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We employ the exact-factorization formalism to study the coupled dynamics of photons, electrons, and nuclei at the
quantum mechanical level, proposing illustrative examples of model situations of nonadiabatic dynamics and sponta-
neous emission of electron-nuclear systems in the regime of strong light-matter coupling. We make a particular choice
of factorization for such a multi-component system, where the full wavefunction is factored as a conditional electronic
amplitude and a marginal photon-nuclear amplitude. Then, we apply the coupled-trajectory mixed quantum-classical
(CTMQC) algorithm to perform trajectory-based simulations, by treating photonic and nuclear degrees of freedom
on equal footing in terms of classical-like trajectories. The analysis of the time-dependent potentials of the theory
along with the assessment of the performance of CTMQC allow us to point out some limitations of the current ap-
proximations used in CTMQC. On the other hand, comparing CTMQC with other trajectory-based algorithms, namely
multi-trajectory Ehrenfest and Tully surface hopping, demonstrates the better quality of CTMQC predictions.

I. INTRODUCTION

The exact factorization of the time-dependent molecular
wavefunction1–4 has seen numerous applications in the do-
main of excited-state nonadiabatic dynamics based on the de-
velopments of novel “tools” of analysis5–8 and of trajectory-
based algorithms for quantum molecular dynamics9–25. The
exact factorization implies a rewriting of the molecular time-
dependent Schrödinger equation as two coupled equations
for the evolution of the electronic conditional amplitude and
of the nuclear marginal amplitude. In particular, in formal
analogy with the Born-Oppenheimer approximation26 – but
clearly beyond this approximation, the nuclear evolution is ex-
pressed as a new effective time-dependent Schrödinger equa-
tion where the effect of the electrons in their ground state as
well as in their excited states is encoded in a time-dependent
vector potential and in a time-dependent potential energy sur-
face that adapt in time to the nonadiabatic electronic dynam-
ics. These potentials are the tools that have been applied
in several occasions to provide an interpretation of dynam-
ics in the presence of conical intersections alternative to the
Born-Oppenheimer framework (and the Born-Huang expan-
sion)6,7,27. Following the study of these potentials, trajectory-
based algorithms have been developed to approximate them
within an on-the-fly molecular-dynamics scheme. In this way,
electronic-structure information, in terms of energies, gradi-
ents and couplings, is used to reconstruct the time-dependent
potentials along the nuclear trajectories9,11,18.

The exact-factorization formalism has been employed in
other contexts, even though perhaps not with the same large
variety of applications as the electron-nuclear case. Examples
are the studies done on purely electronic systems28–33 and on
photon-electronic or photon-electron-nuclear systems34–38. In
the present work, we focus on this last problem, namely the
quantum dynamics of the photon-electron-nuclear wavefunc-
tion governed by a time-dependent Schrödinger equation.

Tokatly35 and Maitra34 independently introduced already

some years ago the photon degrees of freedom in the exact-
factorization formalism for applications of quantum electro-
dynamics in the context of molecular polaritons. The field
of polaritonic chemistry started to emerge little over a decade
ago39–41 as a way to affect (photo)chemical reactions by cre-
ating hybrid light-matter states, i.e., the polaritons, when
the strong-coupling regime between the molecular excitations
and confined light is achieved in optical and plasmonic cav-
ities42–61. In chemical physics and physical chemistry, we
have witnessed a large variety of ideas aiming to reformulate
in cavities concepts such as the Born-Oppenheimer approxi-
mation62–64, nonadiabatic dynamics38,59,60,65–79, density func-
tional theory80–83 and other electronic-structure theories84,85,
and the exact factorization34,35. In this respect, Maitra fol-
lowed up on her preliminary work with various analysis of
the dynamics of electronic and of electron-nuclear systems in
optical microcavities in the regime of strong light-matter cou-
pling. In particular, these works drew the connection between
the exact factorization and the “usual” polaritonic picture as
well as introduced the idea of trajectories to approximate ei-
ther the nuclear or the photonic dynamics34,36–38,86.

In the present study, we propose an alternative way of ap-
plying the exact factorization to the photon-electron-nuclear
wavefunction building up on the encouraging developments
briefly recalled above. Specifically, we decompose the prob-
lem in terms of a conditional electronic amplitude and a
marginal photon-nuclear amplitude aiming (i) to study the be-
havior of the time-dependent potentials that drive the dynam-
ics of the photonic and of the nuclear degrees of freedom, and
(ii) to apply the coupled-trajectory mixed quantum-classical
(CTMQC) algorithm, originally developed for the exact fac-
torization of the molecular problem. Our approach treats the
nuclear and the photonic degrees of freedom “on the same
footing” via the marginal amplitude, thus it differs from pre-
vious work where the marginal amplitude was either the nu-
clear or the photonic wavefunction. As mentioned above,
the idea of photonic trajectories was already investigated by
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other authors, however, it was done either by using the ex-
act time-dependent potential energy surface – accessible only
for model test-cases, which are exactly solvable – or by in-
voking the mean-field treatment within an Ehrenfest-like dy-
namics38,77. Therefore, we find it interesting to perform ex-
ploratory case studies of such an alternative decomposition of
the photon-electron-nuclear wavefunction and to explore the
performance of CTMQC in this situation.

The paper is organized as follows. In Section II, we con-
struct the theory by introducing the fundamental quantities of
our formalism and we recall the derivation of the CTMQC
algorithm. In Section III, we study two exactly-solvable mod-
els consisting of one nuclear mode and two singlet electronic
states, S0 and S1. In both cases, the model systems are cou-
pled to a single-mode cavity in resonance with a particu-
lar electronic excitation of the system: in model A of Sec-
tion III B, mimicking the de-excitation process of the nuclear
wavepacket via an avoided crossing, the cavity is in resonance
with the energy gap between the adiabatic states, S1 and S0,
at the Franck-Condon point; in model B of Section III C, rep-
resenting the spontaneous emission of the system in the vi-
brational ground state of S1, the cavity is in resonance with
the energy gap between S1 and S0 at the minima of the poten-
tials. In both sections, we study the dynamics, first, from the
viewpoint of the exact time-dependent potentials and, then, by
employing CTMQC, whose accuracy is evaluated by present-
ing the comparison with quantum dynamics, multi-trajectory
Ehrenfest dynamics and Tully surface hopping. In Section IV,
we explore the possibility of reapplying the factorization idea
to the marginal photon-nuclear amplitude and related time-
dependent Schrödinger equation. However, due to the com-
plexity of a “nested exact factorization” procedure, we explore
at this stage only an approximate form, namely a mean-field-
like factorization of the photon-nuclear wavefunction. We
summarize our conclusions in Section V.

