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NAS: N-step computation of All Solutions to the footstep planning
problem

Jiayi Wang1∗, Saeid Samadi1∗, Hefan Wang1∗, Pierre Fernbach2, Olivier Stasse3,4, Sethu Vijayakumar1

and Steve Tonneau1†

Abstract— How many ways are there to climb a staircase
in a given number of steps? Infinitely many, if we focus
on the continuous aspect of the problem. A finite, possibly
large number if we consider the discrete aspect, i.e. on which
surface which effectors are going to step and in what order.
We introduce NAS, an algorithm that considers both aspects
simultaneously and computes all the possible solutions to such
a contact planning problem, under standard assumptions. To
our knowledge NAS is the first algorithm to produce a globally
optimal policy, efficiently queried in real time for planning the
next footsteps of a humanoid robot.

Our empirical results (in simulation and on the Talos
platform) demonstrate that, despite the theoretical exponential
complexity, optimisations reduce the practical complexity of
NAS to a manageable bilinear form, maintaining completeness
guarantees and enabling efficient GPU parallelisation. NAS is
demonstrated in a variety of scenarios for the Talos robot,
both in simulation and on the hardware platform. Future
work will focus on further reducing computation times and
extending the algorithm’s applicability beyond gaited locomo-
tion. Our companion video is available at https://youtu.
be/Shkf8PyDg4g

I. INTRODUCTION

In legged robotics, contact planning involves determining
where an effector, such as a foot, should make contact with
the environment to move. This process typically calculates
a sequence of contacts to solve a particular locomotion
problem instance, aiming for a single optimal solution. If
this solution becomes unfeasible due to changes in the scene
or drifts in state estimation during execution, a new plan
must be computed. This paper aims at avoiding this costly
re-computation by calculating all possible solutions for a
given instance, specifically addressing bipedal locomotion.

Contact planning is crucial for any framework designed
to generate legged motions, whether the goal is gaited
locomotion (like footstep planning) or more complex loco-
manipulation, which involves using all end-effectors in an
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arbitrary order. The challenge lies in handling non-linear
geometric constraints (such as joint limits and collisions)
and dynamic constraints, making it a high-dimensional, non-
linear combinatorial problem. While efficient heuristics exist
for addressing simplified cases such as locomotion on flat
ground [1], the problem becomes more complicated when:

• possible contact surfaces are not continuously connected
(e.g., the steps of a staircase or stepping stones);

• Several steps need to be planned ahead to avoid dead-
ends, causing an exponential increase in combinations.

Sampling-based approaches have been proposed to tackle
the problem [2], but they do not enable the finding of
optimal solutions. An optimal solution can be found under
simplifying assumptions, using graph-search techniques such
as A∗ or Mixed-Integer Programming [3], [4]. However, it
is often required to re-plan contact plans online (at a 10Hz
frequency [5], [6], [7]) to account for execution and state
estimation errors, especially in dynamic environments. The
worst-case exponential complexity of these approaches then
requires to significantly reduce the planning horizon n, that
is the number of future steps that can be planned in advance.
This is problematic in environments containing dead-ends as
a short planning horizon does not allow to escape them.

Deep Reinforcement Learning (DRL) has shown promise
in overcoming the need for simplifying assumptions, allow-
ing robots to traverse challenging terrains robustly. However,
so far DRL methods do not consider a long planning horizon,
relying for instance on the guidance of a human using a
joystick. Preliminary research suggests that the planning
horizon could also be learned if combined with optimal
control, but the generalisation is not trivial to achieve as
these methods are supervised [8], [9].

We propose to explicitly characterise the set of all feasible
solutions for a contact planning problem instance, up to a
number n of steps. This is achieved by observing that, under
common assumptions, the set of feasible contact positions
reachable in at-most n steps can be computed recursively
through the computation of Minkowski sums and polytope
intersections. This effectively results in a policy that indicates
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the optimal contact sequences for any state of the robot, with
respect to the minimum number of steps to reach the target.

