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ABSTRACT
Bradyarrhythmias including sinus bradycardia and atrioventricular (AV) block are frequently encountered in endurance athletes
especially at night. While these are well tolerated by the young athlete, there is evidence that generally from the fifth decade of
life onward, such arrhythmias can degenerate into pathological symptomatic bradycardia requiring pacemaker therapy. For
many years, athletic bradycardia and AV block have been attributed to high vagal tone, but work from our group has questioned
this widely held assumption and demonstrated a role for intrinsic electrophysiological remodeling of the sinus node and the AV
node. In this article, we argue that bradyarrhythmias in the veteran athlete arise from the cumulative effects of exercise training,
the circadian rhythm and aging on the electrical activity of the nodes. We consider contemporary strategies for the treatment of
symptomatic bradyarrhythmias in athletes and highlight potential therapies resulting from our evolving mechanistic understand-
ing of this phenomenon.

KEYWORDS Endurance exercise; Bradyarrhythmia; Electrophysiology; Vagal tone; Pacemaking
(Heart Rhythm 2024;21:1415–1427) © 2024 Heart Rhythm Society. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
A. Introduction

Long-term participation in sports, especially endurance-type
sports, results in a spectrum of surface electrocardiographic
patterns that would be considered abnormal in untrained indi-
viduals. Among these patterns, bradyarrhythmias including si-
nus bradycardia, sinus arrhythmia, and atrioventricular (AV)
conduction block are commonly observed.1 The prevalence
of sinus bradycardia and sinus arrhythmia in the athletic popu-
lation is up to 90% and 20%, respectively, whereas sinus
pauses exceeding 2 seconds are present in up to a third of ath-
letes2; both sinus bradycardia and pauses are particularly
evident during sleep.3 Profound bradycardia with a heart
rate of <35 beats/min is occasionally observed in highly condi-
tioned athletes at rest (Figure 1A).4 The cyclist Miguel Indur�ain
has been reported to have had a resting heart rate of just 28
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Disturbances in AV conduction, including first-degree AV
block and Mobitz type I second-degree (Wenckebach) AV
block, are also common in athletes, especially during sleep.3

In 24-hour Holter recordings, first-degree AV block is present
in up to 27.5%–40% of athletes while type I second-degree
block is present in 15%–22%.6,7 In the absence of symptoms
of structural heart disease, current consensus guidelines
consider sinus bradycardia > 30 beats/min, PR interval < 400
ms, Mobitz type I second-degree AV block, and junctional
escape rhythms as benign physiological adaptations accom-
panying a long training history.8 However, some evidence
suggests that these changes may be on a continuum with
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symptomatic bradyarrhythmia necessitating the implantation
of an electronic pacemaker. For example, Hood and North-
cote9 studied 19 veteran endurance athletes (mean age 67
years) and reported 2 had implanted pacemakers, a further 6
had significant bradycardia (heart rate < 35 beats/min), and
of the 6, 1 had third-degree AV block and asystolic pauses
and 1 had second-degree AV block. In a study of 134 Swiss
male former professional cyclists (mean age 66 years) and 62
relatively sedentary male age-matched golfers by Baldes-
berger et al,10 sinus node disease was more frequent (10%
vs 2%) and pacemaker implantation for bradyarrhythmias
wasmore common (3% vs 0%) in former cyclists. Similarly, Zad-
vorev et al11 reported on a cohort of 36 former athletes (mean
age 60 years) and 52 age-matched nonathletes in which pace-
maker implantation (14% vs 3%), asystolic pauses (27.3% vs
9.3%), and sinoatrial block (16% vs 3%), including sinus node
exit block (first- to third-degree) and arrest, were significantly
higher in former athletes. A much larger study of 52,755
long-distance cross-country skiers by Andersen et al12 demon-
strated that a high level of endurance exercise (high number of
races completed) and a high intensity of exercise (fast finishing
time) conferred a significantly increased risk of hospitalization
for sinus node dysfunction and high-degree AV block
(Figure 1A). Evidence shows that the likelihood and severity
of bradyarrhythmias increase with the degree of training (On-
line Supplemental Figure S1).11–13 Table 1 summarizes data
from the studies referred to above as well as some other
related studies. The studies show that bradyarrhythmias are
associatedwithmany types of sports. However, the studies pri-
marily report an association with endurance training rather
than power training. The effects of endurance and power
training were studied by Bondarev et al,14 who compared 18
former professional athletes (9 former endurance athletes
and 9 former power/mixed athletes) with 20 nonathletes, all
of whom required pacemaker implantation and had no history
of heart disease. The ages of diagnosis and pacemaker im-
plantation were significantly lower in former endurance ath-
letes (age 64 and 65 years, respectively) than in both former
strength/mixed athletes (72 and 73 years of age) and nonath-
letes (74 and 75 years of age).14 Furthermore, the former
endurance athletes showed a higher prevalence of second-
or third-degree AV block (78%) than did the power/mixed ath-
letes (44%).14

