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1 Introduction and problem statement

Active area of research in Al is the theory of manifold learning and finding lower-
dimensional manifold representation on how we can learn geometry from data for pro-
viding better quality curated datasets [1]. There are however various issues with these
methods related to finding low-dimensional representation of the data, the so-called
curse of dimensionality [2]. Geometric deep learning methods for data learning often
include set of assumptions on the geometry of the feature space. Some of these assump-
tions include pre-selected metrics on the feature space, usage of the underlying graph
structure, which encodes the data points proximity. However, the later assumption of
using a graph as the underlying discrete structure, encodes only the binary pairwise re-
lations between data points, restricting ourselves from capturing more complex higher-
order relationships, which are often often present in various systems [1], [5]. These
assumptions together with data being discrete and finite can cause some generalisa-
tions, which are likely to create wrong interpretations of the data and models outputs.
Hence overall this can cause wrong outputs of the embedding models themselves, while
these models being quite and trained on large corpora of data, such as BERT, Yi and
other similar models.

The objective of our research is twofold, first, it is to develop the alternative framework
to characterize the embedding methods dissecting their possible inconsistencies using
combinatorial approach of higher-order structures which encode the embedded data.
Second objective is to explore the assumption of the underlying structure of embed-
dings to be graphs, substituting it with the hypergraph and using the hypergraph theory
to analyze this structure. We also demonstrate the embedding characterization on the
usecase of the arXiv data.

2 Data

The arXiv dataset encompasses scientific articles published online between 1992 and
2018, which span 175 scientific fields [3]. Each article has the ground-truth information
(metadata) stored as a category or a tag, e.g. cond-mat.dis-nn and others.



| i — ‘\) i
‘ Embedding Hypergraph Global metrics -l
model on manifold Charscterisation
: of embedding
g N
s

and model
Topic modeling Mesoscale metrics:

motifs analysis

o ==

Hypergraph Baseline
Fig. 1. Scheme of the methodological framework.

3 Methodological framework

Our methodological framework consists of the following steps, Fig. 1. First, we apply
the embedding model to the datapoints D; with the metadata m; to get the coordinates
of the embedded datapoints. Second, we cluster the datapoints D; in the embedding
using some clustering method (e.g. k-means clustering method) and apply ML metrics
(e.g. confusion matrix, accuracy scores) to deduce scores of the embedding model,
which produced the vector representation of datapoints D; using the metadata labels
of clusters m;. Third, we test the discripancies in the resulted confusion matrix by
constructing the neighborhood hypergraph H from datapoints {D;}" | and calculate
hypergraph motifs in this hypergraph H, corresponding to the embedding. Then we
analyze the hypergraphs constructed from the metadata m; and sub-hypergraphs, which
contain the misclassified tags based on the metrics from the second step of the method.
Motifs in hypergraphs are subhypergraphs structures. By studying them one can dissect
the most popular of the higher-order intricate properties of data structures [7].

Neighborhood hypergraph construction method. The neighborhood hypergraph H,
is constructed from data points {D;}?_, based on the idea of estimating the relations
between the datapoints. If datapoints (D;,,...,D;,) are close to each other, they form a
hyperedge of a hypergraph in H, of k-arity. Depending on the nature of data there are
different ways to characterize closseness of datapoints, which can be based on their ge-
ometrical or semantical proximity. Geometrical proximity of points {D;} is estimated
using typical [2 metrics or cosine similarity applied to coordinates of each processed
datapoint D;. Semantical proximity of points is encoded by labelled similarity of dat-
apoints, for instance, in case of arXiv data it means that if paper {D; } has tags a,b,c,
paper D, has tags a,b and paper D3 has tags a,d, then these papers are encoded as
nodes of the hypergraph forming the hyperedge with the field a. One can also con-
struct other encoding of the higher-order structure from data using metadata {m;}"
information H,, which encodes relations between tags themselves and can characterize
the fields closseness instead of using the standard binary graph representation of data
as co-tags networks [3]: when tags a,b,c are nodes of hypergraph, these nodes share
the hyperedge, iff there is at least one paper with all these tags, like paper D in this
case. Our intuition behind using the neighborhood hypergraph representation of data
is based on the observation that in many textual data similarities between documents



are not just based on one measure of closeness but rather on high-order relations like in
words: word France is close to Italy and Slovenia in different way than France to the
word Paris.