Our main contribution is NAS (N-step computation of
All Solutions), an algorithm to compute the entire feasible
space for a contact planning problem, resulting in a real-
time optimal policy for footstep planning. NAS can also be
implemented as a continuous A∗ for single-query planning.

Although the theoretical complexity of the algorithm is
exponential, we empirically show that it behaves as O(m∗n),
with m the number of candidate contact surfaces and n the
number of steps planned, thanks to the introduction of an
efficient node merging procedure that preserves the com-
pleteness of our approach. Our experiments also demonstrate
the real-time capabilities of the framework to recompute a
globally optimal plan in real-time.

In the context of this paper, our results are restricted to
gaited locomotion and, as for the state of the art, require to
discretise the yaw orientation. Our future work aims at tack-
ling this limitation, but also at optimising the computation
time of the algorithm as we observe that our formulation is
immediately compatible with GPU parallelisation.

II. STATE OF THE ART

The contact planning problem is a special instance of
the motion planning problem, where the objective is to find
a collision-free path connecting two configurations of the
robot [10]. Planning motions for a legged robot additionally
involves planning the discrete change of contacts required to
actuate the motion [11]. This problem is high-dimensional
and subject to discrete combinatorics that make it hard to
solve. The central question is to model the contact interac-
tions in a way that reduces the combinatorics.

A. Combinatorics models for gaited locomotion

Focusing on bipedal gaited locomotion, Chestnutt et al.
propose to explicitly deal with the combinatorics by reducing
the complexity of the problem through the discretisation of
the action space [3], a path which was further explored
recently [12]. They pre-determine a set of actions that
the robot could perform for a fixed position of each end-
effector (expressed as target positions for the other end-
effector) and use the A∗ algorithm to plan an optimal path
to the goal within this action space, which reduces both the
dimensionality and the combinatorics of the problem.

Deits et al. replaced the discrete action space with a contin-
uous one, using the classic notion of reachable workspace to
linearly constrain the end-effector positions relatively to each
other, though the orientation of the robot remains discretised
[4]. A∗ is not immediately applicable with a continuous
action space, so Mixed-Integer Programming (MIP) is used
to compute a globally optimal solution. MIP has been
extended to quadrupeds [13], [5] and recently the quasi-
static constraint on the locomotion [14], [6] was overcome.
To reduce the computational burden of MIP, we proposed a
relaxation of the combinatorics using L1-norm minimisation
[15], [16], which does not guarantee the convergence to a
solution. Other relaxations have since been proposed [17].

Our approach leverages both A∗ and MIP formulations.
We use a dynamic programming approach as in A∗, but it is
compatible with a continuous action space. Furthermore, we
compute the entire feasible space and not a single solution.

B. Combinatorics models for multi-contact locomotion

Several contributions have also tackled the more general
multi-contact problem, where no assumptions are made on
the gait followed by the robot and all end-effectors (such as
hands) are possibly involved in the contact creations. They
are also graph-search methods and have been demonstrated
in challenging scenarios, including climbing, chair egress,
or tunnel crawling [18], [19], [20]. As for the gaited loco-
motion case, the reachable workspace has been used in this
context to reduce the dimensionality of the problem and its
combinatorics [2], [21]. Kumagai et al. [22] built on this
and the notion of contact sustainability [23], [24] to propose
an A∗ algorithm that efficiently tackles the multi-contact
planning problem which we consider to be the state of the
art. The output is a single contact plan, but the formulation
is compatible with ours, so extending it to computing all
solutions will be the target of our future work.

C. Towards combinatorics-free contact locomotion?

Since Mordatch et al. [25] a variety of approaches have
proposed to work around the discrete aspect of combinatorics
and relax the contact planning problem into a continuous tra-
jectory optimisation one [26], [27]. The potential advantage
is clear, as the combinatorics is responsible for the exponen-
tial complexity of the problem. While these approaches do
not guarantee the convergence to feasible solutions, recent
work in manipulation suggests that smoothing allows the
discovery of solutions to complex scenarios [28], [29], [30].