These data indicate that some veteran athletes represent a
subpopulation with acquired cardiac conduction system dis-
ease, although clinical experience and anecdotal evidence
suggest that conduction disturbances in athletes are much
more frequent than hitherto described. With media coverage
of our work on this topic,15,16 we regularly receive correspon-
dence from concerned symptomatic athletes. A common
theme has emerged from this correspondence, which is
corroborated by clinical practice: symptomatic bradyarrhyth-
mias occur in veteran endurance athletes (frequently but not
exclusively male, w45–80 years of age, marathon runners or
cyclists) who have been exercising at a high level for decades,
and bradyarrhythmias are most pronounced at night. In these
accounts, clinical management of individuals varies substan-
tially: some athletes already had implanted pacemakers or
were considering pacemaker implantation (with trepidation),
whereas others had been advised to detrain and 1 athlete
was advised to undergo cardioneuroablation. These apparent
ambiguities prompted us to review, in the present article,
mechanisms underlying athletic bradyarrhythmias and cur-
rent, upcoming, and potential treatments. We present evi-
dence that symptomatic bradyarrhythmias in the athlete
result from the summation of the effects of exercise training,
circadian rhythm, and age on the electrical activity of the sinus
and AV nodes (Graphical Abstract) and highlight areas of
potential therapeutic innovation on the basis of our evolving
mechanistic understanding of this commonly encountered
condition.
B.Mechanisms underlying sinus bradycardia and AV block
in athletes

Sinus bradycardia and AV block in athletes have been
commonly attributed to high vagal tone; we have previously
addressed the role of vagal tone,17 and we briefly summarize
the arguments for and against this hypothesis in the Online
Supplement. Here, we address new mechanisms proposed
to explain sinus bradycardia and AV block in athletes. Electri-
cal activity is ultimately the result of the activity of ion chan-
nels, and our work over the last 2 decades has
demonstrated that plasticity in the expression profile of pace-
making ion channels is an important mechanism by which
heart rate and AV node conduction are regulated in response
to chronic physiological and pathological stimuli.18 Endur-
ance exercise is one such stimulus for change.

We and others have shown in the human and rodent
models, after exercise training, there is a decrease of the
intrinsic heart/pacemaker rate in the absence of autonomic
tone measured after complete autonomic blockade, in the
isolated denervated sinus node, or isolated denervated sinus
node myocyte (Figures 2A and 2B). Similarly, we have shown
in the human, horse, and mouse that after exercise training,
there is an alteration of intrinsic AV node electrophysiology
(prolongation of the Wenckebach cycle length, a related pro-
longation of the AV node effective refractory period, prolon-
gation of the PR interval, or decrease in the pacemaker rate)
in the absence of autonomic tone (Figures 2C and 2D). In
rodent models, we have shown that swim- or treadmill
running–training results in a diffuse transcriptional remodel-
ing (downregulation) of key ion channels in both the sinus
and AV nodes.19–22 According to work on the rat, mouse,
and horse, there is an exercise training–dependent downre-
gulation of the hyperpolarization-activated cyclic nucleo-
tide–gated (HCN) and L- and T-type Ca21 channels at the
protein and/or messenger RNA (mRNA) levels in both nodes
(eg, Figure 3A).19–22 There is also a downregulation of the
corresponding ionic currents, funny current (If), L-type
Ca21 current (ICa,L), and T-type Ca21 current ICa,T), in sinus
and AV node myocytes from swim-trained mice (eg,
Figure 3A).19–22 ICa,L and ICa,T are well known to play an
important role in both sinus node pacemaking and AV node



