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Abstract—The characterization of satellite behavior is of
paramount importance in Space Surveillance Awareness. One
crucial aspect of studying satellite behavior involves the detection
of out-of-station-keeping maneuvers within satellite trajectories.
Since each satellite’s station-keeping behavior is unique, ex-
tracting relevant information from historical data is crucial
for modeling the Pattern of Life. In this context, we propose
integrating a state-of-the-art data mining technique, namely the
Matrix Profile, into a neural network architecture. Our approach
highlights the connection with non-local models. The proposed
model exhibits promising results for detecting out-of-station-
keeping maneuvers in Low Earth Orbit satellite trajectories,
showcasing its effectiveness in addressing the challenges of
unbalanced data.

Index Terms—maneuver classification, satellite trajectories,
station keeping, matrix profile.

I. INTRODUCTION

In recent years, private businesses have been interested in
exploiting space, primarily through Low Earth Orbit (LEO)
satellite usage. Considering the space growth policy, it will
continue to increase in the following years. As the near
space becomes more populated, issues such as space debris
collisions or geopolitical conflicts appear. The increase in
space assets leads to an explosion of related data. However,
their exploitation in the space surveillance awareness domain
mainly rests on human intervention, which is time-consuming
and error-prone. It raises the need for automated treatment for
higher reactivity and more precise models. This work aims to
support these changes by detecting anomalies in the repeatable
and predictable behavior of the satellite called the Pattern of
Life (PoL).

Once in orbit, satellites drift from their original trajectories
due to physical perturbations like the atmospheric drag [1].
In this case, the satellite loses altitude and needs to compen-
sate for this fall by performing station-keeping maneuvers.
Satellites can also use maneuvers for different purposes, such
as changing their mission or spying. Standard methods to
detect out-of-PoL behaviors treat the out-of-station-keeping
maneuver detection. However, most of this work deals with
GEostationary Orbits (GEO) satellites or Two-Line Elements
(TLE) as input, for example [2], [3]. Here, considering the PoL
as natural trajectories and station-keeping maneuvers, we aim
to classify whether a trajectory belongs to the PoL, focusing
on the case of LEO satellites using ephemeris data. There is no

reason for the station-keeping process to be similar from one
satellite to another. Then, we propose representing the satellite
station-keeping process by its individual historical behavior.
Our approach involves employing supervised machine learning
techniques tailored for time series analysis. As maneuvers are
particular patterns of several burns, this issue corresponds to
the detection of collective and contextual anomalies defined
in [4], [5]. Matrix Profile (MP) [6] is a state-of-the-art tool
in data mining for discord computation, motif detection, and
anomaly detection. It computes the distances between each
window and its nearest neighbors in a time series. This is in
the scope of collective and contextual anomalies. It has already
been used with neural networks for data pre-processing and
feature extraction [7], [8]. Another approach, including MP
computation in neural networks, has been recently published
[9].

Additionally, we highlight the relationship between the
matrix profile and similarity computation in neural networks
through attention layers [10], as well as transformers, which
represent state-of-the-art methods for time series analysis [11].
The Autoformer [12] utilizes correlation computation directly
as an attention layer, indicating a strong association with
the matrix profile due to the ability to compute correlation
coefficients instead of distances [13]. Given that attention
layers exemplify non-local neural networks [14], [15], one
might question whether a matrix profile can be viewed as a
non-local function within a neural network.

The contributions of our study are summarized as follows.
i) We unveil the relationship between the Matrix Profile and
Nonlocal models. ii) We propose two new neural network
architectures inspired by the matrix profile algorithm called
Deep Matrix Profile (DMP). iii) These models are applied ex-
plicitly to maneuver classification in LEO satellite trajectories.

II. MATRIX PROFILE AS NON-LOCAL OPERATOR

A matrix profile [6] is a distance vector between each
window and its nearest neighbors in a time series. The Scalable
Time series Anytime Matrix Profile (STAMP) algorithm is
one of the fundamental algorithms that approximates the
matrix profile. It mainly comprises the MASS (Mueen’s Al-
gorithm for Similarity Search) [16] algorithm that allows a
fast computation of the distance profiles used to compute the
matrix profile. We propose the integration of matrix profile
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computation within neural networks as a non-local function.
In doing so, we elucidate the core principles underlying the
MASS and STAMP algorithms, demonstrate the alignment
of matrix profile computation with the non-local networks
paradigm, and introduce two novel non-local functions.

A. MASS algorithm

The MASS algorithm computes a distance profile, which
is the vector of distances between a given time series y =
[y1, · · · , ym] ∈ Rm called the query and every sub-window of
length m of s, with s ∈ Rn and m ≤ n.

