (total) degree at
most k.

We use Landau notations o and O in the C∞ context, locally at a: f = O(g) (resp.
f = o(g)) if there exists a bounded function h (resp. h tends to 0) such that f = gh
in a neighborhood of a. Notice that when g is a power of a coordinate function, say
g = xk, f = O(xk) (resp f = o(xk)) implies f is divisible by xk, that is, f = xkh
with a C∞ function h. We use Landau notations also to compare formal series with
powers of coordinates, which of course implies divisibility in the ring R[[x,y]].
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Given a ring R, Mn(R) and GLn(R) refer respectively to n × n matrices with
coefficients in R and invertible such matrices. We write In for the identity matrix
in GLn(R). Let us introduce some useful notations concerning real and complex
matrices. Recall Θ : C ∋ a+ ib 7→ aI2 + bJ2 ∈M2(R) is an isomorphism between C

and the subspace ofM2(R) spanned by I2, J2, with

I2 =

(
1 0
0 1

)
and J2 =

(
0 −1
1 0

)
.

We extend Θ first to formal series by setting, if h(x) ∈ C[[x]]: Θ(h(x)) = Re(h(x))I2+
Im(h(x))J2. Then, we let Θ act on each coefficient of a given matrixM ∈Mm(C[[x]])
to define Θ(M), a matrix a priori in Mm(M2(R[[x]])), space we identify with
M2m(R[[x]]). This way, for each m ≥ 1, Θ defines an injective morphism of R-
algebras betweenMm(C[[x]]) andM2m(R[[x]]).

Since we work with block shaped matrices, it will be convenient to denote M ⊕N
the matrix

M ⊕N =

(
M 0
0 N

)
∈Mm+n(R),

whenever M ∈ Mm(R) and N ∈ Mn(R). If D is diagonal by blocks, of the form
D = Θ(c1In1

⊕ · · · ⊕ ckInk
) ⊕ d1Im1

⊕ · · · ⊕ dk′Imk′
, we say that C has a block

structure compatible with D (or that C is compatible with D for short) whenever
C = Θ(C1 ⊕ C2 ⊕ · · · ⊕ Ck) ⊕ E1 ⊕ · · · ⊕ Ek′ where for all j, Cj ∈ Mnj

(R) and
Ej ∈Mmj

(R). If C is compatible with D, then [D,C] = 0.

2. Reduction to Turrittin-Ramis-Sibuya form

In this section we give a procedure to transform a C∞ vector field along an in-
variant formal curve to another one with a useful expression in local coordinates. In
the first subsection, we summarize the results of [3] we base our reduction on. In a
second subsection, we introduce the transformations that are admissible for a cou-
ple formed by a vector field and a non-singular invariant curve. At last, we explain
how to reduce a given vector field in a “neighborhood” of an invariant formal curve
(Theorem 13).

2.1. Real Turrittin’s Theorem for linear systems of ODEs. The reduction
we are looking for is based mainly in a result by Barkatou, Carnicero and Sanz
[3], what we discuss briefly in this paragraph. It consists of a version of a classical
Turrittin’s result on normal forms of formal meromorphic linear systems of ODEs
(see [29, 31, 2]) when the base field of coefficients is R.

Consider a formal linear system of n ODEs of the form

xp+1y′ = A(x) · y,
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where y = (y1, ..., yn) ∈ Rn, the apostrophe denotes the derivation with respect x, p
is an integer and A(x) ∈ Mn(R[[x]]), with A(0) 6= 0. The system is singular when
p ≥ 0 and in this case the number p is called the Poincaré rank of the system.

The reduction is obtained by applying to the system certain transformations of
the following kind.

(1) Gauge transformations.- If T (x) ∈ GLn(R[[x]][x
−1]), the change of vari-

ables y = T (x) · z gives rise to a bijection ΨT (x) between the whole family
of systems, called a gauge transformation. Explicitly, it maps the system
xp+1y′ = A(x) · y to the system xp̃+1z′ = B(x) · z where

x−(p̃+1)B(x) = x−(p+1)T (x)−1A(x)T (x)− T (x)−1T ′(x).

We shall consider the following two types of gauge transformations:
(a) Regular polynomial.- A transformation ΨP (x) where P (x) ∈ Mn(R[x])

is a polynomial matrix and P (0) ∈ GLn(R).
(b) Diagonal Monomial.- A transformation ΨT (x) where T (x) is diagonal of

the form T (x) = diag (xk1 , xk2 , ..., xkn) for some non-negative integers
k1, ..., kn, not all of them equal to zero.

(2) Ramification of order r ∈ N>1.- Denoted by Rr, it corresponds to the change
of the independent variable x = zr. It transforms a system xp+1y′ = A(x) ·y
into the system (re-written with the same variable x)

xpr+1y′ = r−1A(xr) · y.

Given a system (S), a transformation is called admissible for (S) if it is either a
gauge transformation of type (a) or (b) above and T−1AT − xp+1T−1T ′ belongs to
Mn(R[[x]]) (this is always the case if ΨT (x) is regular polynomial) or a ramification
Rr and (S) is singular (p ≥ 0). By extension, a composition of such transformations
is admissible for a system (S) if each transformation is admissible for the system it
is applied to.

To introduce the main result of [3], we need the following.

Definition 4. Let q be a non-negative integer. A singular system is said to be in
Turrittin-Ramis-Sibuya form of Poincaré rank q (or (TRS)q-form) if it is written as

((TRS)q-form) xq+1y′ = (D(x) + xqC + xq+1V (x)) · y,

where:

(1) D ∈Mn(Rq−1[x]) is a polynomial matrix of degree at most q−1, and D(x) =
Θ(D1(x))⊕D2(x), with

D1(x) = diag(c1(x), . . . , cn1
(x))), ∀j = 1, . . . , n1, cj(x) ∈ Cq−1[x],

D2(x) = diag(d1(x), . . . , dn2
(x)), ∀j = 1, . . . , n2, dj(x) ∈ Rq−1[x]

(2) C ∈Mn(R) is compatible with D(x);
(3) (D(x) + xqC)|x=0 6= 0;

(4) V (x) ∈Mn(R[[x]]).
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The matrix D(x) + xqC is called the principal part of the system, D(x) and C are
called respectively the exponential part and the residual part of the system, and V (x)
is called the vestigial part of the system.

Remark 5. Definition 4 describes a system of n = 2n1+n2 equations. The splitting
between real and complex blocs is not necessarily unique, but we will always assume
that a given (TRS)q-form of a system has a minimal n1. That is, for each j =
1, . . . , n1, at least one coefficient of the polynomial cj(x) is non real.

A constant matrix C ∈Mn(R) will be said to have good spectrum if it has no two
eigenvalues (in C) that differ by a non-zero integer number. The main result of [3]
we use goes as follows.

Theorem 6 ([3]). Consider a singular system

(S) xp+1y′ = A(x) · y

with A(x) ∈ Mn(R[[x]]) and A(0) 6= 0. Then there exist a ramification Rr and a
finite composition ψ of admissible gauge transformations, either regular polynomial
or diagonal monomial, such that:

(i) The composition ψ ◦ Rr transforms the system (S) into a system (S̃) that is
either regular, or in (TRS)q-form for some q ∈ N≥0, with a residual part which
has good spectrum.

(ii) Let (S̃) be any system in a (TRS)q-form whose residual part has good spectrum.
For any N ≥ 1, there exists a regular polynomial gauge transformation ΨTN

,

that transforms the system (S̃) into another system in (TRS)q-form, with the

same principal part as (S̃), and a vestigial part V satisfying V (x) = O(xN).

2.2. Admissible transformations for vector fields along a formal curve. Let
a ∈ X be a point in a smooth manifold X of dimension 1 + n, and let (ξ,Γ) be a
couple made of a germ ξ of a C∞ vector field at a or a formal vector field ξ at a,
and a non-singular formal curve Γ at a, invariant for ξ and not contained in the
formal singular locus of ξ. We call such couple an invariant couple, either smooth
or formal according to the nature of ξ, and smooth by default. We say a system of
coordinates (x,y = (y1, ..., yn)) centered at a is adapted to Γ if the tangent line of Γ
is transverse to the hyperplane x = 0. In such coordinates, Γ can be parametrized
by x. This means that there is a unique Γy = (Γy1, . . .Γyn) ∈ (xR[[x]])n such that Γ
is given by y = Γy(x). We also write Γ = (x,Γy(x)). An adapted system (x,y) is
said to have contact order m with Γ, for a given m ∈ N, if ordx(Γy) = m.

Remark 7. If ξ|a = 0 and (x,y) has contact at least m with Γ, then

ordx(ξy(x, 0)) ≥ m,
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where ξy = (ξ(y1), . . . , ξ(yn)). Indeed, Γ being invariant, Γ′∧ ξ̂ ◦Γ = 0, which gives,
considering the terms in ∂x ∧ ∂y:

ξ̂y(Γ)− ξ̂x(Γ)Γ
′
y = 0.

But ξ̂x(Γ) = O(x) since ξ|a = 0, and Γ′
y(x) = O(xm−1), so ξ̂y(Γ) = O(xm). Now,

ξ̂y(x, 0) = ξ̂y(Γ)− ∂y ξ̂y(Γ) · (Γy) + o(Γy), and since Γy = O(xm), we get ξy(x, 0) =
O(xm) as claimed.

We define the transformations allowed for an invariant couple (ξ,Γ).

Definition 8. Let (ξ,Γ) be a smooth (resp. formal) invariant couple. An admissible
transformation for (ξ,Γ) is a germ of C∞ map φ : (Y, b) → (X, a), where Y is a
smooth manifold of dimension 1 + n, of one of the following types:

(i) Isomorphism.- φ is a germ of C∞ diffeomorphism.
(ii) Blowing-up.- There exists a germ (Z, a) ⊂ (X, a) of smooth submanifold, which

is (resp. formally) invariant for ξ and not tangent to Γ at a, such that φ is the
germ at b of the blowing-up πZ : Y → X with center Z and b ∈ π−1

Z (a) is the
point corresponding to the tangent line of Γ. When Z = {a}, we say πZ is a
punctual blowing-up.

(iii) Ramification.- There exists a system of adapted coordinates τ = (x,y) for Γ
such that the hyperplane H = {x = 0} is (resp. formally) invariant for ξ, and
there exists some r ∈ N>0 such that (Y, b) = (R1+n, 0) and τ ◦ φ = Rr, where
Rr is the map Rr(x,y) = (xr,y).

For each admissible transformation φ : (Y, b) → (X, a), the lift, or transformed

couple φ∗(ξ,Γ) of (ξ,Γ) by φ is the couple (ξ̃, Γ̃), where ξ̃ is the germ of C∞ (resp.

formal) vector field at b ∈ Y satisfying φ∗ξ̃ = ξ, and Γ̃ is the non-singular formal

curve satisfying φ̂(Γ̃) = Γ. The invariance conditions ensure that ξ̃ exists as a smooth

(resp. formal) vector field, and the condition on b for the blowing-up ensures that Γ̃

is a formal curve at b. Noticeably, (ξ̃, Γ̃) is an invariant couple again. Iterating, the
lift of (ξ,Γ) by a finite composition of admissible transformations ψ = φr ◦ · · · ◦ φ1,
refers to ψ∗(ξ,Γ) = φ∗

1φ
∗
2 · · ·φ

∗
r(ξ,Γ).