Deep Reinforcement Learning (DRL) techniques are at-
tractive as they learn a policy efficiently queried online,
which is aligned with our own objectives. DRL methods
have successfully demonstrated their ability to tackle multi-
contact locomotion without explicitly modelling the contact
decisions [31], [32]. Yet the recent inclusion of model-based
optimisation within the training framework has empirically
demonstrated the interest in using optimal control with a
dynamics model (including contacts) in terms of generali-
sation and robustness [33]. Unexpectedly, the inclusion of
such models has not improved the training time. A better
characterisation of the feasible space for the locomotion
problem could alleviate this computational burden and enable
the learning of a longer horizon as suggested by [9].

III. DEFINITIONS, NOTATIONS AND PROBLEM STATEMENT

A. Problem statement

In the present work, we focus on planning contact se-
quences for gaited bipedal locomotion tasks. A simple use
case for our problem is illustrated in Fig. 1. The figure
demonstrates one feasible contact plan that brings the robot
from its starting configuration to a goal position, expressed
as a terminal constraint on the position of the left foot. Our
goal is to capture the infinitely many contact plans that solve



this problem. We assume that the right and left foot alternate
in creating contacts towards the goal. For the first part of
this paper, we assume that the orientation of the feet around
the axis z is fixed for the duration of the planning. The
orientation can change along the x and y axes to fit to the
contact surfaces.

To simplify the formulation, our equations assume that the
left foot always acts as the end-effector reaching the target
to complete the task. This assumption is solely for clarity in
understanding the algorithm and does not limit our approach.

Given a target goal set G, the environment, the kinematic
constraints of the robot, and a maximum number of steps n,

Fig. 1: A footstep sequence allowing to reach the target
position for the left foot in 2 steps.

Fig. 2: Two-step feasibility computation. 1. Red: The goal
for this contact planning problem is to find a feasible contact
sequence such that the left foot reaches the red position pl,
thus we define G = {pl}. Green: The environment S is the
union of 2 convex polygons. 2. All positions of the right
foot such that pl can be reached by the left foot in one
step are bounded by the blue polytope GR. It is obtained by
translating the antecedent polytope lAr by pl. 3. One-step
feasible set for the right foot GF . 4. Reachability polytope
rAl for the position of the right foot indicated by the arrow.
5.rAl translated by each extreme point of GF . 6. & 7.
Minkowski sum of rAl and GF . 8. & 9. Two-step feasible
set for the right foot, composed of 2 convex polygons.

our objective is to compute the set of all possible contact
sequences that bring the robot to G in at most n steps.

B. Surfaces, reachable areas, and kinematic constraints

We use convex polytopes to describe the candidate contact
surfaces of the environment and the reachable workspace of
the end-effectors of the robot. The set of feasible solutions
to a contact planning problem is described as a union of
polytopes. They are either 3D polyhedra (Fig. 2.2) or 2D
polygons in a 3D plane (Fig. 2.3). A polytope P is defined
as the convex hull of its vertices:

P := {p ∈ R3|∃λ ∈ R+d, ||λ|| = 1 ∧ p = Pλ} . (1)

where P ∈ R3×d is a matrix obtained by concatenating
the d extreme vertices of P and λ is a unit weighting vector
of the extreme points. In the following, we implicitly define
the matrix L for any polytope L that we define.

The environment is represented as a union of m disjoint
convex contact surfaces S =

⋃m
j=1 Sj (Fig. 2.1 - green).

Non-convex surfaces can always be decomposed as the union
of convex ones without loss of generality.

The kinematic constraints of the robot are linearised as
commonly done in graph-based approaches. We define rKl

as the polytope describing the set of reachable positions for
the left foot assuming the right foot is located at the origin.
We similarly define lKr for the right foot.