1) Distance computation between two sub-windows: Let
s(i) := [si+1, · · · , si+m] ∈ Rm a sub-window of s ∈ Rn. We
consider that ŷ is the z-normalized vector of y i.e. ŷ :=

y−µy

σy

and the z-distance dz is the Euclidean distance that includes
z-normalization for both vectors,

d2z(s
(i), y) :=

m∑
j=1

(
si+j − µs(i)

σs(i)
− yj − µy

σy

)2

. (1)

In a few simple steps, one obtains from (1):

d2z(s
(i), y) = 2m

1− 1

m

m∑
j=1

(
si+j − µs(i)

σs(i)

)(
yj − µy

σy

)
(2)

From now on, one will suppose that y is already z-
normalized i.e. µy = 0 and σy = 1. Then, we obtain from
(2):

dz(s
(i), y) =

√√√√2

(
m−

∑m
j=1 si+jyj

σs(i)

)
. (3)

2) Efficient computation of dz components: Let us first
compute the σs(i) terms in (3) i.e. Θs := [σs(0) , · · · , σs(n−m) ]
using cumulative sums:

σs(i) =

√
C2

i+m − C2
i

m
−
(
Ci+m − Ci

m

)2

(4)

with Ci :=
∑i

j=1 sj and C2
i :=

∑i
j=1 s

2
j . Considering Ck,l :=

[Ck, · · · , Cl] and C2
k,l := [C2

k , · · · , C2
l ], we obtain:

Θs =

√
C2

m,n − C2
1,n−m

m
−
(
Cm,n − C1,n−m

m

)2

. (5)

On the other hand, one can compute the dot product term
in (3) via a convolution. Let us denote the dot product
by dpi :=

∑m
j=1 si+jyj , the vector varying the index i

by DPs,y := [dp1, · · · , dpn−m] and the reversed padded
query y∗ := [ym, · · · , y1, 0, · · · , 0] ∈ Rn. By defining the
convolution,

conv(s, y∗)[i] :=
i∑

j=1

sjy
∗
i−j+1 (6)

and considering that a part of y∗ is zeros and modifying the
index, we obtain

conv(s, y∗)[i] =
i∑

j=i−m+1

sjy
∗
i−j+1 =

m∑
j=1

sj+i−myj . (7)

One observes that

conv(s, y∗)[i+m] =

m∑
j=1

sj+iyj = dpi, (8)

then the dot product term can be computed via convolution by

DPs,y = conv(s, y∗). (9)

The convolution computation using a FFT reduces the com-
plexity from O(nm) to O(n log(n)) compared with the classic
convolution. We use the classical convolution operators be-
cause they are better optimized in deep learning frameworks
using GPUs. The formalism uses only convolutions and allows
them to be used as a deep learning layer.

3) Distance profile computation: Finally, considering an
already z-normalized query y, one can compute the distance
profile of y over s with

D(s, y) :=

√
2(m− DPs,y

Θs
). (10)

Note that the term DPs,y

Θs
is equal to m times the correlation

between s and y [13] wich is the recommendation for simi-
larity in the Autoformer models [12].

B. Matrix Profile

The matrix profile [6] consists of computing the distance
between each sub-window of a time series sA and their nearest
neighbor in sB by computing distance profiles in (10). We
utilize two methods to conduct this search:

1) Greedy algorithm: The greedy way of computing a
matrix profile is to iterate on all the subwindows of sA,
compute their distance profile over sB , and then keep the
minimum for each distance profile.

2) Scalable Time series Anytime Matrix Profile (STAMP):
The STAMP algorithm [6] iterates on the subwindows of
sB and computes their distance profile over sA. The goal
here is not to compute one precise component of the matrix
profile at each iteration but to refine the matrix profile values.
The pairwise minimum between the distance profile and
the previous matrix profile is computed at each iteration.
With a random walk over the sB sub windows, the STAMP
converges quickly to the exact values of the matrix profile.
It enables iterating over a fraction of the queries to obtain a
good approximation of the matrix profile (empirically 10%).
It leads to a high computational time saving, especially when
the length of sA and/or sB are high.
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C. Connection to non-local networks

One wants to detect a deviant collection of values compared
to past collections. Let S := [S1, · · · ,Sn] ∈ Rd×n, be a
multivariate time series, and S(i) := [Si+1, · · · ,Si+m] be a
window to classify in S, in our case the satellite trajectory. Let
S≤i := [S1, · · · ,Si] be the historical context of S(i), describ-
ing the past behavior of the satellite. We want to classify the
window S(i) as having normal or abnormal behavior compared
to S≤i.