II. THEORETICAL BACKGROUND

We consider the non-relativistic photon-matter Hamilto-
nian, ĤPEN(r,q,R), hereafter referred to as the photon-
electron-nuclear (PEN) Hamiltonian. As described in Ref. [
34], this Hamiltonian is treated within the dipole approxima-
tion in the length gauge, i.e., it is derived by applying the
Power-Zienau-Woolley87 gauge transformation to the mini-
mal coupling Hamiltonian in the Coulomb gauge34,62,86,88–90,
resulting in

ĤPEN(r,q,R) = ĤM(r,R)+ ĤP(q)+ ĤPM(r,q,R) (1)

with symbols r indicating the set of Ne electronic spatial co-
ordinates, R indicating the set of NN nuclear coordinates and
q representing the displacement coordinates of the NP cavity
modes. Atomic units (}= e2 = me = 1) will be used through-
out. The matter (M) Hamiltonian is the sum of the nuclear
kinetic energy operator T̂N(R) and of the Born-Oppenheimer
(BO) Hamiltonian ĤBO(r,R), containing the electronic ki-

netic energy and all the interactions V̂e,n(r,R), namely

T̂N(R)+ ĤBO(r,R) =
NN

∑
α

−∇2
α

2Mα

+
Ne

∑
i

−∇2
i

2
+V̂e,n(r,R) (2)

The index α labels the NN nuclei with masses Mα and the
index i is used to label the Ne electrons.

The photon Hamiltonian ĤP(q), obtained through the
canonical quantization of the electromagnetic field, is

ĤP(q) = T̂P(q)+V̂P(q) =
2NP

∑
ν

1
2
(

p̂2
ν +ω

2
ν q̂2

ν

)
(3)

=
2NP

∑
ν

−∇2
ν

2
+

1
2

ω
2
ν q̂2

ν (4)

where ν labels the photon modes with frequencies ων from
1 to 2NP to consider the two polarizations of the electromag-
netic field, i.e., of the electric and of the magnetic fields. The

photon displacement operator q̂ν =
√

1
2ων

(â†
ν + âν) is related

to the electric field operator, while the corresponding momen-

tum operator p̂ν = −i
√

ων

2 (âν − â†
ν) is proportional to the

magnetic field (using the symbols âν and â†
ν for the photon

annihilation and creation operators). In going from Eq. (3)
to Eq. (4), we expressed the photon momentum operator in
position representation37.

Finally, ĤPM(r,q,R) represents the photon-matter interac-
tion Hamiltonian, given by

ĤPM(r,q,R) =
2NP

∑
ν

ων gν q̂ν

(
NN

∑
α

ZαR̂α −
Ne

∑
i
r̂i

)

+
1
2

g2
ν

(
NN

∑
α

ZαR̂α −
Ne

∑
i
r̂i

)2

(5)

where gν is the photon-matter coupling parameter. The sec-
ond term in Eq. (5) is the self-polarization term, which de-
pends solely on matter operators. It is worth noting that this
term scales with the sum over modes of the square of the
photon-matter coupling parameter, gν . Therefore, it is neg-
ligible in single-mode situations. Detailed discussions regard-
ing this term can be found in Refs. [60,86].

The time evolution of the coupled PEN system is dictated
by the time-dependent Schödinger equation (TDSE),

i
∂Ψ(r,q,R, t)

∂ t
= ĤPEN(r,q,R)Ψ(r,q,R, t) (6)

whose solution yields the time-dependent PEN wavefunction
Ψ(r,q,R, t) and contains the complete information about the
coupled system.

Various concepts that are nowadays routinely used in the
context of molecular dynamics have been generalized to
PEN systems in cavities, described by the TDSE introduced
above. An example is the Born-Oppenheimer approximation
(BOA)91, usually intended in the molecular framework to sep-
arate adiabatically the dynamics of the slow degrees freedom,
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typically the (heavy) nuclei, to the fast degrees of freedom,
like the electrons and, sometimes, the protons. The BOA as-
sumes that the faster electrons instantaneously adapt to the po-
sitions of the nuclei; consequently, if the electrons are initial-
ized in an eigenstate, they remain in that eigenstate as long as
the BOA remains valid. It follows that the electronic eigenen-
ergy of the occupied state delineates the BO potential energy
surface (PES) that governs the nuclear dynamics. Similarly,
when dealing with a PEN system, the cavity-BOA has been
introduced62 to separate the typical time-scales of the elec-
tronic degrees of freedom from those of the nuclear and pho-
tonic degrees of freedom. From the viewpoint of the quantized
photon field, the cavity-BOA is physically justified by a small
magnetic field since it is proportional to the momentum oper-
ator p̂ν . In addition, interpreting somehow classically p̂ν as
related to the time derivative of the displacement q̂ν , one can
assume that in the cavity-BOA the changes in time of the elec-
tric field, which is proportional to q̂ν , are slow. Then, elec-
trons can adapt “quasi-instantaneously” to these slow changes
in the electric displacement field. However, rapid changes of
the electric field caused by strong interaction between light
and matter may lead to the breakdown of the cavity-BO ap-
proximation.

As previously done for the treatment of molecular pro-
cesses beyond the BOA, we discuss here the exact factor-
ization (EF) to go beyond the cavity-BOA. In the origi-
nal formulation, the electron?nuclear wavefunction is fac-
tored as a marginal nuclear wavefunction and a conditional
electronic wavefunction – conditional on the nuclear posi-
tions. However, since no approximation is made on the
typical time scales of the dynamics of the two subsystems,
the EF has been extended to factor different “kinds” of
multicomponent many-body wavefunctions. In this work,
we focus on the PEN wavefunction. Note that the choice
of marginal and conditional wavefunctions is quite arbi-
trary but always applicable when the partial normaliza-
tion condition (PNC) is imposed on the conditional term
(see discussion below). Specifically, as briefly described
in the Introduction, various authors have already intro-
duced the EF formalism to analyze light-matter problems,
namely electron-photon34,35 and PEN36 systems. Maitra and
coworkers proposed Ψ(r,q,R, t) = χN(R, t)ΦN(r,q, t;R) =
χP(q, t)ΦP(r,R, t;q) = χE(r, t)ΦE(R,q, t;r), where the
marginal amplitudes are the nuclear (N), the photonic (P) or
the electronic (E) wavefunctions, respectively, and looked in
some details into the first and second ideas34. Here, we ex-
plore an alternative possibility, where the PEN wavefunction
is factored as a single product of a marginal photon-nuclear
wavefunction, χ(q,R, t), and a conditional electronic wave-
function parametrically dependent on the photon-nuclear co-
ordinates, Φ(r, t;q,R), i.e.,