Figure 1
Effect of endurance exercise (panel A), circadian rhythm (panel B), and aging (panel C) on functional properties of sinus and atrioventricular nodes. A (left panel):
Distribution of resting heart rates in elite athletes and a normal population. The red bars correspond to histogram of the resting heart rate of 142 elite cyclists
and rowers. The gray bars correspond to histogram of the resting heart rate of 3061 20- to 39-year-old female subjects. From D’Souza et al.79 A (right panel):
Risk of any arrhythmia, atrial fibrillation, and bradyarrhythmias for cross-country skiers either completing the highest number of races or with fastest finishing times
as compared with cross-country skiers completing just 1 race or with slowest finishing times. Drawn from Andersen et al.12 B (left panel): Mean heart rate of 8 male
subjects plotted against time of day. Mean 1 SEM shown for the first 28 hours; for next 24 hours, only mean shown for clarity. Modified from Vandewalle et al.80 B
(right panel): Mean (6SEM) hourly PR interval of 50 subjects plotted against time of day. The shaded area corresponds to the fitted curve. Modified from Dilaveris
et al.28C (top left panel): Relationship between the intrinsic heart rate measured after complete autonomic blockade and age in 56 human subjects. The dashed lines
correspond to61SD.Modified fromKuga et al.36 The shaded area corresponds to the 95% confidence limit for the intrinsic heart rate from Jose andCollison.35C (top
right panel): 2nd, 50th, and 98th percentiles for the PR interval of 486,014 male (blue curves) and female (red curves) subjects plotted against age. Modified from
Palhares et al.81C (bottom left panel): Relationship between the incidence of sick sinus syndrome (as measured by the number of new pacemaker implants in Sweden
in 2019) and age inmale and female subjects. Based onH€artel and Talvensaari82 and Benditt et al.33C (bottom right panel): In 224 patients with complete heart block,
the relationship between the percentage of patients and age of patients. Drawn from Penton et al.34
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conduction.23 Although the role of If in pacemaking is well
known, its role in AV node conduction is only now emerging:
reduction in If slows not only pacemaking but also AV node
conduction as seen in studies of If blockers,

24 HCN4 loss-of-
function mutations,25 and HCN4 knockout26; genome-wide
association studies have also shown that polymorphisms at
the HCN4 locus associate not only with the risk of sinus
node dysfunction but also with first-degree and complete
AV block and pacemaker implantation.27

Pharmacological block of If abolishes the difference in
heart rate between swim-trained and sedentary mice in vivo
and in the isolated sinus node.21 In an attempt to extend these



Table 1 Studies reporting bradyarrhythmias in athletes

Study
No. of subjects

studied Age of athletes Gender of athletes Sport Sports level
Extent of exercise

training
Duration of exercise

training
Main findings in

athletes

Meytes et al59 126 Athletes Not stated Not stated Swimming, athletics,
volley ball,
gymnastics

Professional Israeli national team
athletes

Not stated 9% First-degree AV
block and 2%
second-degree
(Wenckebach) AV
block

Beswick and
Jordan13

60 Athletes and 47
normal control
subjects

Not stated Male Short distance
(sprint, field
events, ring
events, etc) and
long distance (�1
mile)

Professional Participants in 1958
Sixth British
Empire and
Commonwealth
Games

Not stated Lower heart rate
(heart rate of long-
distance athletes
lower than that of
short-distance
athletes)

Cohen et al84 30 Ballet dancers
and 15 sedentary
control subjects

18–32 y w50% Male;
w50% female

Ballet Professional Not stated Mean:
14 y

Higher prevalence
of sinus
bradycardia and
sinus arrhythmia

Murayama and
Kuroda58

356 athletes 17–50 y 82% Male; 18%
female

Various Professional Japanese athletes
from 1964
Olympic games

Not stated Higher prevalence
of sinus
bradycardia and
first- or second-
degree AV block

Talan et al6 20 runners and 50
age-matched
sedentary control
subjects

19–28 y Male Running Nonprofessional;
university track
and team club
members

�50 miles/wk for
250–365 d/y

�3 y Lower heart rate;
prolonged sinus
pauses; higher
prevalence of AV
block

Palatini et al7 40 Athletes (20
runners and 20
cyclists) and 40
age- and sex-
matched
sedentary control
subjects

20.3 6 7 y Male Running or cycling Nonprofessional;
members of
sports clubs and
schools

Runners: w75 km/
wk; cyclists:
w16,500 km/y

>3 y Lower heart rate;
higher prevalence
of first- and
second-degree
(Wenckebach) AV
block

Northcote et al3 20 Runners and 20
age- and sex-
matched
sedentary control
subjects

56 6 7 y Male Running Nonprofessional 47 6 23 miles/wk >25 y Lower heart rate;
higher prevalence
of sinus
bradycardia,
asystolic pauses,
and first-, second-,
and third-degree
AV block;
prolonged PR
interval
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Hood and
Northcote9

19 Runners (12-y
follow-up study of
athletes from
Northcote et al3)

56–83 y Male Running Nonprofessional 34 6 21 miles/wk 26–60 y � Low heart rate;
bradycardia; AV
block; asystolic
pauses