Non-local neural networks are defined in [14] [15] as
networks including non-local operations over data support like
images, videos, or time series. These operations aggregate
in one position weighted information from all the positions.
Formally,

oj :=
1

C

n∑
i=1

f(xi, xj)g(xi) (11)

With C the normalization factor, [x1, · · · , xn] all positions of
an input signal x and o the output signal with the same size,
where f and g are parametrized function learned from data.
One proposes a slight modification of this paradigm. First, the
non-local information could come from another support, i.e.,
o and x have different sizes. Secondly, in the time series case,
one supposes that the xi and xj could be sub-windows of time
series. It leads to:

oj =
1

C

a−m+1∑
i=1

f(SA
i ,S

B
j )g(S

A
i ), (12)

with [SA
1 , · · · ,SA

a−m+1] all sub-windows of SA and
[SB

1 , · · · ,SB
b−m+1] all sub-windows of SB , where a := |SA|,

b := |SB | and m the sub-windows size.
Let amin be the indicator function,

amin(xi) :=

{
1, if xi = min(x)

0, otherwise.
(13)

We introduce a novel layer for deep learning models based
on distance profile computation (10) and the non-local formal-
ism in (12):

oj =

a−m+1∑
i=1

amin
j

(dz(f(S
A
i ), f(S

B
j )))dz(f(S

A
i ), f(S

B
j ))g(S

A
i ).

(14)
Note that for g equal to one, (14) corresponds to one

component of a Matrix Profile in II-B. Finally, we propose
a soft version of the matrix profile that takes into account all
the contributions but weighs them according to their respective
Euclidean distance values,

oj =

a−m+1∑
i=1

smin
j

(dz(f(S
A
i ), f(S

B
j )))dz(f(S

A
i ), f(S

B
j ))g(S

A
i ).

(15)
where smin(xi) :=

exp(−xi)∑
j exp(−xj)

is a smooth approximation
to the minimum function.

Fig. 1: Representation of Keplerian parameters: a is the semi-
major axis, i the inclination, e the eccentricity, ω the argument
of periapsis, Ω the longitude of the ascending node, and ν the
true anomaly.

III. PROPOSED METHOD

A. Data

We use simulated data of satellite trajectories based on
high-fidelity physics models and real satellite characteristics
[17]. These trajectories contain station-keeping maneuvers,
triggered via a servo system, that aim to correct the orbits’
semi-major axis and the inclination Fig. 1. They respectively
describe the size of the orbit and its orientation compared
with the Earth’s equatorial plane. Additionally, these scenarios
contain two distinct types of maneuvers that deviate from this
typical behavior. These anomalous maneuvers constitute the
class we aim to detect in our experiments. The first type
resembles station-keeping maneuvers in intensity, modifying
exclusively the semi-major axis or the inclination. However,
they do not adhere to the servo system strategy. On the other
hand, the second type exhibits even more significant deviations
in intensity compared to the station-keeping distribution. It
does not target any specific aspect of the trajectory for alter-
ation. All these maneuvers are composed of impulsive burns.

These data comprise 400 LEO satellite scenarios (one-year
trajectory), 250 with random trajectories, and 150 with Starlink
look-alike trajectories. One notes that each scenario is based on
variable inner parameters, notably making the station-keeping
strategy unique for each scenario.

We use ephemeris data as input for our model. They
describe the position and velocity of the satellite with a regular
timestamp. They are periodic with several periodicities. The
osculating orbits represent the Keplerian orbit Fig. 1 that the
satellite should have at every timestamp if there were no
perturbations, e.g., only two-body problems with isotropic ob-
jects. We use the equinoctial parameters, a variant of Keplerian
orbit parameters, that do not suffer from singularities [18].

B. Data preprocessing

We used the Seasonal-Trend decomposition procedure based
on Loess (STL) [19], a filter that decomposes time series
with periodicity by applying a Loess sequence smoother. As
described in Fig. 2, this filter yields three distinct components:
a seasonal component capturing periodic evolution, a trend
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(a) Semi-major axis (b) Inclination x

Fig. 2: STL decomposition of two equinoctial parameters,
during a semi-major axis (a) and an inclination (b) maneuver.
The top charts are the raw data (D). The three following are the
components of the STL decomposition: Trend (T), Seasonal
(S), and Remainders (R).

component delineating shifts between successive periods, and
a remainder component encompassing unexplained informa-
tion. Subsequently, we derived various features by computing
the differences between consecutive timestamps. We standard-
ized the data to ensure uniformity, calculating each satellite’s
features’ mean and standard deviation.