Ψ(r,q,R, t) = χ(q,R, t)Φ(r, t;q,R) (7)

where Φ(r, t;q,R) satisfies the PNC∫
dr|Φ(r, t;q,R)|2 = 1 ∀ q,R, t. (8)

As in the electron-nuclear formulation, we note that the ambi-
guity of the product form of the PEN wavefunction in Eq. (7)

is partially eliminated by imposing this PNC, which allows us
to identify the marginal photon-nuclear probability density as
|χ(q,R, t)|2 =

∫
dr|Ψ(r,q,R, t)|2. As a result of the PNC,

the two wavefunctions are uniquely defined up to a phase fac-
tor e±iθ(q,R,t), with θ(q,R, t) being a real function.

The TDSE for the PEN wavefunction can be rewritten us-
ing Eq. (7) along with the PNC (Eq. (8)). This leads to the
following equations. The photon-nuclear TDSE is

i
∂ χ(q,R, t)

∂ t
=

[
∑
α

(−i∇α +Aα(q,R, t))2

2Mα

+∑
ν

(−i∇ν +Sν(q,R, t))2

2
+ ε(q,R, t)

]
χ(q,R, t) (9)

where effect of the electrons is encoded in the nuclear time-
dependent vector potential (R-TDVP),

Aα(q,R, t) = 〈Φ(t;q,R)|− i∇α |Φ(t;q,R)〉r (10)

in the photonic time-dependent vector potential (q-TDVP),

Sν(q,R, t) = 〈Φ(t;q,R)|− i∇ν |Φ(t;q,R)〉r (11)

and in the time-dependent potential energy surface (TDPES)
ε(q,R, t),

ε(q,R, t) = εVPEN (q,R, t)+ εGD(q,R, t)+ εgeo(q,R, t)
(12)

The TDPES can be written as the sum of three contributions,
namely

εVPEN (q,R, t) = 〈Φ(t;q,R)| ĤBO +V̂P + ĤPM |Φ(t;q,R)〉r
(13)

which is the gauge-invariant PEN potential,

εgeo(q,R, t) =

∑
α

1
2Mα

[
〈∇α Φ(t;q,R)|∇α Φ(t;q,R)〉r−A2

α(q,R, t)
]

+∑
ν

1
2

[
〈∇ν Φ(t;q,R)|∇ν Φ(t;q,R)〉r−S2

ν(q,R, t)
]
(14)

which is the gauge-invariant geometric potential, and

εGD(q,R, t) = 〈Φ(t;q,R)| i∂t |Φ(t;q,R)〉r (15)

which is the gauge-dependent contribution. In Eqs. (10)
to (15), the symbol 〈·〉r stands for an integration over elec-
tronic positions, and we thus removed any dependence on r
of the arguments within the integral operation to show that
this variable is integrated out.

The electronic evolution equation is

i
∂Φ(r, t;q,R)

∂ t
=
[
ĤBO(r,R)+V̂P(q)+ĤPM(r,q,R)

+Ûpen[Φ,χ](q,R, t)− ε(q,R, t)
]
Φ(r, t;q,R) (16)
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with the PEN coupling operator (PENCO) Ûpen[Φ,χ](q,R, t)
expressing the effect of the nuclei and of the photons on the
electronic dynamics via its explicit dependence on χ(q,R, t).
The PENCO is

Ûpen[Φ,χ](q,R, t) =

∑
α

1
Mα

[ (−i∇α −Aα)
2

2
+

(
−i∇α χ

χ
+Aα

)
(−i∇α −Aα)

]
+∑

ν

[ (−i∇ν −Sν)
2

2
+

(
−i∇ν χ

χ
+Sν

)
(−i∇ν −Sν)

]
(17)

For readability reasons we removed the dependence on q,R, t
of the functions on the right-hand side.

It is interesting to observe that the R-TDVP and q-TDVP
are connected to the nuclear and photonic momentum fields,
as

Aα =
Im[〈Ψ(q,R, t)|∇α |Ψ(q,R, t)〉r]

|χ(q,R, t)|2
−∇αW (q,R,t)

(18)

and

Sν =
Im[〈Ψ(q,R, t)|∇ν |Ψq,R, t)〉r]

|χ(q,R, t)|2
−∇νW (q,R,t)

(19)

respectively. The symbol W (q,R,t) indicates the phase
of the photon-nuclear wavefunction χ(q,R, t), has the di-
mensions of an action and is related to the gauge phase
θ(q,R, t) introduced above. In this work, the gauge for the
quantum dynamics calculations will be chosen such that the
photon-nuclear wavefunction is always non-negative and real,
namely χ(q,R, t) = +

√∫
dr|Ψ(r,q,R, t)|2, meaning that

W (q,R,t) = 0. In this particular gauge, Eqs. (18) and (19)
show that the TDVP becomes the nuclear and the photonic
momentum fields, respectively.

The EF of the PEN wavefunction just derived naturally
lends itself to a mixed quantum-classical treatment in the spirit
of the analogous approach derived for the electron-nuclear
problem. Here, we aim to treat on equal footing the photonic
and the nuclear degrees of freedom, by introducing the idea
of photon-nuclear trajectories, whereas the electrons are de-
scribed quantum mechanically. Therefore, we will now briefly
describe how the CTMQC algorithm can be easily extended to
the PEN problem in Section II A, and we will test it in Sec-
tion III on two model case studies of dynamical processes in
the strong light-matter coupling regime.

A. Coupled-trajectory mixed quantum-classical algorithm

Building upon the developments of CTMQC from EF to
treat processes beyond the BOA in electron-nuclear systems
using trajectory-based on-the-fly dynamics9–11, we propose
here to extend the applicability of the algorithm to study
situations beyond the cavity-BOA using coupled trajectories

to describe the photon-nuclear dynamics under the effect of
quantum-mechanical electrons.