The antecedent constraints also need to be defined because
our algorithm works backward. We define the lAr (Fig. 2.3
- blue) as the set of right foot positions from which a left
foot position can be placed at the origin of the world. rAl

is similarly defined for the left positions such that a right
foot position at the origin is reachable (Fig. 2.4 - red). rAl

and lAr are obtained by applying a central symmetry to the
vertices of rKl and lKr.

The goal G is the polytope defining the task for a robot.
The plan is successful when either end-effector reaches G. G
is a subset of a contact surface Sj , and can be a degenerated
polytope (i.e. a single point, as in Fig. 2.1 - red).

IV. OVERVIEW

We propose to compute the set of feasible contact se-
quences to G using a dynamic programming algorithm.
Starting from n = 0, we recursively compute all feasible
states from which we can reach G in n steps, until a
termination condition is met, either if the current state of
the robot is reached or a user-defined n is reached.

By definition, the feasible set F0 for n = 0 (i.e. the target
is reached without making any steps) is G (Fig. 2.1). We
then compute the reachable set R1 of all positions that can
bring the end-effector to G in one step, for n = 1 (Fig. 2.2).

Most of the positions in R1 are not contact positions, so to
compute the feasible set F1 we intersect R1 with S, giving
F1 =

⋃m
j=1 F

j
1 , with F j

1 = R1 ∩ Si (Fig. 2.3).
Each non-empty F j

1 describes a 2D polygon such that for
any position of the right foot on the polygon, there exists a
one-step sequence that results in the left foot inside G. Each
F j

1 corresponds to a node added as child to F0 in a tree T .



We can then proceed similarly to compute the feasibility
set F j

2 associated with each F j
1 (Fig. 2.4-9), and recursively

compute the feasibility sets until we reach Fn.
From any node of T , the contact sequence to G is obtained

by recursively selecting the parent node until G is reached.
At runtime, to compute a contact sequence from a given

state of the robot, we use a k-d tree to efficiently search for
the node corresponding to the state of the robot.

V. 1-STEP FEASIBILITY

Similarly to other Dynamic Programming algorithms, we
reason from the goal G. We characterise all the antecedent
states, the set of all positions of an end-effector from which
G can be reached in exactly one step. We rely on Fig. 2. to
illustrate the procedure. It describes the computation of the
2-step feasible set for the problem described in Fig. 1 and
contains all the possible cases that can occur when computing
the antecedent states.

A. Reachability from a given position (Fig. 2.1-2)

For a given position pe of an end-effector e on flat ground,
the set of positions of the other effector e such that pe is
reachable in one step is by definition eAe translated by pe:

peR := {pe ∈ R3|∃λ ∈ R+d,

||λ|| = 1 ∧ pe =
e Aeλ+ pe =pe Rλ} .

In the general case, if Q is the rotation matrix that aligns
the z axis with the contact surface normal, we write:

peR := {pe ∈ R3|∃λ ∈ R+d,

||λ|| = 1 ∧ pe = QeAeλ+ pe =pe Rλ} .
B. Reachability from a set of positions (Fig. 2.4-7)

More interestingly, we can compute the antecedent set
of a convex polytope Re of positions of e that share the
same contact normal. This set ReR is all the positions for e
allowing to create a contact with e inside Re in one step. It
is computed by definition as the union of all antecedents at
every point of Re:

ReR := {QeAeλ+Reλ1, ||λ|| = ||λ1|| = 1} . (2)

With λ and λ1 positive vectors of appropriate dimensions.
Eq(2) denotes the Minkowski sum of the two convex sets Re

and eAe (the latter being rotated by Q). Therefore, ReR is
convex since the Minkowski sum preserves convexity.

C. Computing the 1-step feasible set (Fig. 2.7-9)

To identify ReF , the subset of ReR that results in contact
locations, we compute the intersection between the contact
surfaces of the environment and, whenever a collision is
detected, we compute the resulting intersected surfaces. ReF
is composed of the union of all resulting surfaces:

ReF =
⋃m

j=1
ReF j , with ReF j =Re R∩ Si.