� 11% of veteran
athletes now
required
pacemaker
implantation

Bjørnstad et al85 1299 Athletes and
151 age- and sex-
matched
sedentary control
subjects

24.2 6 4.3 y 58% Male;
42% female

Various Nonprofessional;
students of the
Norwegian
College of
Physical
Education and
Sport

Males: ran 3 km in 12
min; females: ran
1.5 km in 7 min

Not stated Lower heart rate;
higher prevalence
of sinus
bradycardia; 0.9%
had rhythms other
than sinus rhythm;
prolonged PQ
interval

Bjørnstad et al86 30 Top athletes, 30
age- and sex-
matched athletic
students, and 30
age- and sex-
matched
sedentary control
subjects

Mean: 24 50% Male;
50% female

Cross-country
skiing, biathlon,
long-distance
running,
orienteering,
running

Professional International/
national level
athletes

Not stated Lower heart rate and
paroxysmal
bradycardia;
higher prevalence
of second-degree
AV block

Sharma et al87 1000 Athletes and
300 age- and sex-
matched
sedentary control
subjects

14–18 y 73% Male; 27%
female

Soccer, tennis,
rugby, cycling,
swimming,
athletics, boxing,
rowing, and
modern triathlon

Nonprofessional;
junior elite
athletes

9.7 6 3.3 h/wk of
intensive training

1–10 y at the county
level

Higher prevalence
of sinus
bradycardia, sinus
arrhythmia, and
first-degree AV
block; small
number of
rhythms other
than sinus rhythm;
prolonged PR
interval

Baldesberger et al10 62 Former
professional
cyclists and 62
age-matched
sedentary control
subjects

66 6 7 y Male Cycling Former professional
cyclists but retired
for 38 6 7 y at the
time of study

25,200 6 9700 km/y
when professional

11 6 4 y as
professionals

Lower heart rate;
higher prevalence
of sinus node
disease and
pacemaker
implantation

(continued )
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Table 1 Continued

Study
No. of subjects

studied Age of athletes Gender of athletes Sport Sports level
Extent of exercise

training
Duration of exercise

training
Main findings in

athletes

Andersen et al12 52,755 Cross-
country skiers

15–651 y 90% Male; 10%
female

Cross-country skiing Mixture of
professional and
nonprofessional

All Swedish finishers
of a 90-km cross-
country skiing
event during
1989–1998

Not stated � Higher risk of
bradyarrhythmias
for those who
completed the
highest number of
races or those with
the fastest
finishing time

� Higher risk of
hospitalization for
bradyarrhythmias
in skiers who
completed more
races

Zadvorev et al11 36 Former athletes
and 52 age-
matched
sedentary control
subjects admitted
to a cardiology
ward

60.1 6 10.6 y 83% Male;
17% female

Various Former athletes Various—ranked by
sporting rank or
title

Mixed � Higher prevalence
of asystolic
pauses, sinoatrial
exit block, AV
block, and
pacemaker
implantation

� Prevalence of AV
block increased
with higher
sporting rank/title

Studies are listed chronologically with the exception of 2 related studies from Northcote and others.
AV 5 atrioventricular.
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findings to humans, we have assessed the role of If remodel-
ing in human endurance athletes using the If blocker ivabra-
dine. We observed a significant correlation between the
heart rate–lowering effect of oral ivabradine and the intrinsic
heart rate (measured after complete autonomic blockade) of
athletes and nonathletes: subjects with a lower intrinsic heart
rate (generally athletes) had a blunted response to ivabra-
dine.20 This suggests that in both the human athlete and the
exercise-trained rodent, the downregulation of HCN channels
and If (Figure 3A) is at least contributing to sinus brady-
cardia.20 In the case of the AV node, biophysically detailed
modeling suggests that the downregulation of If and ICa,L is
contributing to the slowing of AV node conduction after exer-
cise training.19 Furthermore, in the swim-trained mouse, the
role of If is confirmed by the finding that a period of detraining
restores HCN4 expression and AV conduction to pretraining
levels.19
C. Role of circadian rhythm in ion channel expression