C. Architectures

We propose two architectures (Fig.3) based on a
matrix profile computation. They are both composed of
a convolutional encoder (the function f ) that aims to embed
the data in a well-structured latent space for the Euclidean
distance computation (Eq.(1)). The matrix profile computation
is applied on every latent space dimension and is computed
based on the greedy algorithm described in II-B1. The first
architecture (DMPh) relies on the original matrix profile
definition described in (14), and the second (DMPs) depends
on the soft version of the matrix profile described in (15).
The function g is either a convolutional network where
the parameters are learned during training or equal to one
corresponding to the Matrix Profile. Both approaches are set
to have a receptive field equal to 120 minutes (the maximum
orbital period in LEO). They comprise three layers with
a stride equal to three, and each layer doubles the channel size.

IV. RESULTS

A. Implementation Details

Considering that the station-keeping process differs for each
satellite, we aim to construct a model that remains resilient
to scenario changes. To achieve this, we partition the dataset
into train-validation-test sets, ensuring that each scenario is
exclusively assigned to one set. The temporal windows S(i)

to classify are 12 hours long; label one if they contain at
least one abnormal event and zero if not. The S(i) are created
in a rolling manner along all the scenarios with a step of
72 minutes, which is one-tenth of the window size. The
historical data S≤i is all the trajectory before it. The dataset

Fig. 3: Pre-treatment and DMP architecture. The blue boxes
are non-learnable functions, the red ones denote learnable, and
the green circles signify regularization solutions.

TABLE I: Performances of the two DMP architectures. MA.A
stands for Mean Accuracy on sub-class set A. c stands for g
as convolutional network and o as g equal to one.

Model F1-score Recall Precision MA.A MA.B

DMPh-o 0.35 0.89 0.21 0.84 0.75
DMPh-c 0.19 0.31 0.12 0.72 0.57
DMPs-o 0.73 0.82 0.66 0.9 0.79
DMPs-c 0.75 0.81 0.7 0.91 0.78

exhibits a high imbalance among the classes and within the
sub-classes of trajectory types. We delineate two sets of sub-
classes. The first (A) distinguishes three different sub-classes:
the trajectory without maneuver called natural, with station-
keeping maneuvers, and with random maneuvers. The second
(B) distinguishes six different sub-classes: natural trajectories,
station-keeping maneuvers on the semi-major axis, on the
inclination, random maneuvers on the semimajor axis, on
the inclination, and other random maneuvers. We choose an
undersampling strategy for the training according to the sub-
set A with respectively 25%, 25%, and 50% of the dataset.
It leads to a balanced dataset according to the label (0:50%,
1:50%). We select the optimal model based on the Area Under
the Precision-Recall Curve over 50 epochs, utilizing a batch
size of 32 and a learning rate of 0.01, with an adaptive
reduction on plateau.

B. Detection performance

We assess the performance of our models on the entire test
dataset using the following metrics: Precision, Recall, and F1-
score. The performances are also evaluated in function of the
sub-classes sets (A and B) via a mean of accuracies on the
different subclasses. The precision of the DMPh models is
lower than the DMPs one, specifically on the over-represented
natural sub-class (cf Fig. 4, which showcases the better-
performing results of the proposed DMPs architecture), with
a nearly perfect score. Furthermore, the term g, as a convo-
lutional network, seems to improve the DMPs results slightly
but penalizes the DMPh architecture. The drop in performance
of the mean accuracy on set B compared with set A is due
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Fig. 4: Confusion matrix of DMPs-c with sub-classes in the
x-axis (a stands for semi-major axis and i for inclination)
and predictions in the y-axis. The leftmost three columns are
labeled 0, and the rightmost three columns are labeled 1.

TABLE II: Performances of the DMPs-c architecture with
a matrix profile estimated via STAMP during the inference,
according to different fraction values.

Frac F1-score Recall Precision MA.A MA.B

1 0.75 0.81 0.7 0.91 0.78
0.1 0.75 0.79 0.72 0.91 0.78

0.01 0.76 0.73 0.79 0.89 0.77
0.001 0.49 0.39 0.68 0.79 0.66

to the low representation of inclination maneuvers, especially
for the random ones, and the weak performances of the
model to classify random inclination maneuvers as abnormal
behavior, as one can see on the Fig. 4. We explain this
by under-representing random inclination maneuvers during
the training phase. Further, one can notice in Fig. 2 that
the inclination maneuvers mainly impact the residues of the
STL decomposition, while semi-major axis maneuvers impact
both remainders and trend. Because drift in trend contains
more information than discontinuities in residues, it could
explain the performance difference between semi-major axis
and inclination maneuver classifications. The architectures are
promising for classifying maneuvers on the semi-major axis as
station-keeping ones or not. This characterization is interesting
because these maneuvers are the most frequent ones in LEO.