If the set of positions given as input is a convex polytope
(as is the case when we start from G), all resulting surfaces
are convex polygons, since the intersection of 2 convex

polytopes is a convex polytope. This means that at any point
of the expansion, the feasible set is always a union of
convex polytopes (possibly degenerated into a point).

VI. THE NAS ALGORITHM

To compute the N-Step feasible space, that is the set of
all possible positions from which the robot can reach G in
at most n steps, we recursively compute the feasible set for
all the steps from 1 to n in order to populate a tree T .

A. Tree description and initialisation

Each node of T contains information about the end-
effector currently in contact, the surface in contact, as well
as the subset of the surface covered by this node. It also
contains a link to its parent in the T as shown in struct 1.

struct 1 NODE

effectorId : ENUM
parent : NODE* // parent node
surfaceId : INT
extremePoints : POINT LIST //polygon description

T is implemented as an array of Node lists. Nodes are
indexed by their depth in the tree, which is the number of
steps required to reach the target from the node.

B. The NAS algorithm

Algorithm 2 NAS

function N STEPS FEASIBILITY(T , n)
if n == 0 then return T // (Fig. 2.1)
for each leaf node node in T do

feasibleNodes← FEASIBLE NODES(node)
ADD LEAVES(T , node, feasibleNodes)

return N STEPS FEASIBILITY(T , n− 1)

function FEASIBLE NODES(node)
effId← OTHER(node.effectorId)
nodeLists← []
R ← REACH POLYTOPE(node) // (Fig. 2.2)
for each surface s in S do

feasible s← INTERSECT(R, s) // (Fig. 2.3,8)
if NOT EMPTY(feasible s) then

child← NODE(effId, node, s.Id, feasible s)
nodeLists.add(child)

return nodeLists

NAS consists in initialising T with a single node
G before calling N STEPS FEASIBILITY (Algorithm 2).
N STEPS FEASIBILITY is a recursive function that com-
putes the expansion of T for 1 step before calling itself. Each
call computes the 1-step feasible set associated with each leaf
node (method FEASIBLE NODES), creates children nodes,
and adds them to the leaf node (method ADD LEAVES).

FEASIBLE NODES first identifies which end-effector
should be selected for the expansion (method OTHER).



The method REACH POLYTOPE computes the volume R
from which the node can be reached as per eq.(2). R is
then intersected with each potential contact surface from S
(method INTERSECT). Each non-empty intersection results
in a new node.

C. Discrete handling of the rotation

NAS can be extended to handle a rotation of the foot
around the z axis, if we discretise the possible orienta-
tions [4]. The updated function FEASIBLE NODES is given
by Algorithm 3. ROTATE rotates R around the z axis.
Additionally, the current rotation angle of the feet needs
to be added to the node structure to know the end-effector
orientation at the current state. This algorithm is presented
here for completeness, but for our experiments we focus on
Algorithm 2.

Algorithm 3 FEASIBLE NODES with yaw orientation

function FEASIBLE NODES(node)
effId← OTHER(node.effectorId)
nodeLists← []
R ← REACH POLYTOPE(node)
for each discrete angle value θ do
Rθ ← ROTATE(R, θ)
for each surface s in S do

feasible s← INTERSECT(Rθ, s)
if NOT EMPTY(feasible s) then

γ ← node.angle+ θ
child← NODE(effId, node, s.Id, feasible s, γ)

nodeLists.add(child)

return nodeLists

D. Properties of T
1) n-step completeness: For a given robot state, defined as

the position pe of the active end-effector on a contact surface,
if there exists a contact sequence leading to the target in n
steps, there is necessarily a node in T that contains pe

1.
Otherwise, there is no valid up-to-n-steps contact sequence.

2) Minimum step optimality: For a given pe, there can
be more than one matching node. The nodes with the lowest
depth all denote a sequence with a minimum number of steps.

E. Optimisation of the algorithm

1) Optimising the tree generation: Unsurprisingly, NAS
has a theoretical exponential complexity in O(bn), with
b ≤ m the branching factor (or average number of successors
per node). This is aligned with the worst case A∗ and
mixed-integer complexities. However, this complexity can be
reduced through the use of what we call node merging.