The (TRS)-form we provide below for an invariant couple (ξ,Γ) is a practical
expression of ξ in some coordinates adapted to Γ, so we often need to reason with
particular coordinate systems. For this, we list below the coordinate systems and
change of coordinates we use and the effect of the admissible transformations on the
coordinates of (ξ,Γ).

Definition 9. Let (ξ,Γ) be a a smooth (resp. formal) invariant couple, and (x,y)
be an adapted coordinate system. An admissible coordinate transformation for
(ξ,Γ, (x,y)) is a germ of C∞ map φ : (R1+n, 0) ∋ (x,y) 7→ (x̃, ỹ) ∈ (R1+n, 0),
(resp. a formal map (x̃, ỹ) = φ(x,y) ∈ R[[x,y]]1+n) of the following types. For
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each type, we give the expression of the transformed couple (ξ̃, Γ̃) = φ∗(ξ,Γ) in the
coordinate system (x̃, ỹ).

(1) Affine polynomial. It regroups two types of transformations:
(a) Polynomial translation.- A map of the form

(x,y) = Tβ(x̃, ỹ) := (x̃,β(x̃) + ỹ),

where β(x̃) ∈ (xR[x̃])n. In coordinates, we get:

ξ̃ = ξx ◦ φ ∂x̃ + (ξy ◦ φ − (ξx ◦ φ) β
′(x̃)) · ∂ỹ

Γ̃ = (x̃,Γy(x̃)− β(x̃))

(b) Polynomial regular.- Any map of the form

(x,y) = ΨP (x̃, ỹ) := (x̃, P (x̃) · ỹ),

where P (x̃) ∈Mn(R[x̃]) and P (0) ∈ GLn(R). In coordinates, we get:

ξ̃ = ξx ◦ φ ∂x̃ + (P−1(x̃) · ξy ◦ φ − (ξx ◦ φ)P
−1(x̃)·P ′(x̃) · ỹ) · ∂ỹ

Γ̃ = (x̃, P−1(x̃) · Γy(x̃))

(P (0) ∈ GLn(R) implies P−1 exists inMn(C
∞(R)) and inMn(R[[x]])).

(2) Diagonal monomial.- A map φ of the form (x,y) = (x̃, ((x̃Ik) ⊕ In−k) · ỹ),
with 1 ≤ k ≤ n, admissible if (x,y) has contact order at least 2 with Γ and
the center {x = 0,y1 = 0} is invariant by ξ, where y1 = (y1, . . . , yk). In this
case, writing also y2 = (yk+1, . . . , yn), ỹ1 = (ỹ1, . . . , ỹk), ỹ2 = (ỹk+1, . . . , ỹn),

ξ̃ = (ξx ◦ φ) ∂x̃ +
1
x̃
(ξy1
◦ φ− (ξx ◦ φ) ỹ1) · ∂ỹ1

+ (ξy2
◦ φ) · ∂ỹ2

Γ̃ = (x̃, 1
x̃
Γy1

(x̃),Γy2
(x̃))

When k = n, we say that the transformation is full diagonal monomial.
(3) Ramifications.- A map φ of the form (x,y) = (x̃r, ỹ), where r ∈ N>1, admis-

sible if the hypersurface {x = 0} is invariant by ξ. In this case we have

ξ̃ = 1
r
x̃1−r(ξx ◦ φ) ∂x̃ + (ξy ◦ φ) · ∂ỹ

Γ̃ = (x̃,Γy(x̃
r)).

The different notions of admissible transformations so introduced are closely
linked. It is clear that an admissible coordinate transformation for (ξ,Γ, (x,y))
is the expression in adapted coordinates of an admissible transformation of (ξ,Γ).
Affine polynomial transformations are isomorphisms. A diagonal monomial trans-
formation is the expression in coordinates of the blowing-up of the invariant center
{(x,y1) = 0} and the contact order condition of (x,y) with Γ implies the point
(x̃, ỹ) = 0 corresponds to the tangent line of Γ. The definition of the ramification
as a coordinate transformation coincide with the one as admissible for the couple
(ξ,Γ).

On the another hand, the gauge transformations and ramifications that are ad-
missible for a formal linear system xp+1y′ = A(x) · y correspond to compositions of
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admissible coordinate transformations for (ξ,Γ, (x,y)) with ξ = xp+1∂x+(A(x)·y)·∂y
and Γ = (x, 0). This is checked directly, except for diagonal monomial transforma-
tions which need the following.

Proposition 10. Let ΨT be a diagonal monomial transformation admissible for the
system (S) : xp+1y′ = A(x) · y, let (S ′) : xq+1y′ = B(x) · y be the transformed
system, let ξ = xp+1∂x+(A(x)·y)·∂y and Γ = (x, 0). Then there exist a composition
of diagonal monomial coordinate transformations Φ admissible for (ξ,Γ, (x,y)) such
that

Φ∗(ξ,Γ, (x,y)) = (x̃q+1∂x̃ + (B(x̃) · ỹ) · ∂ỹ, (x̃, 0), (x̃, ỹ)).

Proof .- We write T = Diag(xk1In1
, . . . , xkmInm

) with k1 > k2 > · · · > km and
n1 + · · · + nm = n, after gathering the exponents which coincide and eventually
permuting the variables. Remark that

T = T k1−k2
1 · T k2−k3

2 · . . . ·T km
m ,

where Tm = xIn, and for i < m, Ti = xIn1+···+ni
⊕ Ini+1+···+nm

. On the level of gauge

transformations, this gives ΨT = Ψ
(m)
Tm
◦· · ·◦Ψ

(k1−k2)
T1

where powers are compositions.
Now, from their expressions in coordinates, the ΨTi

act on a system the same way
the diagonal monomial coordinate transformation ΦTi

(x̃, ỹ) = (x̃, Ti(x̃) · ỹ) act on

the corresponding vector field. So Φ = Φ
(m)
Tm
◦ · · · ◦ Φ

(k1−k2)
T1

solves the problem, up
to check that it is admissible.

Let us investigate the admissibility condition on a generic case shaped as the Ti,
say G = xIℓ ⊕ In−ℓ. Decompose A by blocks of sizes ℓ and n− ℓ as

A =

(
A11 A12

A21 A22

)
, A11 ∈Mℓ(R[[x]]), A22 ∈Mn−ℓ(R[[x]]).

Then

G−1 · A ·G− xp+1G−1 ·G′ =

(
A11 − x

pIℓ x−1A12

xA21 A22

)
,

and we see ΨG is admissible for (S) if and only if x divides A12.
Since the order of the coefficients above the diagonal cannot increase by iterating

such sort of transformations, we get that ΨT is admissible for (S) if and only if ΨT1

is admissible for (S) and ΨŤ is admissible for the system transformed by ΨT1
, where

Ť = T k1−k2−1
1 · T k2−k3

2 · . . . ·T km
m . So we only need to prove that the admissibility of

ΦT1
follows from the admissibility of ΨT1

.
From the calculation above, ΨT1

is admissible for (S) means that A12(0) = 0.
Write y1 = (y1, . . . , yn1

),y2 = (yn1+1, . . . ,yn), so

ξ = xp+1∂x + (A11 · y1 + A12 · y2) · ∂y1
+ (A21 · y1 + A22 · y2) · ∂y2

.

The restriction of ξ to the center {x = 0,y1 = 0} is given by

ξ ◦ (0, 0,y2) = (A12(0) · y2) · ∂y1
+ (A22(0) · y2) · ∂y2

,
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and since A12(0) vanishes if ΨT1
is admissible, we see that this restriction belongs to

Span(∂y2
) = ker(dx ∧ dy1 ∧ · · · ∧ dyn1

). In other terms, {x = 0,y1 = 0} is invariant
by ξ. Therefore ΦT1

is admissible as required. �

Full diagonal monomial transformations (punctual blowing-ups) play an impor-
tant role in our reduction. We detail here a more or less classical property of
divisibility by the equation of the exceptional divisor.

Lemma 11. Let (ξ,Γ) be a smooth invariant couple, (x,y) a system of adapted
coordinates, k ∈ N and φ the full diagonal monomial transformation. Suppose

ξ|0 = 0 and set (ζ,∆, (x, z)) = φ∗(ξ,Γ, (x,y)). Then xk divides ζ̂z (resp. ζ̂x) if and
only if xk divides ζz (resp. ζx) in C

∞(R1+n, 0).

Proof .- The direct implication only is not obvious. We have xζz(x, z) = ξy(x, xz)−
ξx(x, xz)z, and ζx(x, z) = ξx(x, xz). The proof for both is analogous, we fo-
cus on ζz. We write the Taylor expansion with integral remainder for ϕ : t 7→
ξy(t(x, xz))− ξx(t(x, xz))z between t = 0 and t = 1:

x ζz(x, z) = ϕ(1) =

k∑

m=0

1

m!

(
dmξy(0, 0)((x, xz)

(m))− dmξx(0, 0)((x, xz)
(m))z

)
. . .

+

∫ 1

0

(
dk+1ξy(t(x, xz))((x, xz)

(k+1))− dk+1ξx(t(x, xz))((x, xz)
(k+1))z

) (1− t)k dt
k!

=

k∑

m=0

xm

m!

(
dmξy(0, 0)((1, z)

(m))− dmξx(0, 0)((1, z)
(m))z

)
. . .

+ xk+1

∫ 1

0

(
dk+1ξy(t(x, xz))((1, z)

(k+1))− dk+1ξx(t(x, xz))((1, z)
(k+1))z

) (1− t)kdt
k!

In the last expression, the integral is C∞ (in terms of (x, z)) by Leibniz integral
rule, so xk+1 divides the remainder. The initial sum is a polynomial, of degree k in
x. The formal divisibility of the left hand side by xk+1 implies this polynomial is
identically zero. Thus ζz(x, z) = xkf(x, z), where f is the parametric integral. �

2.3. Reduction of a vector field to Turrittin-Ramis-Sibuya form along an

invariant curve. As in the precedent paragraph, (ξ,Γ) is an invariant couple.

Definition 12. Let q ∈ N be a non-negative integer. We say that the vector field ξ
is in Turrittin-Ramis-Sibuya form ((TRS)-form for short) of type (q, N,M) if there
exists a system of coordinates (x,y) : (X, a)→ R1+n, such that

(1) ξ = xeu(x,y)
[
xq+1∂x +

(
(D(x) + xqC) · y + xq+1+NV (x, xMy)

)
· ∂y

]
,

where e ∈ N, u(x,y) is a germ of C∞ unit, D(x) and C satisfy the same conditions
as in Definition 4, and V : (R1+n, 0) → Rn is a map germ. We say that (x,y) is a
system of (TRS)-coordinates for ξ. The terms D(x), C and V (x,y) are respectively
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called exponential part, residual part, and vestigial part of the (TRS)-form. If (ξ,Γ)
is an invariant couple and (x,y) is system of (TRS) coordinates for ξ that is adapted
to Γ, we say that the couple (ξ,Γ) is in TRS-form.