Bradyarrhythmias in human athletes primarily occur at night.3

In humans and laboratory animals, there is a circadian rhythm
Figure 2
Endurance exercise induces intrinsic sinus bradycardia and atrioventricular (AV) condu
recording under complete pharmacological blockade of the autonomic nervous sy
D’Souza et al.20A (right panels): Intrinsic heart rate (measured in the isolated sinus no
tary mice. From D’Souza et al.21 B: Spontaneous action potentials recorded from my
Bidaud et al.22C (left panel):Wenckebach cycle length (WCL) and AV node effective r
blockade in human endurance athletes and sedentary subjects. Digitized from Stein
autonomic blockade from trained and sedentary racehorses. C (right panel): Atrio-H
swim-trained and sedentary mice. From Mesirca et al.19 D: Spontaneous action pote
sedentary mice. From Mesirca et al.19 Mean 6 SEM shown. *Significantly different.
in both the heart rate and the PR interval (Figure 1B).3,28 The
heart rate is higher during the awake period, presumably to
anticipate the increase in demand for cardiac output during
the awake period, and the PR interval is shorter (ie, AV con-
duction is faster) at the same time, presumably because there
is less time during the shorter cardiac cycle for all events (the
QRS duration and QT interval are also shorter). Once again,
the circadian rhythm in heart rate and PR interval is commonly
attributed to high vagal tone during sleep (see arguments for
and against in the Online Supplement), but once again we
address new proposed mechanisms here.

Measurement of the transcriptome of the mouse sinus
node using RNA sequencing over 24 hours has shown that
w44% (7134 transcripts) of the measured sinus node tran-
scriptome exhibits a circadian rhythm.29 In the mouse sinus
node, the rhythmic transcripts include the components of a
functioning molecular circadian clock in the sinus node and
this is presumably playing a role in the circadian rhythm in
the sinus node.29,30 Transcripts for many ion channels,
including HCN channels, in the mouse sinus node exhibit a
circadian rhythm,29,30 and consistent with this, there is a circa-
dian rhythm in If (Figure 3B).30 In the mouse, pharmacological
ction slowing.A (left panel): Intrinsic heart rate (measured by electrocardiogram
stem) in human competitive endurance athletes and sedentary subjects. From
de) in treadmill running–trained and sedentary rats and swim-trained and seden-
ocytes isolated from the sinus node of swim-trained and sedentary mice. From
efractory period (AVERP) recorded under complete pharmacological autonomic
et al.83 C (middle panel): PR interval recorded under complete pharmacological
is (A-H) interval recorded from isolated denervated AV node preparations from
ntials recorded from myocytes isolated from the AV node of swim-trained and
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block of HCN channels and If both in vivo and in vitro (in the
isolated sinus node) abolishes the circadian rhythm in heart
rate and this suggests that the channels play an important
role in the circadian rhythm in heart rate.30 Many other tran-
scripts in the mouse sinus node exhibit a circadian rhythm,
and it is interesting that transcripts from genes identified by
genome-wide association studies as determinants of the
resting heart rate and transcripts from genes responsible for
familial and acquired sick sinus syndrome all exhibit a circa-
dian rhythm.29 As in the case of the sinus node, we have
shown that there is a circadian rhythm in the expression of
circadian clock and ion channel (including HCN4) transcripts
in the mouse AV node.18 Although it is likely that the local
circadian clocks in the 2 nodes are involved in the circadian
rhythms of ion channel transcripts and so on and ultimately
Figure 3
Downregulation of HCN channels and If in mice with exercise training during the s
(1SEM) expression of the 3 functionally important HCN transcripts in the sinus nod
recordings from isolated sinus node myocytes from sedentary and swim-trained mic
of the HCN4 transcripts in the sinus node of mice at 4 time points over 24 hours. Tim
the 12-hour dark period. B (right panel): Families of If recordings from isolated sinus no
(left panel):HCN transient expression in the sinus node ofw24-month-old mice as a
by Boyett et al.18 C (right panel): Families of If recordings from isolated sinus node m
icantly different. HCN, hyperpolarization-activated cyclic nucleotide–gated; If, funny
pacemaker activity and AV node conduction, we have shown
that circadian rhythms in the sympathetic nervous system and
plasma glucocorticoids are also involved.31,32
D. Effect of aging on ion channel expression

Reports of symptomatic bradyarrhythmias in human athletes
primarily concern the veteran athlete who has been exercising
at a high level for decades rather than the young athlete.3,10,14

This shows that age as well as exercise and time of day are
important when considering symptomatic bradyarrhythmias
in athletes. Age is important, because with age the functioning
of both the sinus and AV nodes in the human declines; the
prevalence of both sinus and AV node dysfunction increases
in an exponential-like manner with age (Figure 1C).33–36 The
leep period (day in the case of mouse) and during aging. A (left panel): Mean
e of sedentary and treadmill running–trained rats. A (right panel): Families of If
e. Data in panel A from D’Souza et al.21 B (left panel): Mean (6SEM) expression
e given as Zeitgeber time (ZT): 0 h, start of the 12-hour light period; 12 h, start of
demyocytes frommice at ZT12 and ZT6. Data in panel B fromD’Souza et al.30C
percentage of that inw2-month-old mice. Data from D’Souza et al as published
yocytes from 2 to 3 and 321-month-old mice. Data from Larson et al.52 *Signif-
current; mRNA, messenger RNA.