The expansion of several leaf nodes at step j can lead
to new leaf nodes at step j + 1 covering the same surface.
It is possible to reduce the number of branches by merging
such nodes into a single one with several parents, without

1We abusively refer to a node containing a point or a state to indicate
that the polygon associated with the node contains the point of interest.

changing the completeness nor the optimally properties of T :
for bidepal locomotion the position of the parent end-effector
has no influence on the expansion of the node, and since we
keep track of all parents no path is lost. This optimisation
can also be applied if more than 2 end-effectors are involved
but it requires considering all end-effectors when merging.

2) Optimising the tree exploitation using a kd-tree: A
node that contains a point pe can naively be found by
iterating through all the nodes sorted by their depth in T
until we encounter one that contains pe (it will be an optimal
one). This process presents a linear complexity. We rather
store the nodes in a separate k-d tree structure (one for each
end-effector). This results in an average search complexity
in log(h), h being the total number of nodes. The k-d
tree construction has a complexity in O(h log(h) which can
be ignored as it is dominated by the complexity of the
construction of T . Another advantage of the k-d tree is that
the search can efficiently return all the nodes containing pe.

F. Applications for NAS

Most of the following use cases rely on the search of
a specific node in T . The resulting complexities indicated
assume that the search is implemented using the k-d tree for
a complexity in O(log(h)), with h the number of nodes in
T , as detailed in Section (VI-E).

1) T as an optimal policy for contact planning: For a
given state of the robot pe we can find any node that contains
pe (and the associated effectorId), then go up the parent
node chain to compute a contact sequence to the target.
Assuming the depth of the node is k ≤ n, this results in a
feasible contact surface plan F = [Fk−1,e, · · · ,F1,e,F0,e ⊂
G], where Fi,e is the feasible convex polygon given by the
node at depth i in the selected sequence. This process has
an average complexity of O(n+ log(h)).

To find a contact sequence with a minimal number of
steps, we can select the first node at the lowest depth which
contains pe. Alternatively, if pe is known at expansion time,
the algorithm terminating condition can be modified to stop
the expansion whenever a node containing pe is generated
(or until a maximum iteration is reached, meaning that the
problem has no solution). This node will always result in a
path that involves the minimum number of steps to the target.

2) Computing exact footstep locations: T is a policy
for selecting contact surfaces, but does not directly tell us
where exactly on the surface the stepping should occur. By
construction of the graph, any point included by a node
is optimal regarding the minimum number of steps. This
allows us to apply any selection technique for a valid contact
position, as long as we choose a point reachable from the
previous location of the robot. The closest reachable point
from the Chebyshev center of the node can be selected
for robustness for instance. If a given objective has to
be minimised for the footstep plan, a linearly constrained
optimisation problem can be solved. The user is free to
consider as many steps as needed in the optimisation horizon
nhor: no matter nhor, the positions selected will always be
feasible and lead to a minimal number of steps. From a



current position p0 within a node at depth k > 0, an example
of convex program is:

find X = [p1, · · · ,pnhor
] ∈ R3×nhor

min l(X)

s.t. ∀i, 1 ≤ i ≤ nhor :

pi ∈ pi−1R∩ Fk−i,0

(3)

With l a convex objective, 1 ≤ nhor ≤ k and piR the
reachable workspace from the contact pi.

3) Online replanning using T : At any point during the
motion of the robot, the contact plan can be efficiently
updated if the situation invalidates it. Whenever the robot
makes a new step, we can check whether the contact location
pi belongs to the planned Fi−1,e. If not (e.g. due to a
perturbation of the hardware) we can immediately query T
again and obtain an updated path from pi.

The formulation also allows to dynamically mark areas of
the scene as impassible. To remove a contact surface from
the feasible set, we mark all the nodes concerned by the
surface as invalid. Upon re-planning, from the current state
of the robot, we can iterate through the nodes found until
we find a sequence that does not go through any invalid
nodes. The average complexity for the search is lower than
O(n ∗ v + log(h)), where v is the number of nodes that
contain the current robot state.