The main result in this section establishes that any invariant couple (ξ,Γ) can be
reduced to (TRS)-form after finitely many admissible transformations.

Theorem 13. Let (ξ,Γ) be an invariant couple at (X, a), and assume that ξ|a = 0.
Then:

(i) There exists q ∈ N and a finite composition ψ : (Y, b) → (X, a) of admissible

transformations for (ξ,Γ) such that the transformed couple (ξ̃, Γ̃) = ψ∗(ξ,Γ)
is in (TRS)-form of type (q, 0, 0), with a C∞ vestigial part and a residual part
with a good spectrum. Precisely, for all system of coordinates (x,y) at (X, a)
adapted to (ξ,Γ), there exists a system of (TRS)-coordinates (x̃, ỹ) at (Y, b)
for ψ∗(ξ,Γ), and a finite composition of admissible coordinate transformations
Ψ such that Ψ∗(ξ,Γ, (x,y)) = (ψ∗(ξ,Γ), (x̃, ỹ)).

(ii) Let (ξ,Γ) be an invariant couple at (Y, b), with (TRS) coordinates (x,y) of type
(q, 0, 0), with a C∞ vestigial part and a residual part with a good spectrum.
Given N,M ≥ 0, there exists a finite composition ψN,M : (W, c) → (Y, b)

of punctual blowing-ups, such that (ξ̃, Γ̃) := (ψN,M )∗(ξ,Γ) is in (TRS)-form
of type (q, N,M), with a C∞ vestigial part. More precisely, there exist a

system of (TRS) coordinates (x̃, ỹ) for (ξ̃, Γ̃), and a finite composition ΨN,M

of admissible coordinate transformations, made of affine polynomial and full
diagonal monomial transformations, such that

(ΨN,M)∗(ξ,Γ, (x,y)) = (ξ̃, Γ̃, (x̃, ỹ)),

and (ξ̃, Γ̃, (x̃, ỹ)) has the same exponential part than (ξ,Γ, (x,y)) and a residual
part with good spectrum included in R∗

− × iR.

Remark 14. Independently of its use in the present paper, the theorem above has
its own interest. In particular, it is a precious tool to study the local dynamic of an
analytic vector field. For this, let us emphasis that, if ξ is analytic, the proof below
works step by step (with some eventual simplifications due to the fact that formal
divisibility implies analytic divisibility), and shows a stronger form of reduction:
only analytic admissible coordinate transformations are needed (the centers of the
blowing-ups are smooth analytic manifolds). Actually, we chose to present here a
proof that works directly in the analytic framework to use Theorem 13 for other
purposes. The proof in the C∞ case could be shorten a bit starting with a system
of coordinates (x,y) having flat contact with the formal curve Γ (i.e. Γy = 0).

2.4. Proof of Theorem 13. We fix initial adapted coordinates (x,y) at the point
a ∈ X , and write

ξ = ξx∂x + ξy · ∂y and Γ = (x,Γy(x)).
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We consider several admissible coordinate transformations, starting from (x,y) to
get to a system of (TRS) coordinates. To lighten the notations, we do not system-
atically change the name of the different objects after each transformation, and we
recycle old names when it implies no local confusion. We divide the proof in several
steps.

2.4.1. Getting the associated system of ODEs. The invariance condition is expressed
in terms of the parametrization of Γ as

(ξ̂x ◦ Γ)Γ
′
y = ξ̂y ◦ Γ

and since Γ is not included in the formal singular locus of ξ, it implies ξ̂x ◦ Γ 6= 0.

Let m = ordx ξ̂x ◦ Γ(x).
We apply the polynomial translation Tjm+1Γy(x) : (x,y) 7→ (x, jm+1Γy(x) + y).

This way, the transformed coordinates (still denoted (x,y)) have contact order at

least m+ 2 with Γ. Notice that this does not affect the order of ξ̂x ◦ Γ.
We now apply m full diagonal monomial transformations. We need to show that

it is admissible. Inductively, after k < m full diagonal monomial transformations,
we have Γy = O(xm+2−k)and ξx(0, 0) = 0 (since (φ∗ξ)x = ξx(x, xy), where φ is any

such transformation). Specifying (ξ̂x ◦ Γ)Γ
′
y = ξ̂y ◦ Γ at x = 0 gives ξy(0, 0) = 0.

So the origin is invariant by ξ and m + 2 − k ≥ 2 implies Γ has contact at least
2 with (x,y), then the next full diagonal transformation is admissible. Notice also

that these transformations do not affect the order of ξ̂x ◦ Γ(x).
We rename ζ the vector field before the m diagonal monomial transformations so

to keep the notation ξ for the new vector field. In particular, ξx(x,y) = ζx(x, x
my).

We claim ξx = xmu(x,y) where u is a C∞ unit. Indeed, writing ζx(x,y) = ζ(x, 0)+

O(y) we get ξx(x,y) = ξx(x, 0) + xmO(y), so m = ordx(ξ̂x ◦ Γ) = ordx(ξx(x, 0) +

o(xm)). Then, formally, ξ̂x(x, 0) = xmv(x) for some v(x) ∈ R[[x]] with v(0) 6= 0,

and xm divides ξ̂x(x,y) − ξ̂x(x, 0) with a non unit ratio. According to Lemma 11,
this divisibility holds in the C∞ class, and we get ξx(x,y) = xmu(x,y), where u is
a C∞ unit.

Still from Lemma 11, we can now factor out from ξy the larger power xe with

e ≤ m which divides ξ̂y, and finally, ξ can be written

(2) ξ = xeu(x,y)η, with η = xp+1∂x + ηy(x,y) · ∂y,

where p ≥ −1, e+ p+ 1 = m, ηy is C∞ and x does not divide η̂.
To the vector field η we associate the system of ordinary differential equations

xp+1y′ = ηy(x,y).

To study its behavior “along Γ”, we consider the system of linear ODEs asociated
to (η,Γ), given by

(3) xp+1y′ = Â(x) · y, where Â(x) = ∂yη̂y(x,Γy(x)).
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2.4.2. Proof of item (i). The case where p = −1 in (2), corresponds to the case
where η is not singular at the origin. It is easy to handle: after a new full diagonal
monomial transformation, which is admissible for (ξ,Γ), we get, renaming the unit,

ξ = xe−1u(x,y) (x∂x + (−y +O(x)) · ∂y) ,

which is in (TRS)-form of type (0, 0, 0).
Let us assume that p ≥ 0, i.e., η is singular at the origin. Notice that Γ is

invariant for η̂ and not contained in its formal singular locus. Since the lift of ξ by
an admissible coordinate transformation ϕ is given by ϕ∗ξ = (ϕx)

e (u ◦ ϕ) (ϕ∗η),
and ϕx is a power of x, it is sufficient to prove Theorem 13 for (η,Γ).

We apply Real Turrittin’s Theorem 6 (point (i)) to the system (3): there exists
r ∈ N≥1 and an admissible finite composition ψ of either polynomial regular or
diagonal monomial transformations such that φ = ψ ◦ Rr transforms the system
(3) into a system that is either regular – a case already treated, so we assume the
alternative –, or in (TRS)q-form for some q ≥ 0, say

xq+1y′ =
(
D(x) + xqC + xq+1V (x)

)
· y,

where D,C, V satisfy the conclusion of the theorem.
Translated in terms of vector fields, φ is a composition of admissible coordi-

nate transformations for (θ, (x, 0), (x,y)) with θ = xp+1∂x + (Â(x) · y) · ∂y, and
φ∗(θ, (x, 0), (x,y)) is regular or in (TRS)-form of type (q, 0, 0). We want to apply
the coordinate transformation φ to η also in order to get a vector field in the desired
(TRS)-form. We need to prepare first η by means of some additional admissible
transformations in order φ is admissible. We use the following lemma.

Lemma 15. Let θ = xq+1∂x+(Â(x) ·y) ·∂y ∈ DerR(R[[x,y]]), q ≥ 0, and τ : R1+n ∋
(x̃, ỹ) 7→ (x,y) ∈ R1+n be a composition of admissible coordinate transformations
for (θ, (x, 0), (x,y)). For all s ≥ 1, there exists h(s) such that, for all smooth
invariant couple (ξ,Γ), if

ξ = jh(s)θ + o(xh(s)) · ∂y and Γy = o(xh(s)),

then τ is admissible for (ξ,Γ, (x,y)) and τ ∗ξ = js(τ
∗θ) + o(x̃s) · ∂ỹ.

Proof .- If the statement of the lemma holds for θ and τ1 and for τ ∗1 θ and τ2
with respective “shift functions” h1, h2, it holds for θ and τ2 ◦ τ1 with shift func-
tion h1 ◦ h2. So we simply need to prove it when τ is an admissible coordinate
transformation for θ. From their expressions in coordinates, the lemma holds if τ
is an affine polynomial transformation with h(s) = s. If τ is a diagonal monomial
transformation, it holds with h(s) = s+ 1. Indeed, ξ = jh(s)θ + o(xh(s)) · ∂y implies
that ξ ◦ (0,y) = (A(0) · y) · ∂y = θ ◦ (0,y), so the center of the blow-up is invariant
for ξ as soon as it is invariant for θ, being included in x = 0. Also, the condition
Γy = o(xs+1) ensures that the coordinates (x,y) have sufficient contact with Γ, so
that τ is admissible for (ξ,Γ). Finally, the lemma is satisfied if τ is a ramification
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with h(s) = s (the hypothesis guarantee x = 0 is invariant by ξ). �

In our situation, we consider the bound m = h(q+ 1) given by Lemma 15 for the
transformation φ and the vector field (θ, (x, 0), (x,y)). We will apply the polynomial
translation Tβ where β(x) = j2m(Γy(x)), followed by the composition ϕ of m full
diagonal monomial transformations: ϕ(x,y) = (x, xmy). A reasoning identical to
those in the first paragraphs of 2.4.1 shows ϕ ◦ Tβ is admissible for (η,Γ, (x,y)).

We rename (Tβ)
∗(η,Γ, (x,y)) as (η,Γ, (x,y)). We have Γy = O(x2m+1), so Remark

7 gives ηy(x, 0) = O(x2m+1). Writing

η = xq+1∂x +
(
ηy(x, 0) + ∂yηy(x, 0) · y +O(||y||2)

)
· ∂y,

we get

ϕ∗η(x,y) = xq+1∂x +

(
1

xm
ηy(x, 0) + ∂yηy(x, 0) · y −mx

qy + xmO(||y||2)

)
· ∂y.

Since (ϕ∗Γ)y = O(xm+1),

jm(∂yηy(x, 0) · y) = jm(∂yηy(x,Γy(x)) · y) = jm(Â(x) · y),

and ηy(x, 0) = O(x2m+1) implies 1
xmηy(x, 0) = O(xm+1). So finally,

ϕ∗η = jm(θ)−mx
qy · ∂y + o(xm) · ∂y.

In accordance with Lemma 15, φ is admissible for ϕ∗η+mxqy · ∂y, and φ
∗(ϕ∗η+

mxqy · ∂y) = jq+1(θ) + o(xq+1)∂y. Now, the radial vector field ρ = mxqy · ∂y is
preserved by any admissible coordinate transformation that is not a polynomial
translation and ρ(0,y) = 0. Since φ contains no polynomial translation, we get that
φ is also admissible for ϕ∗η and we have

(ϕ ◦ φ)∗η = jq+1(θ)− ρ+ o(xq+1) · ∂y.