Al-Othman et al Why Do Athletes Have Bradyarrhythmias? 1423
age-dependent decline in nodal function is also seen in animal
studies.37,38 The age-dependent sinus node dysfunction has
been attributed to fibrosis (proliferation of the extracellular ma-
trix),39–42 although no evidence of this has been reported in the
aged human, cat, and rat.43,44 However, there is widespread
evidence of an age-dependent downregulation of various ion
channels and ionic currents in the sinus node of various animal
species.18,38,40,44–51 For example, in the mouse, there is an
age-dependent downregulation of HCN channels18 as well as
If

52 (Figure 3C). Computer modeling has suggested that this
electrical remodeling in the aged sinus node contributes to si-
nus node dysfunction.53 Consistent with this, the decline in the
intrinsic heart rate of the rat (measured in vivo after autonomic
blockade)51 as well as the beating rate of the isolated sinus
node of the mouse from the adult to the senescent animal is
reduced after pharmacological block of HCN channels and If
(unpublished observations). It is likely that age-dependent
downregulation of other ion channels (eg, Ca21 channels)
also contribute to age-dependent sinus node dysfunction.49,52

Compared to the sinus node, less is known about the effect of
age on the AV node. However, in the rat, once again there is
evidence of electrical remodeling of the AV node (as well as
fibrosis and apoptosis).37

E. The whole is greater than the part54

In summary, exercise training results in electrical remodeling
of the sinus and AV nodes and consequently a slowing of
intrinsic sinus node pacemaking and AV conduction. Because
of the circadian rhythm in the 2 nodes, this will be more
marked at night (during sleep). For the young human athlete
(eg, <50 years of age), this is well tolerated and not symptom-
atic. However, for the older veteran athlete with compromised
nodal function as a result of aging, this is not necessarily the
case. For the sinus node, this can be put in another way
focusing on the HCN channels and If (although this does not
mean that other factors are not involved): exercise training,
nighttime (in the case of the human), and aging all result in
a diminution of HCN channels and If (Figure 3), whereas any
1 of these or even 2 of these are unlikely to result in symptoms
requiring medical intervention; symptomatic bradyarrhyth-
mias may arise from the summation of all 3 physiological phe-
nomena.

F. Existing, new, and potential treatments

F.1. Detraining

The most straightforward treatment of exercise training–
induced bradyarrythmias may be detraining. There is
evidence from both human athletes and animal models of
exercise training that detraining can reverse exercise
training–induced bradyarrhythmias as well as exercise
training–induced atrial tachyarrhythmia.55–59 There is
evidence that detraining is effective in young as well as
veteran athletes: Giada et al56 reported that after 2 months
of detraining, exercise training–induced bradycardia was
reversed by 15% in young (w24 years of age) and 50% in vet-
eran (w55 years of age) cyclists. From clinical experience, we
know that the drawback of detraining is that the athlete may
be reluctant or even refuse to detrain. Detraining can have
adverse psychological effects60; individuals with a strong “ath-
letic identity” are prone to high levels of psychological distress
on detraining.61 Studies suggest that individuals who are “ad-
dicted” to exercise will continue exercising regardless of phys-
ical injury, personal inconvenience, or disruption in other areas
of life and addicted exercisers experience disturbing depriva-
tion sensations when unable to exercise.62,63
F.2. Pacemaker implantation

Adequately powered prospective studies assessing the prev-
alence of pacemaker implantation in athletes and conse-
quences for sports practice have yet to be performed.
However, as discussed above, athletes are more likely to
need pacemaker implantation than nonathletes and the
limited available evidence base indicates that this is a safe
and effective strategy for bradyarrhythmia management in
this population that does not impinge on the ability to
perform endurance exercise of high intensity or duration.64
F.3. Cardioneuroablation

Cardiac neuroablation (cardioneuroablation) is a new tech-
nique involving radiofrequency ablation of the vagal ganglia
located on the outside of the atria or great vessels. Cardio-
neuroablation has been shown to relieve sinus node dysfunc-
tion and high-grade AV block (as well as neurally mediated
reflex syncope) in carefully selected patients for at least 9–
24 months with a low incidence of complications.65–69 This
is a promising new treatment of symptomatic
bradyarrhythmias. However, currently, there are no
recommendations for this method for the treatment of
athletes with sinus node dysfunction.70 Why is cardioneuroa-
blation effective? The vagal nerves innervating the sinus and
AV nodes are tonically active and act as a constant brake on
both the heart rate and AV conduction; removal of this brake
is expected to quicken the heart rate and reduce or eliminate
AV block (by strengthening and quickening AV conduction).
This mechanism will operate regardless of whether vagal
tone is heightened in the athlete.
F.4. Molecular targeting of ion channel remodeling as a
potential therapeutic approach