The embedding models. In this short paper we choose BERT as the embedding
model, general autoencoder architecture, which provides the embedding of the textual
data [2]. Our framework can be applied to other embedding models.
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Fig. 2. (Left) Confusion matrix is calculated for the clustered datapoints from BERT embedding
method to compare them to the clusters from ground truth labels (metadata). We consider sub-
sample of data from (2000-2011). (Right) Characterisation of persistent hypergraph motifs in the
hypergraphs constructed from abstracts datapoints D; for each decade.

Analytical background of the method and general relation to the manifold learn-
ing. Our general motivation comes from the manifold regularisation method, which
allows one to learn the properties of data limiting the space of solutions to the man-
ifold. The central idea of the manifold learning is to form a neighborhood graph G,
[1]. We aim further to extend the idea of considering the neighborhood hypergraph H,,
instead of the neighborhood graph as the underlying learned structure from data. Usu-
ally we assume that the feature space of data has the standard /2 metric, which induces
the Hilbert space. The neighborhood graphs (hypergraphs) are constructed such that
one chooses k nearest points as the neighborhood or points at the maximum distance
r for the neighborhood. Manifold regularization further simplifies assumptions using a
binarized metric or heat kernel. The problem of the manifold regularisation with the
hypergraph H,, then can be further formalized as:

" =min(L(f)) +A(fTL(HA) ),
where L(H,) is the generalized hypergraph Laplacian. (f,L(H,)f) = fTL(H,)f is a
scalar product, A is the regularization parameter [1], f7 is the transpose of a vector,
where minycp, is minimum found from the set of possible hypothesis e.g. hypothe-
sis on spaces search. Finding the underlying hypergraph can then extend the general
method for manifold learning from data, yet it has some drawbacks, such as increasing
complexity of the computations.



4 Results

We cluster datapoints D; with coordinates estimated by BERT method. Then we es-
timate the confusion matrix, Fig. 2 (left), to characterize the potential discrepancy in
accuracy of the embedding method, verifying the clustered datapoints according to the
labels of metadata m;. Most of the misclassified datapoints belong to the cluster with
condmat metadata field label, which is also known to be interdisciplinary field [3].
Majority of papers in condmat typically share common tags with other fields, which
correspond to its propensity to be involved in various hyperedges of the neighrborhood
hypergraph reconstructed from the data. For exploring this aspect we analyze the hy-
pergraph, which encodes the proximity of abstracts (our datapoints D;). For this we
study the higher-order motifs in the whole hypergraph and its subhypergraphs, Fig. 2
(right). We studied both, hypergraph H,, constructed from all datapoints D;, as well as
subhypergraphs, which consists of only nodes with condmat as their tags. In those sub-
hypergraphs we found higher-order motifs, such as triples, lollipops in both structures,
and we were able quantitatively characterize them. Moreover, we see the persistent
growth in number of such higher-order motifs from the first decade of arXiv data to the
present one, and specifically lollipop motifs, which are the most persistent patterns in
these hypergraphs.

5 Conclusions

In our work we develop the framework to dissect the geometrical properties of embed-
dings based on the higher-order structures. This approach can be used in addition to
traditional combinatorics and information theory based approaches to characterize em-
beddings [4]. In particular, in our approach we characterize possible inconsistencies in
embedded data estimating the prevailing motifs in subhypergraphs, associated with the
misclassified data. We plan to incorporate hypergraph embedding methods [6] further
to investigate their applicability to data curation for LLMs training, as well as to di-
mensionality reduction methods. Currently we studied only BERT embedding model,
yet our methodology has the potential to be further extended to differentiate between
distinct embeddings, when we construct corresponding hypergraphs to each separate
embedding method and then compare embeddings using the hypergraphs theory [7].
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