Writing xq+1W (x,y) for the factor o(xq+1) above and making jq+1(θ) explicit, this
gives:

(ϕ ◦ φ)∗η = xq+1∂x +
(
(D(x) + xq(C −mIn)) · y + xq+1W (x,y)

)
· ∂y.

The later is a TRS-form of type (q, 0, 0), whose residual part, C − mIn, has good
spectrum since C has good spectrum, and whose vestigial part W (x,y) is C∞. It
finishes the proof of Theorem 13, (i).

2.4.3. Proof of item (ii) of Theorem 13. Let N,M ≥ 0 be two natural numbers as
in the statement. Let (ξ,Γ, (x,y)) be an invariant couple with TRS coordinates of
the form (q, 0, 0) which satisfies the hypothesis of the theorem, point (ii), with a
principal part named D, and a vestigial part named W .

As in the previous paragraph, we consider the formal system of linear ODEs

(S) xq+1y′ = Â(x) · y,
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where Â(x) := ∂yξy(x,Γy(x)). System (S) satisfies the hypothesis of Theorem 6
(ii), that we apply to height N +M : there exists an admissible regular polynomial
gauge transformation ΨQ, Q(x) ∈ Mn(R[x]) with Q(0) = In, that transforms (S)
into a system of the form

(S̃) xq+1y′ = (D(x) + xqC + xq+1+N+MV (x))) · y,

with D, C, V as in the thesis of the theorem. We let m = h(q + 1 + N + M)
be the integer given by Lemma 15, applied to ΨQ and the formal vector field θ =

xq+1∂x + (Â(x) · y) · ∂y.
We consider two positive integer numbers ℓ, ℓ′ satisfying the following conditions

ℓ ≥ max{m− q, max(Spec(C))−M + 1}
ℓ′ ≥ max{ℓ+m, ℓ+M + 1}

We apply the polynomial translation Tβ where β(x) = jℓ′(Γy(x)), so we assume
the coordinates (x,y) have contact order at least ℓ′ + 1 with Γ. We then apply
the composition φ of ℓ full diagonal monomial transformations, this is, φ(x, ỹ) =
(x, xℓỹ). As before, φ is an admissible transformation for (ξ,Γ, (x,y)) since ℓ′ > ℓ.

We write (ξ̃, Γ̃, (x, ỹ)) := φ∗(ξ,Γ, (x,y)). We get the following expression for ξ̃:

ξ̃ = xq+1∂x +

(
1

xℓ
ξy(x, 0) + (∂yξy(x, 0)− ℓx

qIn) · ỹ +
1

xℓ
χ(x, xℓỹ)

)
· ∂ỹ,

where χ(x,y) = ξy(x,y)− ξy(x, 0)−∂yξy(x, 0) ·y. The particular form of ξy shows
that we also have

χ(x,y) = xq+1 (W (x,y)−W (x, 0)− ∂yW (x, 0) · y) .

So χ(x,y) = xq+1O(||y||2), and then 1
xℓχ(x, x

ℓỹ) = xq+1+ℓO(||ỹ||2). Since the
coordinates (x,y) have contact order at least ℓ′+1 with Γ, we deduce ξy(x, 0) =

O(xℓ
′+1) (by Remark 7) and hence jℓ′(∂yξy(x, 0)) = jℓ′(∂yξy(x,Γy(x))) = jℓ′(Â(x)).

Finally, using that ℓ′ + 1− ℓ > m and that ℓ > m− (q + 1) we have

ξ̃ + ℓxqỹ · ∂ỹ = jmθ + o(xm)∂ỹ and Γ̃ỹ = o(xm).

From Lemma 15, ΨQ is admissible for ξ̃+ ℓxqỹ · ∂y, then for ξ̃ (as before, the radial
vector field ℓxqỹ · ∂ỹ is invariant by ΨQ), and we have, re-writing (x,y) = Ψ∗

Q(x, ỹ),

Ψ∗
Qξ̃ = xq+1∂x +

(
(D(x) + xq(C − ℓIn)) · y + xq+1+M+N χ̃(x,y)

)
· ∂y

for some C∞ map χ̃(x,y).
To conclude, we apply a composition of M full diagonal monomial transforma-

tions to Ψ∗
Qξ̃. It is admissible due to our choice of ℓ′, because, being ΨQ a regular

polynomial transformation, we have ordx(φ
∗Γ̃)y = ordx(Γ̃ỹ) ≥ ℓ′ + 1 − ℓ ≥ M + 2,
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and the expression of the transformed vector field (now denoted ξ again) in terms
of the new coordinates (still denoted (x,y)) is

ξ = xq+1∂x +
(
(D(x) + xq(C − (ℓ+M)In)) · y + xq+1+N χ̃(x, xMy)

)
· ∂y.

It is a (TRS)-form of type (q, N,M), with a C∞ vestigial part χ̃, the same expo-
nential part D than the vector field we started with. Moreover, the residual part
C − (ℓ +M)In has a good spectrum (since C has good spectrum) and Spec(C) is
included in R∗

− × iR by the choice of ℓ. �

3. Restricting to a center manifold

In this section, we consider a vector field ξ in (TRS)-form of type (q, N, 0), with a
vestigial part in a finite differentiability class Ck, and with an exponential part whose
eigenvalues have no pure imaginary dominant terms. We say that ξ has no dominant
rotation. Being (x,y) some (TRS)-coordinates, we prove that ξ admits a trajectory
in each half space {x > 0} and {x < 0} accumulating to the origin and having a
high contact order (related to N) with the x-axis. We also establish that any two
trajectories living in the same half space and accumulating to the origin have flat
contact, and we determine the structure of the pencil of all those trajectories. We
consider finite differentiability classes because our induction involves the restriction
to a center manifold that might not be smooth. Moreover, Lemma 20 below is used
in the next section, after a transformation that turns smooth into Ck vector fields.

The main result of this section relies partly on the fact, certainly folklore among
specialists, that a trajectory γ of a vector field accumulating to a singular point a
and tangent to a local center manifold W c admits an “accompanying trajectory” δ
in the center manifold that is “exponentially closed” to γ. The definition of being
exponentially closed depends on the parametrization considered for γ and δ. In
Carr’s book [10], the difference between those trajectories is estimated by a negative
exponential in terms of the natural time of the flow of the vector field. We restate
below the precise result we need. Namely, if the vector field is a system of ODEs in
a privileged coordinate x, as happens for a (TRS)-form, the two trajectories γ and
δ have flat contact with respect to x, that serves as a common parameter.

We start summarizing Carr’s results from [10, Ch. 2]. Consider a vector field ξ
of class Ck in a neighborhood of 0 ∈ Rm, whose linear part, in coordinates (x,w) ∈
Rc × Ru = Rm is written as dξ(0) = A ⊕ B, where Spec(A) ⊂ iR and Spec(B) ⊂
R

∗
+⊕ iR. The classical Center Manifold Theorem asserts that, in a neighborhood of

0, there is a subvariety W c, of class Ck, tangent to {w = 0} and locally invariant
for ξ (Carr proposes a construction in his book; for the proof of the differentiability
class, the reader may consult Kelley [17]). Fix such a local center manifold W c and
write it as a graphW c = {w = h(x)}, where h is Ck in a neighborhood U0 of 0 ∈ Rc

and satisfies h(0) = 0, dh(0) = 0. Define the projection

π : U0 × R
u →W c, π(x,w) = (x, h(x)).
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Theorem 16 (Carr). With the notations above, there is a neighborhood U of
0 ∈ Rm and some constant β > 0, such that the following holds. If γ : (−∞, 0]→ U
is a trajectory of ξ such that α(γ) = 0, that is, limt→−∞ γ(t) = 0. Then there is a
unique trajectory δ : (−∞, 0]→W c of the restriction ξ|W c, called the accompanying
trajectory of γ in W c, such that

(4) ‖γ(t)− δ(t)‖ = O(eβt), when t→ −∞.

Moreover, there exists a local homeomorphism Ψ : (U, 0) → (U ′, 0), preserving w

and satisfying the following. Given a trajectory γ in U , if δ is the trajectory in W c

determined by the initial condition δ(0) = π(Ψ(γ(0))), then α(γ) = 0 if and only if
α(δ) = 0, and in that case δ is the accompanying trajectory of γ in W c.

Remark 17. The homeomorphism Ψ in the statement above is the inverse of the
one described by Carr in [10, p. 22] (called S there). We find useful to use instead
the map

Ψ̃ : U →W c × R
u, (x,w) 7→ (π(Ψ(x,w)),w),

that is also a local homeomorphism by the Invariance Domain Theorem.

Proposition 18. Let ξ be a vector field of class Ck in a neighborhood of the origin
of R1+n, with coordinates (x,y), such that

ξ = xq+1∂x + ξy · ∂y,

where q ≥ 1. Then ξ admits a local Ck center manifold W c, transverse to {x = 0}
and included in a central unstable manifold W cu, which satisfies the following.

(1) If γ is a trajectory parametrized as (x,γ(x)), x > 0 with α(γ) = 0 then
there exists a trajectory δ parametrized as (x, δ(x)), x > 0, such that ∀ℓ ∈
N, ||δ(x)− γ(x)|| = o(xℓ).

(2) The homeomorphism Ψ, associated by Theorem 16 with a given system of
coordinates (x,w) of W cu with x1 = x, preserves x, i.e., x ◦Ψ = x.

Proof .- Being q ≥ 1, ∂x ∈ ker(dξ(0)), so any local center manifold of ξ is transverse
to {x = 0}. Let γ : (−∞, s) ∋ t 7→ (x(t),γ(x(t))) ∈ R1+n be as in the statement,
where t is the natural time associated with ξ. Since α(γ) = 0, γ is included in
any local center-unstable manifold (that is, invariant and tangent to the sum of
the eigenspaces associated with eigenvalues in R≤0 ⊕ iR, see [17] again). We fix
a Ck center-unstable manifold W cu, then a Ck center manifold W c ⊂ W cu of the
restricted vector field ξ|W cu. Note thatW c is a local center manifold of ξ, so proving
the proposition inside W cu suffices. We therefore assume W cu and R1+n coincide
locally, so Theorem 16 applies. Shrinking our neighborhood of 0 if needed, we get
the accompanying trajectory δ : (−∞, s′) ∋ t 7→ (δx(t), δy(t)) ∈ R

1+n of γ in W c,
parametrized by the natural time (that is, satisfying (4)). From ξx = xq+1 we get
that the two functions x(t), δx(t) satisfy the same differential equation

(E)
dx

dt
= xq+1.
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By integration, the difference of two different solutions of (E) is always larger than
a certain power of |t| when t goes to −∞. But

|δx(t)− x(t)| ≤ ||δ(t)− γ(t)|| = O(exp(βt)) as t→ −∞,

so δx(t) and x(t) cannot be different solutions: δx(t) = x(t). Writting now t(x)
for the inverse function of x(t), and δ(x) = δy(t(x)), we see δ is parametrized by
(x, δ(x)), x > 0, and we have

||δ(x)− γ(x)|| = ||δ(t(x))− γ(t(x))|| = O(exp(βt(x)).