The photon-nuclear dynamics of Eq. (9) will be solved via
an ensemble of coupled trajectories representing both nuclei
and photons, thus, they will be indicated as qI(t),RI(t) =
XI(t). To simplify the notation below, we will indicate the
dependence on the photon-nuclear trajectories only via the la-
bel I; each trajectory at every time thus becomes a collection
of NN +2NP coordinates, that will be collectively labeled with
the index Γ ≡ α,ν . The evolution of positions and momenta
of these trajectories adheres to Hamilton’s equations of mo-
tion, guided by the TDPES, the R-TDVP, and the q-TDVP.

In CTMQC, the electronic wavefunction is expanded in the
cavity-adiabatic basis,

Φ(r, t;q,R) = ∑
k

Ck(q,R, t)φk(r;q,R) (20)

with φk(r;q,R) the set of eigenstates of the Hamiltonian
V̂PEN(q,R) = ĤPEN(r,q,R)− T̂N(R)− T̂P(q), with eigen-
values Ek(q,R), representing the electronic PESs as func-
tions of the photonic and nuclear coordinates. The nonadi-
abatic couplings between two of these electronic states en-
code the information on the variation along R (∇α ) or along
q (∇ν ) of the states; they will be indicated collectively as
dkl,Γ(q,R) =

〈
φk(q,R)|∇Γ|φl(q,R)

〉
r

Inserting Eq. (20) into Eq. (16) and introducing some ap-
proximations, as described previously for CTMQC and its var-
ious flavours17,92, yields the evolution equations for the elec-
tronic coefficients along each trajectory I

Ċ(I)
k (t) = Ċ(I)

k,Eh(t)+Ċ(I)
k,CT (t) (21)

The first term in the right-hand side is a standard Ehrenfest-
like (Eh) term

Ċ(I)
k,Eh(t) =−iE(I)

k C(I)
k (t)−∑

Γ

V
(I)

Γ
(t) ·∑

l
d
(I)
kl,Γ(R)Cl(t)

(22)

whereas the second term, i.e. the coupled-trajectory (CT )
term, reads

Ċ(I)
k,CT (t) = ∑

Γ

P
(I)
Γ
(t)

MΓ

·

(
f
(I)
k,Γ−∑

l
|C(I)

l (t)|2f (I)
l,Γ

)
Ck(t)

(23)

In Eqs. (22) and (23), we have introduced the new symbols:
V

(I)
Γ

(t) = Ẋ
(I)
Γ
(t) standing for the velocity of the trajectory I,

P
(I)
Γ
(t) =−∇Γ|χ(I)(t)|2/(2|χ(I)(t)|2) representing the quan-

tum momentum, and f
(I)
k,Γ =

∫ t
0(−∇ΓE(I)

k )dτ being the cavity-
adiabatic forces accumulated along the trajectory I.

The classical nuclear force that generates the trajectory I
can be derived from Eq. (9) as described for instance in Ref. [
93], and reads

F
(I)
Γ

(t) = F
(I)
Γ,Eh(t)+F

(I)
Γ,CT (t) (24)
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The first term in the right-hand side is a mean-field, or
Ehrenfest-like, term

F
(I)
Γ,Eh(t) =−∑

k
|C(I)

k (t)|2∇ΓE(I)
k

−∑
k,l

C̄(I)
l (t)C(I)

k (t)(E(I)
k −E(I)

l )d
(I)
kl,Γ (25)

whereas the second term is, similarly to the electronic equa-
tion, a coupled-trajectory (CT ) term

F
(I)
Γ,CT (t) = ∑

k,l
∑
Γ′

(
P

(I)
Γ′ ·f

(I)
k,Γ′

)(
f
(I)
k,Γ−f

(I)
l,Γ

)
|C(I)

k (t)|2|C(I)
l (t)|2

(26)

Note that in Eq. (25), we introduced the symbol C̄(I)
l (t) to in-

dicate the complex conjugate of C(I)
l (t).

As in the usual formulation of CTMQC, the photon-nuclear
density |χ(I)(t)|2 is reconstructed as a sum of frozen Gaus-
sians centered at the positions of the trajectories. This cal-
culation requires that, at the end of each dynamics step, the
trajectories share information about their positions to compute
the quantum momentum. Once the quantum momentum is de-
termined, the trajectories can proceed with a new step of dy-
namics. On-the-fly calculation of the quantum momentum is
feasible only when the trajectories are propagated simultane-
ously, that is why the underlying algorithm has been dubbed
“coupled-trajectory”-MQC. Incorporating information about
the delocalization of classical trajectories enhances the de-
scription of nonadiabatic effects, i.e., due to the electronic
excited states, and of quantum effects, compared to meth-
ods such as multi-trajectory Ehrenfest (MTE) or Tully surface
hopping (TSH).

The CTMQC algorithm, as presented in this section, is a
straightforward extension of the electron-nuclear case, which
requires a classical-like trajectory-based treatment of the pho-
tons as well as of the nuclei. The photons are simply repre-
sented by additional degrees of freedom to those representing
the nuclei.

To illustrate the advantage of such an approach in com-
parison to the, perhaps more standard, polaritonic picture,
let us consider a simple scenario involving a system with
one nucleus, one photonic mode, and two electronic states.
In our formulation, we would propagate the photon and nu-
cleus classically using coupled trajectories under the effect of
the two electronic states. Alternatively, if we were to adopt
a different EF form of the PEN wavefunction, for instance
χN(R, t)ΦN(r,q, t;R), where the nuclear wavefunction is the
marginal amplitude and the photon-electronic wavefunction is
the conditional amplitude, the two electronic states would be
dressed by the photons, yielding the polaritonic states. The
mixing of the electronic and photonic degrees of freedom
would yield at least four polaritonic states, if one were to con-
sider only the zero-photon and one-photon states. The one-
dimensional nuclear evolution then takes place under the ef-
fect of these four polaritonic states. This alternative represen-
tation, while conceptually interesting and widely used in the
literature, might prove computationally more demanding for

the CTMQC algorithm as well as for the coupled-trajectory
Tully surface hopping (CTTSH) algorithm18 – derived as well
from EF. Specifically, CTMQC requires the calculation of
nonadiabatic coupling vectors at all times to evaluate nuclear
forces, while both CTMQC and CTTSH require calculations
of nuclear gradients of the cavity-adiabatic/polaritonic PESs
at all times to evaluate the force accumulated along the tra-
jectories. Thus, treating four polaritonic states instead of two
electronic states is clearly more expensive from the compu-
tational perspective. Furthermore, we stress that we are not
pioneering the idea of treating photons in terms of trajecto-
ries; other authors have utilized such an idea, for instance in
the context of the vibrational strong-coupling regime56,65.