Insight into themolecular processes by which ion channels are
remodeled in response to exercise-training presents possibil-
ities for therapeutic innovation. The data reviewed above sug-
gests that a downregulation of HCN4 and, therefore, If is
playing an important role in exercise training–induced nodal
dysfunction. What is responsible for the downregulation of
HCN4? Currently there are 3 clues:

1. micro-RNAs (miRs).miRs are endogenous small noncoding
RNAs that have emerged as central regulators of gene
expression, exerting posttranscriptional repressive effects
on virtually all classes of protein-coding genes by degrada-
tion or translational inhibition of target mRNAs. The notion



Figure 4
In vivo suppression of hyperpolarization-activated cyclic nucleotide-gated channel 4-targeting micro-RNAs (miRs) using anti-miRs restores sinus node automaticity
and atrioventricular (AV) conduction in swim-trainedmice.A: Summary of miR-mediated sinus and AV node dysfunction in endurance training and its alleviation using
anti-miRs. Blue correspond tomessenger RNA; green, miR; red, anti-miR. B–E:Anti-miR treatment inmice suppresses the swim training–induced upregulation of miR-
423-5p in the sinus node (panel B), downregulation of the HCN4 protein in the sinus node (panel C), reduction in funny current density in sinus node myocytes (panel
D; mean current-voltage relationships shown), and decrease in heart rate measured in vivo (panel E). From D’Souza et al.20 F and G:Combined administration of anti-
miRs targeting miR-432 andmiR-211-5p suppresses the swim training–induced upregulation of thesemiRs in the AV node (panel F) and downregulation of the HCN4
protein in the AV node (panel G) in mice. FromMesirca et al.19H and I: Restoration of PR prolongation in mice in vivo at a fixed pacing cycle length of 130ms (panel H;
electrocardiogram recordings shown; example P and R waves labeled) and in sinus rhythm (panel I). FromMesirca et al.19Mean6 SEM shown. *Significantly different.

Figure 5
Schematic diagram showing prevention of endurance exercise–induced sinus bradycardia by ACh (acetylcholine)-activated K1 current (IK,ACh) targeting. Left: Summary of
changes in inward ionic currents (shown in the green box) and outward IK,ACh (shown in the red box) in isolated sinus node myocytes from sedentary mice, swim-trained
mice, and swim-trainedmice lacking IK,ACh.Middle:Corresponding actionpotentials recorded from isolated sinus nodemyocytes showing changes in intrinsic pacemaker
activity.Right:Corresponding electrocardiogram (ECG) recordings showing changes in heart rate in vivo. Data fromBidaud et al.22 Endurance exercise induces the down-
regulation (shown by a red arrow) of key inward ionic currents underlying diastolic depolarization, thereby creating an imbalance between inward currents and outward
IK,ACh; consequently, IK,ACh acts as a brake, slowing pacemaker activity and thereby heart rate. IK,ACh targeting (genetic ablation) both removes the brake and prevents
downregulation of inward ionic currents, thereby preventing the slowing. ICa,L, L-type Ca21 current; ICa,T, T-type Ca21 current; If, funny current.
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that miRs play fundamental roles in arrhythmia pathophys-
iology has gained progressive ground over the last
decade.71 We hypothesized that miRs that repress HCN4
and Cav1.2 mRNAs are upregulated in the sinus node after
exercise training and might constitute novel targets for
pacemaker-selective therapeutic intervention using spe-
cific inhibitors—anti-miRs: a screen of 750 miRs in the
mouse sinus node identified significant increases in 25
miRs after swim training, and based on extensive in vitro in-
vestigations, miR-423-5p was determined as a key HCN4
regulator (Figures 4A and 4B).20 Strikingly, pharmacolog-
ical inhibition of miR-423-5p with an anti-miR reversed
training-induced bradycardia both in vivo and in the iso-
lated sinus node via restoration of HCN4 and If
(Figures 4B–4E).20 In recent work, we have determined
the therapeutic efficacy of miR targeting in the treatment
of swim training–induced AV node dysfunction.19 In
mice, intraperitoneal injection of a combination of 2 anti-
miRs designed to restore expression levels of HCN4 and
Cav1.2 by suppression of miR-432 and miR-211-5p (upre-
gulated by exercise training in both horse and mouse AV
nodes) restored the PR interval to pretraining levels
(Figures 4F–4I).19 These studies are the first proof of
concept of miR targeting as a therapeutic approach to
restore nodal function. miRs have recently emerged as
druggable targets for cardiovascular disease,72 and the
first-in-human study repressing miR-132 with antisense ol-
igonucleotides (anti-miRs) in patients with heart failure has
been reported.73