From (E) we also get t(x) ∼ −x−q

q
as x→ 0, which, replaced in the previous equa-

tion, implies point (1).
Following the notations introduced with Theorem 16, π◦Ψ maps a point (x,γ(x))

to π((δx(t(x)), δy(t(x))). We saw δx(t(x)) = x, which is point (2). �

The principal result of this section is the forthcoming lemma, which involves the
following definitions.

Definition 19. Let q ∈ N>1, and D(x) = Θ(D1(x))⊕D2(x) ∈Mn(Rq−1[x]), with

D1(x) = diag(c1(x), . . . , cn1
(x))), ∀j = 1, . . . , n1, cj(x) ∈ Cq−1[x],

D2(x) = diag(d1(x), . . . , dn2
(x)), ∀j = 1, . . . , n2, dj(x) ∈ Rq−1[x].

We say that D has no dominant rotation when

∀j = 1, . . . , n1, ordx Re(cj(x)) ≤ ordx Im(cj(x)).

We also define the unstability index of D(x) as

u(D(x)) := 2Card{j; Re(cj) > 0}+ Card{j; dj > 0},

where a real polynomial P satifies P > 0 iff P (x) > 0 for x > 0 sufficiently small.

Lemma 20. Let ξ be a vector field in (TRS)-form of type (q, N + 1, 0) in the
coordinate system (x,y) : (X, a)→ R1+n, and suppose:

(1) the exponential part has no dominant rotation;
(2) the residual part has spectrum included in R

∗
− ⊕ iR;

(3) the vestigial part is a Cn(q+1+N)+1 germ.

Then,

(i) ξ admits a trajectory (x,γ(x)), x > 0, which has contact of order N + 1 with
the x-axis: γ(x) = o(xN+1);

(ii) If (x, ζ(x)), x > 0, is any trajectory of ξ satisfying limx→0 ζ(x) = 0, then γ and
ζ have flat contact: ∀k ∈ N, γ(x)− ζ(x) = o(xk);

(iii) For any neighborhood U of a, there is an open neighborhood V ⊂ U of a and
a closed connected topological submanifold S of V ∩ {x > 0} such that:
(a) dim(S) = 1 + u(D(x));
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(b) S is locally invariant for ξ;
(c) For all b ∈ V ∩ {x > 0}, b ∈ S if and only if the trajectory of ξ|V ,

parametrized as (x,γ(x)) for x ∈ (α, ω), satisfies α = 0 and limx→0 γ(x) =
0.

Proof .- In the definition of a (TRS)-form appears a factor made of a power xe

and a unit u. Since the proposition only concerns the foliation induced by ξ in the
half space x > 0, we might suppose xeu(x,y) = 1. So we suppose ξ is given by:

ξ = xq+1∂x +
(
(D(x) + xqC) · y + xq+N+2V (x,y)

)
· ∂y,

D, C and V satisfying the hypothesis.
We prove the proposition by induction on the couple (n, q) where 1 + n is the

dimension of the ambient space, and q is the Poincaré rank of ξ. We initialize the
induction when n = 0 or q = 0 and prove that the case (n, q) follows from a case
(n′, q′) with n′ < n and q′ < q.

Case n = 0.
Here ξ = xq+1∂x. The curve x, x > 0 is the only trajectory of ξ included in x > 0

and the conditions (i)-(iii) are trivial.
Case q = 0.
Here ξ = x∂x + [C · y + x2+NV (x,y)] · ∂y. The lift η of ξ by the composition

y = xNz of N full diagonal monomial transformations is given by

η = x∂x + [(C −NIn) · z + x2V (x, xNz)] · ∂z.

The origin is an hyperbolic singularity of η, with one positive eigenvalue 1 associated
with ∂x, and n eigenvalues with negative real part (the eigenvalues of C−NId; recall
Spec(C) ⊂ R∗

−⊕iR). So the unstable manifold of η has dimension 1: it is a trajectory
issued from the origin and tangent to ∂x at x = 0. In particular, it is not included in
x = 0, and since η(x) 6= 0 if x > 0, it can be parametrized by x. Let (x, δ(x)) be this
trajectory. Being tangent to ∂x, we get δ(x) = o(x). Then (x,γ(x)) := (x, xNδ(x))
is a trajectory of ξ which satisfies γ(x) = o(xN+1). This proves (i).

Now, let ζ = (x, ζ(x)) be any trajectory of ξ with limx→0 ζ(x) = 0. Such a
trajectory is not contained in the stable manifold (which coincides with x = 0).
Thus, since the singularity is hyperbolic and ζ accumulates to it, ζ is included in
the unstable manifold of ξ. This unstable manifold is of dimension one and is made
of only one trajectory in x > 0, which means ζ = γ. So conditions (ii) and (iii) are
automatically satisfied.

Induction: q > 0 and n > 0. We reorder the coordinate functions y, in such a
way that 1, . . . , m are the indices such that ker(D(0)) = Span(∂y1

, . . . , ∂ym
). Write

z = (y1, . . . , ym), w = (ym+1, . . . , yn). Recall ordx(D(x)) = 0 so m < n. Since ξ
has no dominant rotation, the center space (associated with eigenvalues with real
part 0) coincide with the kernel of dξ(0), that is Span(∂x, ∂z). So the vectors ∂w
are associated with non diagonal elements of D(0). Up to permutation, w = (r, s),
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with r = (ym+1, . . . , ym+1+d), s = (ym+2+d, . . . , yn), and ∂r (resp. ∂s) are associated
with positive (resp. negative) diagonal coefficients of D(0).

So ξ admits a Cn(q+1+N)+1 center unstable manifoldW cu and a Cn(q+1+N)+1 center
manifold W c ⊂ W cu, that are graphs over (x,y, r) and (x,y) respectively. The
manifold W cu intervenes only in the proof of point (iii) below, we focus on W c. Call
h the Cn(q+1+N)+1 map that gives W c, that is,

W c = {w = h(x, z)}.

We claim that h(x, z) = xq+1+Ng(x, z) for some C(n−1)(q+1+N)+1 map g. For this,
first remark that W c ∩ {x = 0} is a center manifold of the linear vector field

ξ(0,y) = (D(0) · y) · ∂y = (Dw(0) ·w) · ∂w,

where Dw is defined by (D(x) · (z,w))w = Dw(x) · w (we define Dz accordingly,
so D = Dz ⊕ Dw). This center manifold is clearly unique and given by w = 0,
so W c ∩ {x = 0} = {x = 0, w = 0}. This means that h(0, z) = 0, so h(x, z) is
divisible by x and h(x, z)/x is a Cn(q+1+N) map. Let

s = sup{r ≤ q + 1 +N ; h(x, z)/xr is C1},

and write h(x, z) = xsg(x, z). If s = q + 1 +N , h being Cn(q+1+N)+1 and divisible
by xq+1+N , g is C(n−1)(q+1+N)+1 and the claim is proven, so showing s = q + 1 +N
suffices. Suppose s < q + 1 + N , so g(x, z) is Cn(q+1+N)+1−s and g(0, z) 6= 0, and
let us get a contradiction. Since W c is invariant by ξ and given by w−h(x, z) = 0,
we have ξ(w − h)|w=h = 0, which gives

(Dw + xqCw)h = ∂zh · (Dz + xqCz) · z + xq+1∂xh . . .
+ xq+1+N (∂zh · Vz(x, z,h)− Vw(x, z,h)) ,

where C = Cz ⊕Cw and V (x,y) = (Vz(x,y), Vw(x,y)) ∈ Rm ×Rn−m. Replacing h

by xsg, dividing by xs and setting x = 0 in this equation leads to

Dw(0) · g(0, z) = 0,

which is a contradiction since Dw(0) is invertible and g(0, z) 6= 0.
Now, let η be the pullback of ξ by the inclusion W c →֒ Rn+1. In the coordinate

system (x, z) of W c, η is given by

xq+1∂x +
(
(Dz + xqCz) · z + (Dw + xqCw) · h(x, z) + xq+1+NVz(x, z,h(x, z))

)
· ∂z.

But
(Dw(x) + xqCw) · h(x, z) = xq+1+N(Dw(x) + xqCw) · g(x, z)

so
η = xq+1∂x +

(
(Dz(x) + xqCz) · z + xq+1+Nν(x, z)

)
· ∂z

for some C(n−1)(q+1+N)+1 germ ν. Let v = ordx(Dz(x) + xqCz), so 1 ≤ v ≤ q, since
ordx(Dz) ≥ 1 and Cz 6= 0 (recall 0 is not an eigenvalue of C, then neither of Cz).
The vector field η is divisible by xv and η/xv is in (TRS)-form of type (q−v,N+1, 0)
in coordinates (x, z) and satisfies:
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(1) the exponential part Dz(x) has no dominant rotation;
(2) the residual part Cz has spectrum included in R∗

− ⊕ iR;

(3) the vestigial part ν(x, z) is a C(n−1)(q+1+N)+1 germ, and

(n− 1)(q + 1 +N) + 1 ≥ m(q − v + 1 +N) + 1.

So, since m < n and q − v < q, the induction hypothesis applies to η/xv.
From this we deduce the three points of the lemma. For point (i), η/xv has a tra-

jectory (x, δ(x)), x > 0 such that δ(x) = o(xN+1). If γ(x) := (δ(x),h(x, δ(x))), the
curve (x,γ(x)), x > 0 is a trajectory of ξ, and since γ(x) = (δ(x), xq+1+Ng(x, δ(x))),
it also verifies γ(x) = o(xN+1).

For point (ii), let ζ = (x, ζ(x)), x > 0 be a trajectory of ξ satisfying limx→0 ζ(x) =
0. We are in the conditions of Proposition 18, so ζ admits an accompanying tra-
jectory (x, c(x)) of ξ contained in W c (that is, c(x) has flat contact with ζ(x)).
As usual, we write c = (cz, cw). Then (x, cz(x)) is a trajectory of η/xv and
limx→0 cz(x) = 0. From the induction hypothesis, this implies cz(x) and δ(x) have
flat contact. Since h is differentiable, h(x, cz(x)) and h(x, δ(x)) have flat contact
also, so c(x) = (cz(x),h(x, cz(x))) and γ(x) = (δ(x),h(x, δ(x))) have flat contact.
Finally, since ζ has flat contact with c and c has flat contact with γ, we have that
ζ and γ have flat contact. This proves point (ii).

Let us show point (iii). Recall y = (z, r, s) where the center manifoldW c is given
by (r, s) = h(x, z), and the center-unstable manifold W uc is a graph over s = 0.

Let Ψ̃ be the homeomorphism introduced in Remark 17. According to Proposition
18, point (2), Ψ̃ maps a point (x, z, r, s) ∈ W cu to ((x, z′,h(x, z′)), r) ∈ W c × Rd,
where the trajectory issued from (x, z′,h(x, z′)) is the accompanying trajectory of
the one issued from (x, z, r, s). We let π be the projection onto the first factor of
W cu × Rd.