III. NUMERICAL APPLICATIONS

In this section, we discuss the PEN problem in two dif-
ferent physical conditions employing low-dimensional model
Hamiltonians. The system comprises one nuclear mode and
two singlet electronic states, S0 and S1, and it is coupled to
a single-mode cavity. Model A represents a typical nonadi-
abatic situation with the adiabatic PESs forming an avoided
crossing at some nuclear geometries, and the cavity is in reso-
nance with the S0-to-S1 transition at the Franck-Condon point.
In this case, we will study the effect of the cavity on the relax-
ation process of the initially photoexcited system. Model B is
constructed to induce the spontaneous photon emission of the
system from S1 to S0, followed by photoexcitation due to the
absorption of the emitted photon. In this case, the cavity is in
resonance with the S0-to-S1 energy gap at the minimum of the
S1 PES.

In the used models we have α = 1 and ν = 1, then the ki-
netic energies are T̂N =−(2M)−1∂ 2

R , with M = 20000 me, and
T̂P =−∂ 2

q . The BO Hamiltonian in the diabatic basis is

ĤBO(R) =

( 1
2 k(R−R1)

2 bexp [−a(R−R3)
2]

bexp [−a(R−R3)
2] 1

2 k(R−R2)
2 +∆

)
(27)

The diagonal elements are two parabolas displaced in posi-
tion, at R1 and R2, and in energy, by ∆, with Gaussian off-
diagonal couplings centered at R3. In the same basis, the
Hamiltonian V̂PEN is

V̂PEN(q,R) =ĤBO(R)+( 1
2 ω2q2 +ZωgqR −ωgµ12
−ωgµ12

1
2 ω2q2 +ZωgqR

)
(28)

In this expression, we have omitted the second term in Eq. (5),
i.e., the self-polarization term, which is usually negligible
when considering a single-mode cavity. We confirmed this
by including this term in our numerical calculations, and in-
deed its presence did not contribute significantly to the results.
In Eq. (28), our model is defined such that the diagonal ele-
ments of dipole operator in the diabatic basis are zero and the
off-diagonal elements, i.e., the transition dipole moment, is a
constant function of nuclear geometries of value µ12 = 1.0 ea0
(Condon approximation). Furthermore, we choose Z = 1.0 e.
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A. Computational details

Quantum dynamics (QD) simulations are performed in the
diabatic basis using the split-operator technique on a grid of
500×500 points in the range q∈ [−10,10] a0 and R∈ [0,8] a0.
We used a time step dt = 0.05 a.t.u. These calculations pro-
vide the full PEN wavefunction in the electronic diabatic basis
with corresponding photon-nuclear amplitudes. The marginal
photon-nuclear density of the EF is then calculated as well as
the electronic conditional amplitude in the diabatic basis. The
TDPES and the TDVP can be calculated using the electronic
amplitude as illustrated in detail in Ref. [ 7]. The initial state
of the system for both models studied here is defined with full
occupation of the S1 state and with a Gaussian in q and in R
centered at q = 0 and R = 2 a0. The widths of the Gaussians
are σq = 2.425 a0 and σR = 0.223 a0.

Trajectory-based simulations are performed in the cavity-
adiabatic basis, which we define as the representation where
Eq. (28) is diagonal. The model Hamiltonians of Eqs. (27)
and (28) have been implemented in the QuantumModelLib li-
brary94. The G-CTMQC code95 used for all the trajectory-
based simulations is interfaced with QuantumModelLib, pro-
viding energies, gradients and couplings on-th-fly upon di-
agonalization of the diabatic Hamiltonian. In G-CTMQC
the trajectory-based simulations are performed by solving the
photon-nuclear equations with the velocity-Verlet algorithm
and the electronic equations with the Runge-Kutta-Gill algo-
rithm. The time step is dt = 0.1 a.t.u., for both photon-nuclear
and electronic dynamics. An ensemble of 10000 trajectories
were considered for all the calculations presented. The ini-
tial positions and momenta are sampled from the (harmonic)
quantum distribution determined as the Wigner transform of
the initial photon-nuclear probability density used in QD cal-
culations.

B. Nonadiabatic dynamics: Model A

Figure 1 shows cuts of the two-dimensional PESs obtained
by diagonalizing the Hamiltonian of Eq. (28), with the fol-
lowing parameters (in atomic units): k = 0.020 E2

hme/h̄2,
a = 3.0 a−2

0 , b = 0.01 Eh, ∆ = 0, R1 = 6.0 a0, R2 = 2.0 a0,
and R3 = 3.875 a0. The cuts of the cavity-adiabatic PESs of
Fig. 1 are given as functions of R in the left panels for q = 0
and q = 1.5 a0 and as functions of q in the right panels for
R = 2.0 a0 and R = 4.0 a0 (which are, respectively, the mini-
mum of one of the two parabolas where the initial wavepacket
is centered and the center of the nonadiabatic region). Note
that top panels in Fig. 1 show, for reference, the shapes of the
PESs in the absence of coupling between the system and the
cavity, while the bottom panels provide an idea of how the
PESs are modified by the strong coupling between the system
and the cavity. In all cases, the PESs as functions of R for
given values of q represent a ground-state double-well poten-
tial and an excited-state single well. By tuning the parameters
of the model, namely the resonance frequency ω and the cou-
pling strength g, we can induce different dynamics, since the
potentials that drive the evolution of the system are slightly
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FIG. 1. Left: Cuts of the cavity-adiabatic PESs as function of R
along q = 0 (light-blue) and q = 1.5 a0 (purple), for the cavity-free
case (upper panels) and for the strong-coupling case (lower pan-
els). Right: Cuts of the cavity-adiabatic PESs as function of q along
R = 2 a0 (fuchsia) and R = 4 a0 (light-green), for the cavity-free case
(upper panels) and for the strong-coupling case (lower panels). Con-
tinuous lines are used for the electronic ground state S0 and dashed
lines for the excited state S1.

s

modified, as shown in Fig. 1. In the cases studied below, and
as indicated above, ω is chosen such that the cavity is in reso-
nance with the S0-to-S1 excitation at the Franck-Condon point
R= 2 a0,q= 0. On the other hand, as function of q, the cavity-
adiabatic PESs are basically parabolas more or less symetric
with respect to q = 0 depending on the coupling g.