2. G-protein–gated inwardly rectifying K1 channel 4 (GIRK4).
The vagus nerve acts on the nodes via the release of the
neurotransmitter acetylcholine (ACh), which activates the
muscarinic M2 receptor, leading to direct activation of
GIRK channels underlying the ACh-activated K1 current
(IK,ACh). The channel underlying IK,ACh is made of 2 sub-
units: GIRK1 and GIRK4 (also known as Kir3.1 and Kir3.4).
We have shown that IK,ACh suppression, either by GIRK4
knockout or by pharmacological block of IK,ACh by
tertiapin-Q, rescues bradyarrhythmias in mouse models
of congenital channelopathies caused by loss of function
of HCN4, Cav1.3, and Cav3.1 channels.74–76 Of relevance
here, we have shown that IK,ACh suppression also rescues
swim training–induced sinus bradycardia (in the case of
GIRK4 knockout or pharmacological block of IK,ACh by
tertiapin-Q) and prolongation of the PR interval (in the
case of GIRK4 knockout; tertiapin-Q not tested) in the
mouse.22 The rescue is presumably, in part, the result of
the removal of the tonic “brake” on the nodes by IK,ACh
as in the case of cardioneuroablation (Figure 5). However,
there is another factor contributing to the rescue: GIRK4
knockout prevents the swim training–induced downregu-
lation of If (as well as of ICa,T and ICa,L) (Figure 5)22; GIRK4
appears to be involved in the transcriptional regulation of
pacemaker ion channels and thus the long-term regulation
of pacemaker activity. GIRK4 inhibition by tertiapine-Q or a
related drug is therefore a potential therapeutic strategy
for exercise training–induced bradyarrhythmias. GIRK4
knockout blocks the swim training–induced upregulation
of a set of miRs, including the HCN4-downregulating
miR-423-5p,22 and this is consistent with the hypothesis
that GIRK4 is acting via miRs.

3. AMP-activated protein kinase (AMPK). AMPK is a fuel-
sensing enzyme, and it is activated by an increase in the
adenosine monophosphate/adenosine triphosphate
(AMP/ATP) ratio; once activated, AMPK will restore the
AMP/ATP ratio by stimulating energy-generating pro-
cesses and decreasing energy-consuming processes.77 A
decrease in heart rate is one means of reducing energy
consumption, and activation of AMPK (as a result of a
gain-of-function mutation in AMPK) results in bradycardia
in the human, and in the mouse the same mutation results
in a downregulation of HCN4 and If, potentially a downre-
gulation of the Ca21 clock pacemaker mechanism (as a
result of an upregulation of phospholamban), and a slow-
ing of pacemaking and the intrinsic heart rate.78 Yavari
et al78 showed that in the mouse, exercise training as a
result of 10 weeks of voluntary wheel running results not
only in a downregulation of If and a slowing of pacemaking
and the intrinsic heart rate but also in activation of AMPK
and knockout of the g2 subunit of AMPK prevents the
downregulation of If and slowing of pacemaking. This sug-
gests that AMPK is responsible (in part at least) for the ex-
ercise training–induced bradycardia and therefore AMPK
is a potential therapeutic target. However, although Yavari
et al78 did not comment on the effect of knockout of the g2
subunit of AMPK on the exercise training–induced prolon-
gation of the PR interval, they did report that activation of
AMPK (as a result of a gain-of-function mutation in AMPK)
did not affect the PR interval. If and how AMPK works with
GIRK4 and miRs is not known.

Conclusion

With increasing popularity of recreational exercise and
competitive athletics, the clinician caring for athletes may
be confrontedwith an increasing number who exhibit exercise
training–induced symptomatic bradyarrhythmias. Apprecia-
tion of the fundamental biology underlying this phenomenon
may help dispel uncertainties in the management of these pa-
tients, provide novel insights into the pathophysiology of car-
diac conduction system disease that may extend to
management of bradyarrhythmias in the general population,
and help in the development of novel therapies.

Appendix

Supplementary data

Supplementary data associated with this article can be found
in the online version at https://doi.org/10.1016/j.hrthm.2024.
02.050.
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