Given a neighborhood U of a, we fix an open neighborhood U0 ⊂ U of a in such a

way that Ψ̃ restricts to an homeomorphism Ψ̃0 from U0∩W
cu onto a product U c

0×B
of two connected open sets of W c and Rd respectively. Let V c ⊂ U c

0 be the open
neighborhood of a in W c, and Sc be the closed connected topological submanifold
of V c ∩ {x > 0} given by point (iii) for the vector field η/xv. Choose an open

neighborhood V ⊂ U of a such that V ∩ W cu = Ψ̃−1
0 (V c × B), and let S be the

subset of V given by

S := Ψ̃−1
0 (Sc × B) .

Since Ψ̃0 is an homeomorphism and preserves x, S is a closed connected C0

submanifold of V ∩{x > 0} due to the corresponding property for Sc. The dimension
of S is dim(Sc) + d, and according to the inductive hypothesis, dim(Sc) = 1 +
u(x−vDz(x)) = 1 + u(Dz(x)). Since r is a d-tuple, and corresponds to the positive
diagonal elements of D(0), we conclude dim(S) = 1 + u(D(x)) (point (iii,a)).

Let b ∈ V ∩ {x > 0} and call γ the trajectory of ξ|V passing through b and

parametrized as (x,γ(x)), x ∈ (α, ω). If b ∈ S, then π(Ψ̃(b)) ∈ Sc, so the trajectory
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δ passing through π(Ψ̃(b)) is included in Sc and has α-limit point 0. By definition

of Ψ̃0, δ is the accompanying trajectory of γ, so we deduce γ is included in S and
α = 0.

The first property shows that S is locally invariant for ξ (point (iii,b)). The
second property means that S is composed by trajectories accumulating to 0 for
negative time (point (iii,c) direct implication). Suppose now that b /∈ S. If α = 0

and limx→0 γ(x) = 0, then π(Ψ̃(γ)) is a trajectory in W c ∩ {x > 0} accumulating
to 0, thus contained in Sc, contradicting the fact that b 6∈ S. It proves point (iii,c)
reciprocal. �

4. Straightening

In this section we prove a proposition analogous to Lemma 20, but allowing dom-
inant rotation. For this, we introduce a particular kind of transformation that we
call a straightener.

Definition 21. Let q ≥ 0. A rotational matrix of degree q is a polynomial matrix
R ∈Mn(Rq[x]) of the form

R(x) = Θ(Diag(b1(x), . . . , bk(x)))⊕ 0n−2k,

where 0n−2k ∈ Mn−2k(R) is the null matrix and bj(x) ∈ iRq[x] \ {0} for all j =
1, . . . , k. The straightener UR associated with R is the mapping UR(x,y) = (x,ΩR(x)·
y), where y = (y1, . . . , yn) and ΩR(x) is given by:

ΩR : R∗
+ → Mn(R)

x 7→ exp

∫ +∞

x

R(t)

tq+2
dt.

The axis of the straightener UR is the linear subspace y1 = · · · = y2k = 0.

Remark 22. Keeping the notations above and writing, for j = 1, . . . , k:

bj = i(b0j + b1jx+ · · ·+ bqjx
q) and αj(x) =

b0i
(q + 1)xq+1

+
b1i
qxq

+ · · ·+
bqi
x
,

ΩR is given by

ΩR = (cos(α1)I2 + sin(α1)J2)⊕ · · · ⊕ (cos(αk)I2 + sin(αk)J2)⊕ In−2k.

So the map UR acts on the fibers of (x,y) 7→ (x, yk+1, . . . , yn) as a direct sum of
plane rotations of angles −αj(x), that are unbounded as x goes to 0. In particular,
say n = 2 and k = 1 for simplicity, it interlaces the “horizontal” lines (the fibers
of y) the ones with the others. We chose to call it “straightener” however, because
we apply it to curves that are already interlaced, but the other way round; the
straightener mapping, by interlacing regular curves, will unlace our curves of interest.
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For instance, the vector field xq+2∂x + (R(x) · y) · ∂y have “spiraling” trajectories
(x,y(x)) given by

y(x) =

(
exp

∫ +∞

x

R(t)

tq+2
dt

)
· y0, y0 ∈ R

2.

The lifts (x, z(x)) of these trajectories by the straightener (x,y) = UR(x, z) are the
horizontal lines z(x) = z0. In this way, UR straightens the coiling induced by the
rotational part R of the vector field.

We will use the following properties of straighteners.

Lemma 23. Let n ≥ 2, q ≥ 1, M ≥ 1, R be a rotational matrix of degree q − 1,
and let ΩR, UR be defined as in Definition 21. Then:

(1) UR is a C∞ diffeomorphism of R∗
+ × Rn which coincide with the identity in

restriction to its axis (and in particular to the x-axis);
(2) ordx is invariant by UR: the two curves (x,γ(x)) and (x, δ(x)) have contact

order at least N (i.e., ‖γ(x)− δ(x)‖ = O(xN)) if and only if the two curves
(UR)

∗(x,γ(x)) and (UR)
∗(x, δ(x)) have contact of order N . In particular,

the contact of a curve with the x-axis is invariant by UR;
(3) ΩR satisfies the differential equation xq+1Ω′

R = R · ΩR;

(4) the map x 7→ xMΩR(x) admits a C⌊ M
q+1

⌋ extension on R+;
(5) if C is compatible with R, then C commutes with ΩR and Ω−1

R .

Proof .-

(1) UR admits U−R as a reciprocal, and is clearly smooth; the expression of UR

in restriction to its axis is the identity.
(2) For any fixed x > 0, the map y 7→ UR(x,y) is an isometry (w.r.t. euclidean

distance).

(3) From the shape of R, we notice that
∫ +∞

x
R(t)
tq+1 dt commutes with its deriva-

tive. The result follows classically.
(4) By induction on ⌊ M

q+1
⌋. If q ≥ M ≥ 1, xMΩR has a limit (zero) as x goes

to 0, then admits a continuous extension. Otherwise, M ≥ q + 1 and the
differential equation satisfied by ΩR gives

(xMΩR)
′ = (MxqId +R(x)) · xM−(q+1)ΩR.

From induction hypothesis, xM−(q+1)ΩR has a C⌊ M
q+1

⌋−1 extension. Then

xMΩR(x) admits a C⌊ M
q+1

⌋ extension.
(5) ΩR and Ω−1

R have the same block diagonal structure than R.

�

The main result of this section is the following.
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Proposition 24. Let (ξ,Γ, (x,y)) be an invariant couple and a system of (TRS)
coordinate (x,y) : (X, a)→ R

1+n
0 of type (q, N +M,M), with:

(1) ⌊ M
q+1
⌋ ≥ n(q + 1 +N) + 1;

(2) a residual part with spectrum included in R∗
− + iR;

(3) a C∞ vestigial part;
(4) (x,y) has contact of order at least N + 1 with Γ.

Then,

(i) ξ admits a trajectory (x,γ(x)), x > 0 which has contact of order at least N+1
with Γ: γ(x)− jNΓy(x) = o(xN).

(ii) If (x, ζ(x)), x > 0 is any trajectory of ξ satisfying ζ(x) − jNΓy(x) = o(xN),
then γ and ζ have flat contact: ∀k ∈ N, γ(x)− ζ(x) = o(xk).

(iii) For any neighborhood U of a, there is an open neighborhood V ⊂ U of a and
a closed connected topological submanifold S of V ∩ {x > 0} such that:
(a) dim(S) = 1 + u(D(x)), where u(D(x)) is the unstability index of the

exponential part D(x) of the (TRS)-form;
(b) S is locally invariant for ξ;
(c) For all b ∈ V ∩ {x > 0}, b ∈ S if and only if the trajectory of ξ|V ,

parametrized as (x,γ(x)), x ∈ (α, ω), satisfies α = 0 and limx→0 γ(x) = 0.

Proof .- As in Lemma 20, the factor xeu(x,y) of the (TRS)-form does not inter-
vene, since the result only involves the foliation induced by ξ in the half space x > 0.
So we suppose that

ξ = xq+1∂x +
(
(D(x) + xqC) · y + xq+1+N+MV (x, xMy)

)
· ∂y,

D, C, V satisfying the hypothesis. Up to reorder the coordinate functions y, we
suppose y1, . . . , ym carry all dominant rotations. More precisely, we suppose that

D = Θ(Diag(c1, . . . , cm/2))⊕Θ(Diag(cm/2+1, . . . , cn1
))⊕ Diag(d1, . . . , dn2

)

where:

(1) c1, . . . , cm/2 ∈ Cq−1[x], and ordx(Re(cj)) > ordx(Im(cj)) for j = 1, . . . , m/2;
(2) cm/2+1, . . . , cn1

∈ Cq−1[x], and ordx(Re(cj)) ≤ ordx(Im(cj)) for j = m
2
+

1, . . . , n1;
(3) d1, . . . , dn2

∈ Rq−1[x].

If m = 0, (ξ,Γ, (x,y)) is in (TRS)-form of type (q, N, 0) without dominant rotation
and Lemma 20 applies, which gives the result, taking into account Γ has contact at
least N + 1 with the x-axis.

Otherwise, for l = 1, . . . , m/2, we let

vl = ordxRe(cl(x)) and bl(x) = jvl−1(cl(x)),

so bl(x) is the initial pure imaginary part of cl(x). Define the rotational matrix
R(x) := Θ(Diag(b1(x), . . . , bm

2
(x))⊕ 0n−m.
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We apply the transformation (x,y) = UR(x, z). The trajectories (x,y(x)) of ξ
included in R∗

+×Rn are in one-to-one correspondance with the trajectories (x, z(x))
of η = U∗

Rξ included in R
∗
+ × R

n, where

η = xq+1∂x+
[
(D(x)−R(x) + xqC) · z + xq+1+N+MΩ−1

R (x) · V (x, xMΩR(x) · z)
]
·∂z.

The crucial point to get this expression is that C and D(x) commute with ΩR(x)
and Ω−1

R (x) (Lemma 23, (6)).
Let s ∈ {0, . . . , q} be the order of D(x)− R(x) + xqC, and let

g(x, z) = xMΩ−1
R (x) · V (x, xMΩR(x) · z).

From Lemma 23 (5), g admits a C⌊ M
q+1

⌋ extension on R+ × Rn. The expression of
the vector field η/xs is

η/xs = xq−s+1∂x +

[(
1

xs
(D − R)(x) + xq−sC

)
· z + xq+1−s+Ng(x, z)

]
· ∂z.

We deduce that (x, z) is a system of (TRS)-coordinates of type (q−s,N, 0) for η/xs,
and that:

• the exponential part x−s(D − R)(x) has no dominant rotation;
• the residual part C has spectrum included in R∗

− ⊕ iR.

• the vestigial part g(x,y) is C⌊ M
q+1

⌋, and ⌊ M
q+1
⌋ ≥ n(q + 1 +N) + 1.