4) Optimal trajectory optimisation: NAS can also be
formulated as a single-query A∗ algorithm with continuous
nodes instead of discrete points, with an expansion that
is not exhaustive but rather guided by a heuristic, for a
likely better average complexity. The main advantage over
a standard formulation is that the formulation is continuous
and reduces the branching factor. We leave the comparison
of both approaches for future work as the focus of this paper
is on the characterisation of all solutions.

G. Implementation details

We implement the Minkowski sum of a polygon S and a
polyhedron P as the convex hull of the polytopes obtained
by translating P by each vertex of S. The complexity of
this operation is O(k log(k)) where k = kS ∗ kP and kS
and kS are the total number of vertices in S and P . This
operation remains efficient as kS typically remains below 10.
We compute the convex hulls using the SciPy [34]. Our code
is implemented in Python, including collision detection and
the k-d tree, with efficiency not being the primary concern.

To avoid computing plans that result in the foot partially
out of a contact surface, we automatically scale down the
surfaces given as input to NAS. This parametrisation is
optional if the case is handled by the controller as in [35].

VII. EXPERIMENTS

We report quantitative information about the generation
and run time of NAS that empirically demonstrate the valid-
ity of the approach on the Talos robot [36]. The experiments
were run on an desktop computer equipped with an Intel
i9 9900K CPU (3.6GHz) and 64GB RAM. The motions

were synthesised using the PAL robotics controller. They
are validated on the real robot or on the Gazebo simulator
[37], synchronised in real-time with the Unity 3D engine for
rendering purposes [38].

We designed 5 different scenes, 4 of which are shown in
the teaser figure, with a number of surfaces varying from 4
to 432. One scene includes non-flat surfaces. Our companion
video, available at https://youtu.be/Shkf8PyDg4g
demonstrates examples of minimum step motions generated
using our approach, including an example of dynamic re-
planning.

A. Tree generation analysis

The theoretical complexity of the graph generation is
O(bn), b ≤ m. This is confirmed by Fig. 3, which presents
the number of nodes in T when no optimisation is used
in one representative use case. However, node merging
optimisation results in a bilinear complexity O(m ∗ n) in
all scenarios, as evidenced by Fig. 4. Even in unrealistic
scenarios (such as planning 100 steps over a scene with more
than 40 surfaces), the graph generation time remains below
5 minutes. Although further work is needed to formally
demonstrate this complexity, we empirically establish the
viability of NAS.

Fig. 3: Without node merging the number of nodes grows
exponentially.

B. Tree exploitation

For lack of space, we report briefly on the exploitation of
the tree. The k-d tree query time is naturally conditioned by
the number of nodes, which in all the scenarios demonstrated
remains below 10,000 to find the optimal paths. In this
context, the query time is below 24 ms in the demonstrated
scenarios and at worst 89 ms (for the scene with 43 surfaces),
within our 10Hz requirement.

To compute the footstep sequences we solve eq(3) with the
complete horizon (although we have established that this is

2The scene with 43 surfaces, not shown in the video, was created by
cloning and duplicating another scene that originally had 22 surfaces.



Fig. 4: In all instances, node merging allows the number of
nodes and generation time for T to grow as O(m ∗ n).

not a requirement) and l = 03. In all instances, the cumulated
time to query the k-d tree and solve the QP remains below
100 ms. Here the resolution time only depends on n as the
combinatorics is fixed: for instance, the 43 surfaces scene is
solved in 6 ms (n = 23), while the re-planning scene is the
longest to solve with 79 ms (and n = 61).

VIII. DISCUSSION

Our experiments show that NAS is applicable to typical
planning problems for biped robots. The main benefit of the
formulation is that it comes with strong guarantees, within
the assumptions that are made when defining the problem.