Exact QD simulations were conducted starting with an ini-
tial wavepacket in the excited state, represented as a real two-
dimensional Gaussian centered at R = 2.0 a0 and q = 0: this
means that the system, which is in the vibrational ground state
of the left diabatic well, is photoexcited at the initial time in
a cavity with zero photons. In the course the dynamics, de-
pending on the coupling strength and on the resonance fre-
quency, photon emission and nonadiabatic population transfer
take place. Specifically, the cavity-free dynamics for g = 0
would be characterized by a nonadiabatic event that takes
place when the wavepacket reaches the avoided crossing re-
gion, without photon-emission events. Instead, in the strong
light-matter coupling regime, achieved with g = 0.01 (ea0)

−1

and ω = 0.17 Eh in our calculations, the cavity is in reso-
nance with the excitation of the system in the Franck-Condon
region, thus, as soon as the nonadiabatic dynamics starts,
photon-emission is observed. In order to quantify the photon-
emission process, we will calculate the expectation value of
photon number operator, namely〈

N̂
〉
=
〈
â†â
〉
=

ω

2
〈
q̂2〉+ 1

2ω

〈
p̂2〉− 1

2
(29)

that we have expressed in terms of the photon displacement
operator and corresponding momentum (as mentioned earlier
there is no contribution from the self-polarization term in this
model).

For the cavity-free dynamics, the population of the S1
state is shown for reference in Fig. 2. In this case, the
dynamics is purely nonadiabatic without photon-emission,
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thus radiative decay is not permitted. However, the non-
radiative decay appears starting at t = 800 a.t.u., when the
photoexcited wavepacket approaches the avoided crossing at
R = 4 a0, where nonadiabaticity is the strongest. At around
t = 1050 a.t.u., the S1 population increases again, since the
wavepacket is being reflected by the right wall of the potential
and goes back towards the avoided crossing. Figure 2 reports
the time trace of the S1 population for the cavity-free dynam-
ics calculated via QD (black line) as well as the trajectory-
based results that will be discussed below.
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FIG. 2. S1 population as function of time for cavity-free dynamics.
QD results are shown in black and three different trajectory-based
approaches are compared: CTMQC in blue, MTE in red and TSH in
orange.

In the strong-coupling regime, which will be investigated
further below, the coupling between the system and the cavity
is strong since the beginning of the simulated dynamics, and
leads to an immediate photon-emission event: the S1 popula-
tion decreases while the number of photons increases. Shortly
after t = 400 a.t.u., the average number of photons stabilizes
at approximately 0.15. At around t = 1000 a.t.u., the S1 pop-
ulation decreases again since the S1 wavepacket decays non-
radiatively via the avoided crossing.

1. Time-dependent potentials

In this section, we analyze the time-dependent potentials of
the exact factorization, namely the TDPES, the R-TDVP, and
q-TDVP introduced in Sec. II, aiming to relate their features
to the behavior of the photon-nuclear density.

In Fig. 3, the TDPES is represented at different snapshots
along the dynamics as color map with the superimposed black
contour lines indicating the photon-nuclear density.

At t = 0, the TDPES reproduces the shape of the cavity-
adiabatic S1 PES, where the photoexcited wavepacket is ini-
tially prepared: its slope in the R direction induces the density
to move towards the right, while it confines the density in the q
direction being essentially a parabola. While the dynamics of
the photon-nuclear density is quite simple, as it mainly moves
in R towards the right, we can observe that an interesting be-
havior develops in time along q. Around t = 500 a.t.u., the
TDPES modulates its shape between R = 2 a0 and R = 2.5 a0,

causing the density to separate in two portions, one that moves
to the right and one that remains in the Franck-Condon region
all along the dynamics. In the Franck-Condon region, we ob-
serve the formation of a localized peak extending in the R di-
rection up to (slightly less than) R = 2.5 a0 at q = 0, which
enforces the splitting of the photon-nuclear density along q.
There, the shape of the density along q is reminiscent of the
first excited state of the harmonic potential, thus it coincides
with the photon formation. The formation of the two portions
of the density along R is complete already at t = 750 a.t.u., and
at later times, i.e., t = 1000 a.t.u. in the figure, while the S1
component continues its evolution towards the avoided cross-
ing, the component associated to the Franck-Condon region
remains fairly well localilzed on the left. At the final snapshot
reported, namely at t = 1250 a.t.u., a very small portion of
density moving towards the right remains in the excited state
after the passage through the avoided crossing, and is reflected
back (not visible in the panel), while the main portion keeps
travelling in the ground state towards the right.
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FIG. 3. TDPES for model A at times: t =
0,250,500,750,1000,1250 a.t.u., as indicated in the panels. The
color bar is given in hartree. The nuclear density is superimposed at
the same times as black contour lines.

Cuts of the TDPES are reported in Fig. 4 at times t =
250,750,1250 a.t.u. (as indicated in the panels) and can be
analyzed by superimposing them to the cuts of the cavity-
adiabatic PESs reported in Fig. 1.

In the left panels of Fig. 4, the one-dimensional TDPES is
plotted for q = 0 (orange circles) and for q = 1.5 a0 (green
circles) as function of the nuclear coordinate R. Note that
the orange and green circles represent only the component
εVPEN (q,R, t) of the full TDPES. For the same values of q,
we report cuts of the photon-nuclear density as functions of
R (thin orange and green lines). In agreement with the above
discussion, we observe that at the times reported in the fig-
ure, the density develops two main portions. The portion that
remains in the Franck-Condon region (at around R = 2 a0)
is partially associated to the electronic ground states and par-
tially to the excited state. Specifically, the shape of the TD-
PES in orange (for q = 0) follows at all times reported in the
figure the shape of the excited state (dashed lines), while the
shape of the TDPES in green (for q = 1.5 a0) at t = 1250 a.t.u.
follows the ground state (continuous lines). The portion of
the density that moves towards the avoided crossing under-
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FIG. 4. Left: Cuts of the TDPES as function of R at times t =
250,750,1250 a.t.u., decomposed in εVPEN (q,R, t) (orange circles at
q = 0 and green circles at q = 1.5 a0) and in εgeo(q,R, t) (cyan lines
at q = 0 and red lines at q = 1.5 a0) and superimposed at the cavity-
adiabatic PESs (purple and light-blue as in Fig. 1). Thin orange and
green lines are the corresponding cuts of the photon-nuclear density
as functions of R along the same values of q. Right: Cuts of the
TDPES as function of q, decomposed in εVPEN (q,R, t) (dark-green
circles at R = 2 a0 and blue circles at R = 4 a0) and in εgeo(q,R, t)
(cyan at R = 2 a0) and superimposed at the cavity-adiabatic PESs
(fuchsia and light-green as in Fig. 1). Thin dark-green and blue lines
are the corresponding cuts of the photon-nuclear density as functions
of q along the same values of R. Note that in the top panel the thin
blue line is not visible because at R= 4 a0 at t = 250 a.t.u. the density
is nearly zero.

goes a nonadiabatic population transfer at around R = 4 a0,
and evolves as well partially in the excited state and partially
in the ground state since the TDPES develops a characteris-
tic step that bridges between the cavity-adiabatic shapes of
the (static) PESs. The geometric component of the TDPES,
namely εgeo(q,R, t) represented in cyan and in red in Fig. 4,
develops a strongly oscillatory behavior only in the Franck-
Condon region, that is partially responsible for the oscillations
observed as well in the density. The oscillations in εgeo(q,R, t)
as function of R for fixed q, however, do not strongly affect the
overall shape of the density, only its fine interference patterns.