Then Lemma 20 applies to η/xs, and since η and η/xs have the same trajectories,
the conclusions of that result applies to η. We have that η admits a trajectory
(x, δ(x)) which has contact of order at least N+1 with the x-axis, and consequently
with Γ. So (x,γ(x)) := (x,ΩR(x)δ(x)) is a trajectory of ξ which has also contact
of order at least N + 1 with the x-axis. This proves point (i). Now, if (x, ζ(x)) is
a trajectory of ξ with lim ζ(x) = 0, then (x,ΩR(x)ζ(x)) is a trajectory of η that
also satisfies limΩR(x)ζ(x)) = 0. By Lemma 20, (ii), ΩR(x)ζ(x) and δ(x) have flat
contact. Since ΩR preserves ordx, ζ(x) and γ(x) have flat contact, which gives point
(ii). Finally, point (iii) is obtained from the corresponding item (iii) of Lemma 20
applied to η, taking into account that ΩR provides a diffeomorphism from the half-
space {x > 0} to itself, preserving the accumulation of trajectories to the origin.
Concerning the dimension of S, notice that, according to Definition 19, we have
equality of the unstability indices u(D(x)) = u(x−s(D(x)− R(x))). �

5. Final proof

In this section, we prove Theorem 1, that is, the existence of trajectories asymp-
totic to a given formal invariant curve Γ of a vector field ξ, and Theorem 2, which
describes the structure (a topological embbeded manifold of positive dimension) of
the set of trajectories asymptotic to each half-branch associated to Γ. The accurate
version of these results is Theorem 25 below.
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We recall that a real (irreducible) formal curve Γ at 0 ∈ Rm can be defined either
with a class of formal parametrizations Γ(t) ∈ (tR[[t]])m \{0} modulo formal change
of parameter of the form t = α(s) ∈ sR[[s]] with α′(0) 6= 0, or with a sequence
IT (Γ) = (pk)k≥0 of infinitely near points or iterated tangents. This sequence is
determined as follows: p0 = 0, Γ0 = Γ, and, recursively for k > 0, pk is the point
in the exceptional divisor of the punctual blowing-up πk−1 of pk−1 where the strict
transform Γk = π∗

k−1Γk−1 of Γk−1 is centered. We refer to [30, 11] for basics on
formal curves and infinitely near points of them.

A formal curve Γ has two formal half-branches Γ+,Γ−, defined in the following
ways, depending on the chosen definition of Γ. Considering a parametrization Γ(t)
of Γ, the half-branch Γǫ, for ǫ ∈ {+,−}, is the equivalence class of Γǫ(t) = Γ(ǫt)
under reparametrization t = α(s) with α′(0) > 0. In terms of iterated tangents,
if we replace the sequence of blowing-ups πk by spherical blowing-ups, Γ gives rise
to two sequences of oriented iterated tangents (qǫk)k≥0, for ǫ ∈ {+,−}, each one
corresponding to a half-branch Γǫ as defined above. Calculating IT (Γǫ) from Γε(t)
involves to know the value of limt→0 t/|t|. We adopt the convention t > 0.

Although parametrizations and iterated tangents define the same objects, one or
the other definition can be more practical to state a given property. For instance, “Γ

is not contained in the singular locus of ξ” is concisely stated as (ξ̂ ◦ Γ(t)) ∧ Γ′(t) =
0, where Γ(t) is a parametrization of Γ. On the contrary, saying that a curve is
asymptotic with a half-branch is easily defined with iterated oriented tangents. In
general (see [8]), a C1 parametrized curve γ : (0, c]→ R

m \ {0} with limt→0 γ(t) = 0
is said to have (oriented) iterated tangents if we can associate to γ a sequence of
points IT (γ) = (q+k )k≥0, where q

+
0 = 0, γ0 = γ and, for k > 0, q+k = limt→0 γk(t)

where γk = σ−1
k−1 ◦ γk−1 and σk−1 is the spherical blowing-up of q+k−1. We say that γ

is asymptotic to the half-branch Γǫ if γ has iterated tangents and IT (γ) = IT (Γǫ).
This definition clear out the need of a common parameter for γ and Γǫ. When
such parameter exists, it can be reformulated, saying the parametrization of Γǫ is an
asymptotic expansion of γ “à la Poincaré”. For example, if Γ+ = (x,Γ+

y (x)), x > 0 is
a half-branch of a formal non-singular curve Γ at 0 ∈ R1+n and γ = (x,γy(x)), x > 0
is a parametrized curve, then γ is asymptotic to Γ+ if and only if

(5) ∀N ∈ N, ‖γy(x)− jNΓ
+
y (x)‖ = O(xN+1)

(see for instance [19, Lemme 4.2]).
Iterated tangents help to define the “neighborhoods” of a formal half-branch Γ+

where we find asymptotic trajectories. Say the oriented iterated tangents IT (Γ+) =
(q+k )k≥0 of Γ+ are obtained via the sequence of spherical blowing-ups

(6) R
m σ0← M1

σ1←M2
σ2← · · ·

A horn neighborhood of Γ+ is an open set V ⊂ Rm \ {0} such that, for some k ∈ N,
the closure Vk of Vk = (σ0 ◦ · · ·σk−1)

−1(V ) is a neighborhood of q+k in Mk. The
minimal such k is called opening of V . For example, if Γ+ has parametrization
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(t,Γy(t)) ∈ R[[t]]1+n, then for any ε > 0, C > 0,

(7) ∆(C, ε) = {(x,y) ∈ R
1+n; 0 < x < ε, ||y − jkΓy(x)|| < Cxk}

is a horn neighborhood of Γ+ of opening k. Moreover, any horn neighborhood of Γ+

of opening not smaller than k contains some ∆(C, ε).
We can now state our main result in precise terms.

Theorem 25. Let ξ be a C∞ vector field in a neighborhood of a ∈ Rm and let Γ
be a formal irreducible curve at a, invariant for ξ and not contained in the formal
singular locus of ξ. Let Γǫ be a half-branch of Γ. Then, for any neighborhood U
of a, there exists k0 ∈ N such that, for all k ≥ k0, there is a horn neighborhood
V ǫ ⊂ U \Sing(ξ) of Γǫ of opening k, and there is a closed, connected C0-submanifold
Sǫ of V ǫ, of positive dimension and locally invariant by ξ such that:

(i) For any b ∈ Sǫ, the trajectory γ of ξ through b accumulates to a and is
asymptotic to Γǫ.

(ii) For any b ∈ V ǫ \ Sǫ, the trajectory γ of ξ through a escapes from V ǫ in finite
time, both positive and negative.

Notice that this result implies the two first statements of the introduction. Having
positive dimension, Sǫ is not empty and a trajectory issued from any point of Sǫ

is asymptotic to Γ (so Theorem 1). Also, any trajectory asymptotic to Γǫ will
eventually be included in any horn neighborhood of Γǫ, in particular V ǫ, so Sǫ

contains the germ of any trajectory asymptotic to Γǫ (so Theorem 2).
We devote the rest of the section to the proof of Theorem 25. We fix a half-

branch, say Γ+. Similarly to section 2.2, the couple (ξ,Γ+) is called an invariant
couple (although Γ might be singular). We denote the sequence of spherical blowing-
ups giving rise to IT (Γ+) = {q+k }k as in (6). For each k, the composition Σk :=
σ0◦σ1◦· · ·◦σk provides the transformed invariant couple (ξk,Γ

+
k ) := Σ∗

k(ξ,Γ
+), where

ξk = Σ∗
kξ is the pull-back of ξ by Σk and Γ+

k = Σ∗
kΓ

+ is given by IT (Γ+
k ) = {q

+
ℓ }ℓ≥k.

Notice Γk := Σ∗
kΓ is invariant by ξk and not contained in the formal singular locus

Sing(ξ̂k).

Step 1. Resolution of Γ and adapted coordinates.- By the definitions of asymptotics
and of horn neighborhood so introduced, and since blowing-ups are isomorphisms
outside the divisor, it suffices to prove Theorem 25 for the invariant couple (ξk,Γ

+
k ),

where k is any arbitrary fixed integer number.
Using reduction of singularities of formal curves by blowing-ups (see [30]), we

therefore assume that the invariant curve Γ is non-singular, that is, we start with an
invariant couple (ξ,Γ) as considered in section 2.2. For notational convenience, we
put m = 1+n for the dimension of the ambient space and we adopt all notations and
definitions from that and subsequent sections, with the obvious minor modifications
needed to handle the half-branch Γ+. In particular, a coordinate system (x,y) at a
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is adapted for Γ+ if it is adapted for Γ (Γ is transverse to y = 0) and Γ+ is included
in the half space x > 0, that is Γ+ has a formal parametrization (x,Γ+

y (x)), x > 0.

Step 2. Reduction to TRS-form.- Choose adapted coordinates (x,y) for Γ+. By
Theorem 13, (i), there is a composition ψ = φ1 ◦ · · · ◦ φ1 of admissible coordinate

transformations for (ξ,Γ, (x,y)) such that (ξ̃, Γ̃, (x̃, ỹ)) = ψ∗(ξ,Γ, (x,y)) is in a
TRS-form of type (q, 0, 0) whose residual part has good spectrum. According to
Definition 9, the map ψ is written in coordinate as

ψ(x̃, ỹ) = (x̃ℓ, T (x̃) · ỹ +α(x̃)),

where ℓ ≥ 1 and the entries of T and α are polynomials in x̃. In particular, {x >

0} ⊂ ψ({x̃ > 0}), so Γ+ has a lift Γ̃+ := ψ∗Γ+ parametrized as (x̃, Γ̃+
ỹ
(x̃)), x̃ > 0,

where (x,Γ+
y (x)) = ψ(x̃, Γ̃+

ỹ
(x̃)). Also, if γ̃ is a trajectory of ξ̃ parametrized as

(x̃, γ̃(x̃)), x̃ > 0, its image γ = ψ(γ̃) is a trajectory of ξ, parametrized as

(x, T (x1/ℓ)γ̃(x1/ℓ) +α(x1/ℓ)), x > 0.

Considering the reformulation (5) of asymptotic, and the basis (7) of horn neigh-

borhoods, it suffices to prove Theorem 25 for the invariant couple (ξ̃, Γ̃+), which is
in a TRS-form of type (q, 0, 0) and whose residual part has good spectrum.

Step 3. Existence of asymptotic trajectories.- According to the previous step, we
consider (x,y), a system of TRS coordinates for (ξ,Γ+), of type (q, 0, 0), with a
residual part with good spectrum. We can apply Theorem 13, (ii) and reason as
in Step 2, then we can assume that (ξ,Γ) is in (TRS)-form of type (q,M0,M0), for
any given M0. We choose M0 so that the hypothesis (1)–(4) of Proposition 24 are
satisfied with N = 0,M = M0. We still denote by (x,y) these (TRS) coordinates.
We can now prove the following.

Lemma 26. There exists a trajectory γ0 = (x,γ0(x)), x > 0, asymptotic to Γ+.

Proof .- Let (x,γ0(x)), x > 0, be a trajectory of ξ such that γ0(x) = o(x) as
provided by Proposition 24, (i). Let us show that γ0 is asymptotic to Γ+.