1) Handling continuous yaw orientation: The main limi-
tation of the approach is that it currently only allows handling
the yaw orientation of the end-effectors in a discretised
manner. While this is on par with the state of the art, we are
actively working on a continuous formulation of the matter
by extending the reachability formulation to four dimensions.

3Hence we only solve a feasibility problem.

2) Scaling the approach to non-gaited loco-manipulation:
NAS can be straightforwardly extended to quadrupeds or any
other legged robots. However, as for the yaw rotation, the
size of T will grow significantly as the result of introducing
additional discrete choice, in particular if locomotion is not
gaited, although node merging remains possible. Future work
will establish under what conditions this extension is viable,
specifically if the computation of T can be optimised.

3) Parallelisation: As a breadth-first algorithm, NAS is
immediately parallelisable by construction, which could re-
sult in a significant improvement of the computation times.
Furthermore, the convex hull and matrix operations involved
in the expansion are all compatible with a GPU implemen-
tation, which could further improve this efficiency.

4) Interest for machine learning: As for most of the
state-of-the-art, NAS is built on simplifying assumptions.
However, we argue that the characterisation of the complete
feasible space, even when the assumptions are relaxed,
presents two advantages for learning:

• The tailoring of the search space to the close neighbor-
hood of the feasible set, to improve sample efficiency;

• The complete combinatorics can be explored and rele-
vant information regarding optimality and whole-body
feasibility can be fed back to the training network.

IX. CONCLUSION

In this work, we present NAS, a dynamic programming
algorithm for computing the feasible space of a contact
planning problem. NAS computes a globally optimal policy
for a given problem, which allows for real-time planning
(and re-planning) of a feasible contact plan. Thanks to the
node merging procedure we introduce, the computation of
the feasible space is performed with a bilinear complexity.

The reachability-based formulation of NAS also enables
the implementation of a novel, continuous A∗ algorithm to
solve the problem once, with optimality guarantees equiva-
lent to recent Mixed-Integer formulations.

NAS is parallelisable and could be considered for improv-
ing the efficiency of machine learning algorithms thanks to
the tight characterisation of the search-space for the problem.
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behaviors through contact-invariant optimization,” ACM Trans.
Graph., vol. 31, no. 4, Jul. 2012. [Online]. Available: https:
//doi.org/10.1145/2185520.2185539

[26] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory
optimization of rigid bodies through contact,” The Int. J. of Rob. Res.
(IJRR), vol. 33, 2014.

[27] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and
trajectory optimization for legged systems through phase-based end-
effector parameterization,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 1560–1567, 2018.

[28] D. Layeghi, S. Tonneau, and M. Mistry, “Optimal control via combined
inference and numerical optimization,” in IEEE Int. Conf. Rob. Autom.
(ICRA). IEEE, 2022, pp. 3429–3435.

[29] T. Pang, H. T. Suh, L. Yang, and R. Tedrake, “Global planning
for contact-rich manipulation via local smoothing of quasi-dynamic
contact models,” IEEE Trans. Robot. (T-RO), 2023.

[30] Q. Le Lidec, F. Schramm, L. Montaut, C. Schmid, I. Laptev, and
J. Carpentier, “Leveraging randomized smoothing for optimal control
of nonsmooth dynamical systems,” Nonlinear Analysis: Hybrid Sys-
tems, vol. 52, p. 101468, 2024.

[31] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, vol. 4, no. 26, p. eaau5872,
2019. [Online]. Available: https://www.science.org/doi/abs/10.1126/
scirobotics.aau5872

[32] Z. Zhuang, Z. Fu, J. Wang, C. Atkeson, S. Schwertfeger, C. Finn, and
H. Zhao, “Robot parkour learning,” in Conference on Robot Learning
(CoRL), 2023.

[33] F. Jenelten, J. He, F. Farshidian, and M. Hutter, “Dtc: Deep
tracking control,” Science Robotics, vol. 9, no. 86, p. eadh5401,
2024. [Online]. Available: https://www.science.org/doi/abs/10.1126/
scirobotics.adh5401

[34] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng,
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