Interestingly, as also previously discussed by Maitra and
coworkers34,38, the TDPES as a function of q for two different
values of the nuclear coordinate, namely R = 2 a0 (dark-green
circles) and R = 4 a0 (blue circles), can become strongly an-
harmonic. At all times reported in Fig. 4, for R = 2 a0, the
component εVPEN (q,R, t) of TDPES develops a barrier around
q = 0 whose maximum value reaches the corresponding elec-
tronic excited state. In addition, the geometric component εgeo
that is summed to εVPEN to obtain the full TDPES, presents as
well a high broad barrier centered in q = 0 for R = 2 a0 (note
that for R = 4 a0, εgeo is a nearly constant function of q with a
small negative value that is not reported in Fig. 4). The anal-
ysis of the cuts of the TDPES allows us to conclude that as
function of q the TDPES is strongly anharmonic, despite the
fact that the cavity-adiabatic electronic PESs are seemingly
harmonic, and that its shape is strongly dominated by εgeo.

In the chosen gauge for the QD calculations, the R-TDVP
is the nuclear momentum field and the q-TDVP is the pho-
ton momentum field. Thus, they provide additional insights
into the photon-nuclear dynamics, complementing the infor-
mation derived from the TDPES. However, the details of the
photon momentum filed are obscured in the total TDVP due
to the chosen larger mass associated to the nuclear degree of
freedom than that of the photon displacement (20000 times
larger). This causes the TDVP in the R-direction to be domi-
nant. Therefore, rather than showing the momentum field, in
Fig. 5 we show the velocity field: the color map provides in-
formation about the modulus of the velocity vector field while
the unit-vectors about its direction.

In Fig. 5, at the initial time, t = 0, the system is initial-
ized with the zero momentum in the R direction and is in
the ground state along the q direction, thus the velocity field
is very small everywhere. Afterwards, the photon-nuclear
density (depicted in all panels as black contour lines) starts
mainly to move towards the right in the R direction. However,
since we are showing the velocity field in the figure, we are
able to clearly observed all along the dynamics, at all snap-
shots reported in Fig. 5, that the field changes direction often
along q, and while one portion of the density moves away
from the Franck-Condon region towards the right in R, the
density rapidly oscillates “up and down” along the q direc-
tion. As the portion of the density moving towards the right
in R approaches the avoided crossing, it gains velocity, and
the nuclear component begins to be relevant, as indicated at
t = 500 a.t.u. onwards. However, the oscillations in the q
direction persist, and the arrows keep changing direction.
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FIG. 5. Photon-nuclear velocity field for model A at times: t =
0,250,500,750,1000,1250 a.t.u. as indicated in the panels. The
color map indicates the squared modulus of the velocity field in
[a0Eh/(h̄me)]2 and the unit-vectors (arrows) show the orientation of
the velocity field. The nuclear density is superimposed as black con-
tour lines at the corresponding times.

2. CTMQC dynamics

In this section, we test the performance of the trajectory-
based treatment of the coupled PEN dynamics just described,
using CTMQC. This study extends the classical-like treatment
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that uses coupled trajectories to the photon displacement co-
ordinate and momentum, treating the photons essentially as
additional nuclear-like degrees of freedom of the system.

The classical-like coordinates R and q, along with their con-
jugate momenta, define the phase-space coordinates. An en-
semble of initial conditions is sampled based on the photon-
nuclear density time t = 0 used in the QD simulations above,
while the electronic system is in its excited state. Then, the
phase-space variables along with the electronic coefficients
are propagated using CTMQC equations. Below, we will
show results obtained using CTMQC as well as the multi-
trajectory Ehrenfest (MTE) method and Tully surface hop-
ping (TSH), in order to evaluate the performance of CTMQC
in comparison with other similar approaches in addition to
benchmark the trajectory-based dynamics against QD simu-
lations.

In Fig. 6, we present in the top panel the evolution of the
expectation value of the photon number

〈
N̂
〉

and in the bot-
tom panel the time trace of the electronic population in the
excited state S1. In the figure, the reference QD results are
in black, CTMQC is in blue, MTE in red and TSH in orange.
We remind that we used here the parameters ω = 0.17 Eh
and g = 0.01 (ea0)

−1; the photon-nuclear density is centered
initially at R = 2.0 a0 and q = 0.0 a0. Since the cavity is in

 0.7

 0.8

 0.9

 1

 0  250  500  750  1000  1250

S
1
 p

o
p

u
la

ti
o

n

Time (a.t.u.)

QD
CTMQC

MTE
TSH

 0

 0.1

 0.2

A
v
e

ra
g

e
 p

h
o

to
n

 n
u

m
b

e
r

FIG. 6. Top: Average photon number as function of time. Bottom:
S1 population as function of time. QD results are shown in black and
three different trajectory-based approaches are compared: CTMQC
in blue, MTE in red and TSH in orange.

resonance with the S0-to-S1 transition at the Franck-Condon
point, where the dynamics starts, electronic population is im-
mediately transferred from the excited state to the ground state
by emitting photons, as the initial increase of the average pho-
ton number confirms. All trajectory methods underestimate
these effects, i.e., the transfer of population and the creation

of photons. However, CTMQC and MTE agree better with the
reference than TSH. Overall, the fast oscillations of the aver-
age photon number, related to the oscillation of the velocity
field along q discussed above in Fig. 5, are well-captured by
CTMQC and MTE, while they appear to be unstable in TSH.