Given N ∈ N≥1, we chooseM =M(N) satisfying (1) of Proposition 24. Then, us-
ing Theorem 13, (ii), we take a finite composition of admissible coordinate transfor-
mations ΨN,M such that the transformed invariant couple (ξN,M ,ΓN,M , (x,yN,M)) :=
Ψ∗

N,M(ξ,Γ, (x,y)) is in (TRS)-form of type (q, N + M,M) and satisfies hypothe-
sis (1)–(3) of Proposition 24. We finish with a polynomial translation transfor-
mation (but keep the same notations) so that the coordinates (x,yN,M) also sat-
isfy the hypothesis (4) of that proposition. Notice that the first coordinate is
preserved by ΨN,M , so the system (x,yN,M) is adapted to the invariant couple
(ξN,M ,Γ

+
N,M) = Ψ∗

N,M(ξ,Γ+).
Applying Proposition 24, (i), we get, for each N ≥ 1, a trajectory γN = (x,γN(x)),

x > 0, of ξN,M which has contact of order at least N + 1 with Γ+
N,M . Since ΨN,M
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is a composition of punctual blowing-ups and affine translations, admissible for Γ,
the image ζN(x) := ΨN,M(x,γN(x)) = (x, ζN(x)) is a trajectory of ξ, tangent to Γ
of order at least N + 1. In particular, since limx→0 ζN(x) = 0, Proposition 24, (ii)
for (ξ,Γ) gives that γ0(x) and ζN(x) have flat contact, for any N ≥ 1. We conclude
that γ0 has the same contact order with Γ than any ζN . Thus, γ0 is asymptotic to
Γ+. �

Step 4. Submanifold of asymptotic trajectories.- To complete the proof of Theo-
rem 25, we show the existence of the sets V +, S+ with the stated properties. Recall
we already assumed that (ξ,Γ+) is in (TRS)-form of type (q,M0,M0) in adapted
coordinates (x,y) and that the hypothesis (1)–(4) of Proposition 24 are fulfilled.
Let Ψ1,M1

be a sequence of admissible punctual blowing-ups and polynomial trans-
lations such that (ξ1,M1

,Γ+
1,M1

, (x,y1,M1
)) := Ψ∗

1,M1
(ξ,Γ+, (x,y)) is in (TRS)-form of

type (q,M1+1,M1) and also satisfies (1)–(4); that is, for N = 1 andM =M1. Even
if it means performing additional punctual blowing ups, Ψ1,M1

can be assumed to
contain exactly k of them, for any given k ≥ 1 larger than a certain k0.

Let U be an initial neighborhood of a. From Proposition 24, (iii) applied to
(ξ1,M1

,Γ1,M1
), we get a neighborhood V1 of the origin of the chart (x,y1,M1

), con-
tained in Ψ−1

1,M1
(U), and a connected, closed C0-submanifold S1 of V1∩{x > 0} such

that for any b ∈ V1 ∩ {x > 0}, the trajectory δ of ξ1,M1
through b satisfies α(δ) = 0

if and only if b ∈ S1. We assume, moreover, that V1 is relatively compact and that
ξ1,M1

(x) > 0 on V1 ∩ {x > 0}. Thus, taking the parametrization δ(x) = (x, δ(x)),
the trajectory δ always scapes V1 for positive time, while limx→0 δ(x) = 0 if and
only if b ∈ S1.

Define V + = Ψ1,M1
(V1 ∩ {x > 0}) and S+ = Ψ1,M1

(S1). So V + is a horn neigh-
borhood of Γ+ contained in U and S+ is a closed connected C0-submanifold of V +,
locally invariant for ξ. Since V1 is relatively compact, V + has opening k, the number
of punctual blowing-up in the composition Ψ1,M1

. Let us check that properties (i)
and (ii) in Theorem 25 hold. Take b ∈ V + and let γ = (x,γ(x)) be the trajec-
tory of ξ through b. Denote by γ̃ = Ψ−1

1,M1
(γ) the lifted trajectory of ξ1,M1

through

b̃ = Ψ−1
1,M1

(b). The curve γ escapes V + for positive time since γ̃ escapes V1 for
positive time.

If b ∈ S+, then b̃ ∈ S1 and hence α(γ̃) = 0, which shows that α(γ) = 0, too.
Moreover, since k ≥ 1, γ has contact order at least 1 with Γ. Applying Proposi-
tion 24, (ii) to (ξ,Γ), γ(x) and γ0(x) have flat contact, where γ0 = (x,γ0(x)) is the
asymptotic trajectory obtained in Step 3. We deduce from (5) that γ is asymptotic
to Γ+. This gives point (i).

On the contrary, if b ∈ V + \ S+ then α(γ) cannot be 0: otherwise, by Proposi-
tion 24, (ii) again, γ would be asymptotic to Γ+, and in particular γ̃ would accu-
mulate to the origin of the chart (x,y1,M1

), so, by the properties stated for V1 and

S1, we would have b̃ ∈ S1, which is a contradiction. Then γ escapes V + for negative
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time also, since V + ∩ {x = 0} = {0}, being V + of opening k > 0. This gives point
(ii).

This finishes the proof of Theorem 25. �

6. Non-oscillating trajectories

In this section, we prove Theorem 3 which realizes formal invariant curves of ana-
lytic vector fields as subanalytically non-oscillating trajectories. Recall a parametrized
curve γ : (0, c)→ Rm is subanalytically non-oscillating if its support |γ| = γ((0, c))
intersects any global subanalytic set X ⊂ Rm in finitely many connected compo-
nents. When |γ| is a half curve at a ∈ R

m, say a = limt→0 γ(t) and a 6∈ γ(ε, c) for
ε > 0, the notion can be localized as follows. We say the curve γ is subanalytically
non-oscillating at a ∈ Rm if the intersection of the germ of |γ| at a with any sub-
analytic germ has a connected representative. We prove the following, that is the
statement of Theorem 3 for formal half-branches

Theorem 3’. Let (ξ,Γ) be an invariant couple at a ∈ R
m, suppose ξ is analytic,

and let Γǫ be a half-branch of Γ. Then ξ admits a trajectory γ, asymptotic to Γǫ

and subanalytically non-oscillating at a.

The proof involves an analytic invariant associated to the formal curve Γ. In
coherence with the terms introduced in section 2, a (local) blowing-up with center
C is admissible for Γ if C does not contain Γ. This is a sufficient condition to define
the lift of Γ and, by induction, the notion of an admissible sequence of blowing-ups.

Given a sequence π = πr ◦ · · · ◦ π1 : M → (Rm, a) of blowing-ups with smooth
analytic centers, admissible for Γ, denote by dπ(Γ) the minimal dimension of an
analytic set X ⊂ M which contains π∗Γ. We call subanalytic dimension of Γ the
minimum of the dπ(Γ) when π ranges in all such sequences of blowing-ups, and
we denote it by d(Γ). Note that the subanalytic dimension cannot decrease by
admissible blowing-ups.

Proof .- Choose π,X that realize d(Γ); that is, π = πr ◦ · · · ◦ π1 : M → Rm
p is a

sequence of blowing-ups with analytic smooth centers admissible for Γ, and X ⊂ M
is an analytic set of dimension d(Γ) which contains π∗Γ. From Hironaka’s Reduction
of Singularities for analytic sets [14] (see also [4]), there is a composition ρ : A→ M
of blowing-ups with analytic smooth centers such that the strict transform ρ∗(X)
of X is non-singular. Since the centers involved in the resolution have positive
codimension in X , the minimality of d(Γ) implies that ρ is admissible for π∗Γ. Let
∆ = (π ◦ρ)∗Γ and let q = ∆(0) ∈ A be the point where ∆ is centered. The sequence
π ◦ ρ might not be admissible for ξ, but being only interested by the trajectories
of ξ in a neighborhood of Γ, we can lift ξ weakly, even if it means to multiply the
vector field by an analytic function whose zero set is the center of each considered
blowing-up. We denote by ζ ∈ DerR(O(A, q)) this weak lift.
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We claim ρ∗X is invariant by ζ . Indeed, the tangency locus T of ζ with X is an
analytic subset of X , and it contains ∆. By minimality of d(Γ), T has dimension
larger than d(Γ), but since X is non-singular, it contains no proper analytic subset
of dimension d(Γ). So T = X .

Now ρ∗X is a regular analytic submanifold, the restriction ζ̃ := ζ |ρ∗X of ζ to X is

a smooth vector field in DerR(C
∞(ρ∗X, q)), and ∆ is a formal curve, invariant by ζ̃

that is not included in its formal singular locus. Theorem 25 applies. There exists a

trajectory δ of ζ̃ that is asymptotic to the half-branch ∆ǫ of ∆ which corresponds to
Γǫ. We let γ = (π ◦ ρ)(δ) be the blow down of δ. Notice that, since δ is asymptotic
to ∆ and ∆ is not included in the exceptional divisor of π ◦ ρ, γ is truely a curve
(and not a point).

The curve γ is by construction a trajectory of ξ asymptotic to Γε. We claim that
γ is subanalytically non-oscillating, which will complete the proof. For this, let S be
a subanalytic subset of Rm, and suppose that the germ of S ∩ |γ| at a is not empty.
We shall prove |γ| ⊂ S. Write S ′ = (π ◦ ρ)∗S ∩ ρ∗X for the intersection of ρ∗X with
the lift of S. Since |δ| ⊂ ρ∗X , the germ of S ′ ∩ |δ| at q is not empty.

We apply Hironaka’s Rectilinearization Theorem [14] to the subanalytic set S ′.
There is a covering of a neighborhood of q in A by finitely many semi-analytic sets,
and for each of them, a sequence of blowing-ups which transforms S ′ into an analytic
set. Call U the semi-analytic set of this partition which contains ∆, and σ : B → U
the corresponding sequence of blowups. Again, the minimality of d(Γ) implies that
U contains an open subset of ρ∗X and σ is admissible for ∆. The lift σ∗S ′ is an
analytic set which contains infinitely many points of σ−1(δ). Then it contains σ∗∆.
Since d(σ∗∆) ≥ d(Γ) = dimX (where σ∗∆ is considered as a formal curve in the
ambient m-manifold B), we get that σ∗S ′ ∩ (ρ ◦ σ)∗X has dimension not smaller
than dimX = dim(ρ ◦ σ)∗X . But (ρ ◦ σ)∗X being non-singular, it has no proper
analytic subset of the same dimension. Then σ∗S ′ = (ρ◦σ)∗X , and pushing forward,
ρ∗X ⊂ S ′, then |δ| ⊂ S ′ and therefore |γ| ⊂ S. �
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94. Birkhäuser Boston, Inc., Boston, MA, 1991.

[5] Bonckaert, P. Smooth invariant curves of singularities of vector fields in R3. Annales de
l’IHP, 3, n. 2 (1986), 111-183.



TRAJECTORIES ASYMPTOTIC TO FORMAL CURVES 33

[6] Bonckaert, P.; Dumortier, F. Smooth invariant curves for germs of vector fields in R3

whose linear part generates rotations. Jour. Diff. Eq., 62 (1986), 95-116.
[7] Braaksma, B.J.L. Multisummability of Formal Power Series Solutions of Nonlinear Mero-

morphic Differential Equations. Ann. Inst. Fourier, 42 (1992), 517–540.
[8] Cano, F.; Moussu, R.; Sanz, F. Oscillation, spiralement, tourbillonnement. Comm. Math.

Helv., 75 (2000), 284-318.
[9] Cano, F.; Moussu, R.; Sanz, F. Pinceaux de courbes intégrales d’un champ de vecteurs
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