C. Impact of the STAMP algorithm on inference

In the case of real-time detection, using the STAMP al-
gorithm can save considerable amounts of computation. We
assess the evolution of performance according to the fraction
of queries considered in the STAMP algorithm. In Table II,
one notices that the mean accuracies drop when the fraction
value is lower than 0.1, which follows the empirical value in
the literature. Moreover, reducing the fraction value increases
the recall but reduces the precision. This seems intuitive
because the model compares the target window with less
historical data, which leads to finding less similar behavior in
the past. Despite the precision-recall trade-off, the proposed
architecture is robust to the STAMP algorithm.

V. CONCLUSION

This article introduces a novel supervised classification
method for analyzing satellite trajectory time series. Our
approach extends upon the method proposed by [6], incor-
porating deep learning techniques. Additionally, we intuit its
connection to non-local neural networks. Initial findings show
promise in the classification of out-of-station-keeping maneu-
vers. In future studies, we intend to investigate alternative
decomposition methods to enhance the characterization of
inclination maneuvers.
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tion Agency (Cifre-Défense 2021/0003/AID). This work was
granted access to the HPC resources of IDRIS under the
allocation 2024-AD011014111R1 made by GENCI.

REFERENCES

[1] D.A. Vallado, Fundamentals of Astrodynamics and Applications (Vol.
12), Space Technology Library, springer science & business media
edition, 2007.

[2] Charlotte Shabarekh, “Efficient object maneuver characterization for
space situational awareness,” 32nd Space Symposium, Technical Track,
p. 7, 2016.

[3] Thomas G Roberts et al., “Geosynchronous satellite maneuver classifi-
cation via supervised machine learning,” Advanced Maui Optical and
Space Surveillance Technologies Conference, 2021.

[4] Varun Chandola, “Anomaly Detection : A Survey,” ACM computing
surveys (CSUR), p. 74, 2009.

[5] Ane Blázquez-Garcı́a et al., “A Review on Outlier/Anomaly Detection
in Time Series Data,” ACM Computing Surveys, vol. 54, no. 3, pp. 1–33,
Apr. 2022.

[6] Chin-Chia Michael Yeh et al., “Matrix Profile I: All Pairs Similarity
Joins for Time Series: A Unifying View That Includes Motifs, Discords
and Shapelets,” in 2016 IEEE 16th International Conference on Data
Mining (ICDM), Barcelona, Spain, Dec. 2016, pp. 1317–1322, IEEE.

[7] Qian Liu et al., “A Novel Matrix Profile-Guided Attention LSTM Model
for Forecasting COVID-19 Cases in USA,” Frontiers in Public Health,
vol. 9, 2021.

[8] Hieu X. Nguyen et al., “MPCNN: A Novel Matrix Profile Approach
for CNN-based Sleep Apnea Classification,” Nov. 2023.

[9] Chin-Chia Michael Yeh et al., “Ego-Network Transformer for Subse-
quence Classification in Time Series Data,” Nov. 2023.

[10] Ashish Vaswani et al., “Attention is All you Need,” Advances in neural
information processing systems, 2017.

[11] Qingsong Wen et al., “Transformers in Time Series: A Survey,” May
2023.

[12] Haixu Wu et al., “Autoformer: Decomposition Transformers with Auto-
Correlation for Long-Term Series Forecasting,” Advances in Neural
Information Processing Systems 34 (NeurIPS 2021), 2021.

[13] Abdullah Mueen et al., “Fast approximate correlation for massive time-
series data,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, Indianapolis Indiana USA, June
2010, pp. 171–182, ACM.

[14] Xiaolong Wang et al., “Non-local Neural Networks,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake City,
UT, USA, June 2018, pp. 7794–7803, IEEE.

[15] Antoni Buades et al., “Non-Local Means Denoising,” Image Processing
On Line, vol. 1, pp. 208–212, Sept. 2011.

[16] Sheng Zhong et al., “MASS: Distance profile of a query over a time
series,” Data Mining and Knowledge Discovery, Feb. 2024.

[17] Stefan Baudier et al., “Synthetic Dataset of Maneuvering Low Earth
Orbit Satellite Trajectories for AI Analysis,” 2024.

[18] R. A. Broucke et al., “On the equinoctial orbit elements,” Celestial
Mechanics, vol. 5, no. 3, pp. 303–310, May 1972.

[19] R.B. Cleveland et al., “STL: A Seasonal-Trend Decomposition Proce-
dure Based on Loess,” International journal of biometeorology, vol. 6,
no. 1, pp. 3, 1990.

1785