We suppose that CTMQC underestimates the initial in-
crease in the photon number, and thus the population trans-
fer, due to the complete neglect of the term εgeo in the TDPES
and the corresponding contribution in the electronic evolution
equation. This term contains second-order derivatives with
respect to the photon-nuclear coordinate, which are expensive
to compute numerically. In addition, it has been shown that
it is indeed negligible when analyzing the EF factorization in
terms of the (small) electron-nuclear mass ratio96. In our PEN
problem, this argument is invalid, and such term becomes im-
portant, or even dominant, as shown, for instance, in Fig. 4.
The absence of this term prevents the approximated TDPES
to develop a strong barrier around q= 0 in the Franck-Condon
region, thus the distribution of trajectories cannot fully repro-
duce the QD density, with a shape that is reminiscent of the
first excited state of the harmonic oscillator. This observation
is supported by the results shown in Fig. 2, where CTMQC
(blue line) – as well as MTE (red line) and TSH (orange line) –
perfectly agrees with QD results (black line) in the cavity-free
case where the nonadiabatic dynamics of the electron-nuclear
system is not affected by the strong coupling to the cavity.
In Refs. [34,38], a similar behavior of the TDPES and of εgeo
was observed, even though the factorization of the system was
done in a different way. There, the PEN wavefunction was ex-
pressed as Ψ(r,q,R, t) = χE(q, t)ΦE(r,R, t;q), and the εgeo
showed a similar and significant contribution to the total TD-
PES. This leads us to conclude that εgeo should be considered
for further improvements in CTMQC to enhance the photon
description.

The similarities observed in Fig. 6 between CTMQC and
MTE suggest that, for model A, the mean-field component
of the coupling between the photon-nuclear degrees of free-
dom and the electrons is the leading effect in CTMQC. How-
ever, in CTMQC, the coupling of the trajectories, encoded
in the quantum momentum, affects both the photon-nuclear
and the electronic dynamics. Its effect becomes evident in
Fig. 7, where we show the marginal nuclear densities at times
t = 0,500,1250 a.t.u. as indicated in the figure, for CTMQC
(top panels), MTE (middle panels), and TSH (bottom panels).
The superimposed solid black lines are the reference marginal
nuclear densities of QD calculations. From the comparison of
methods reported in Fig. 6, it is clear that, even if not with per-
fect agreement with QD, CTMQC is able to reproduce better
the splitting of the marginal nuclear density observed at long
times. Finally, note that in model A, there is not significant
information to be derived from the photonic marginal density
as it remains close to a Gaussian centered at q = 0 throughout
the dynamics, providing limited insights.
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FIG. 7. In colours, the histograms represent the distributions of
trajectories aiming to reproduce the marginal nuclear densities for
model A calculated with CTMQC (blue), MTE (red), and TSH (or-
ange) at times t = 0,500,1250 a.t.u.; the QD marginal nuclear density
is shown as black lines at the same times.

C. Spontaneous emission: Model B

Model B reproduces a situation of spontaneous emission
due to the strong coupling between the system, initially in the
vibrational ground state of the electronic excited state S1, and
the cavity, that is resonance with the S1-to-S0 transition at the
minimum of the S1 PES. We use the Hamiltonians of Eqs. (28)
and (27), with parameters: k = 0.020 E2

hme/h̄2, a = 3.0 a−2
0 ,

b = 0.01 Eh, ∆ = 0.17 Eh, R1 = 2.0 a0, R2 = 2.0 a0, R3 =
3.875 a0. The coupling between the system and the cavity is
encoded in ω = 0.17 Eh and in g = 0.01 (ea0)

−1.
QD simulations were performed by initializing the system

in the excited state as a Gaussian photon-nuclear wavepacket
center at R = 2.0 a0 and q = 0 with zero momentum. Since
the system starts in the lower vibrational level of the electronic
excited state and the nonadiabatic coupling to the ground state
is negligible, the only possible decay pathway is via a radiative
decay, achievable within the time of our simulations in the
strong-coupling regime.

The average photon number as function of time along with
the time trace of the population of the excited state S1 are
shown in Fig. 8. From the QD results (black lines), we observe
that photon emission and population transfer occur simulta-
neously, and in this case the average photon number reaches
unity when the electronic population is fully in the ground
state. After that, the photon is fully reabsorbed by the system
that goes back entirely in the excited state.

In this model, the photon-nuclear density remains local-
ized around q = 0 and R = 2 a0. The dynamics does not
manifest any peculiar behavior along the R direction, since
the wavepacket is transferred from S1 to S0 and back with-
out major geometrical modification in the nuclear direction.
Nonetheless, the dynamics along q is quite interesting: the
cavity switches from the zero photon state to the one photon
state, and back, thus, the density along q needs to evolve from
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FIG. 8. Same as Fig. 6 but for model B.

the ground state to the first excited state, and back, of the har-
monic oscillator. This is exactly what we observe in the evo-
lution of the photon-nuclear density, shown as black contour
lines in Fig. 9 at times t = 0,270,540,810 a.t.u., that are, re-
spectively, the initial time, one-quarter, half and three-quarters
of the oscillation period of the average photon number.
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FIG. 9. Same as in Fig. 3 but for model B, at times t =
0,270,540,810 a.t.u.

In order to produce the expected density in the q direction,
the TDPES develops a very localized high barrier at q = 0 for
all values of R. Upon closer inspection of the components of
the TDPES (not reported), the main contribution to this barrier
is εgeo. Thus, once again we observe that the dynamics of the
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TDPES along q is strongly dominated by this term, which is
completely neglected in CTMQC. This observation explains
the disagreement between CTMQC (in blue in Fig. 8) and
QD results in describing the dynamics of the average photon
number and of the S1 population. MTE and TSH do not per-
form better than CTMQC, actually TSH provides once again
a poorer description of the dynamics than MTE and CTMQC.

In the detailed analysis performed on model A, we ob-
served in Fig. 4 that even though the major contribution to
the potential barrier forming at q = 0 comes from εgeo(q,R, t),
also εVPEN (q,R, t) presents a barrier. Indeed, such a smaller
barrier has some effect on the marginal photon density re-
constructed from the distribution of CTMQC trajectories in
comparison to MTE and TSH. In Fig. 10, we report at times
t = 0,270,540 a.t.u. the histograms calculated from the distri-
butions of trajectories aiming to reproduce the marginal den-
sity along q with CTMQC (in blue, top panels), MTE (in red,
middle panels) and TSH (in orange, bottom panels); the his-
tograms are compared to the QD photonic marginal densities
(black lines). All trajectory-based methods fail in reproduc-
ing the correct splitting of the density, thus underestimating
the photon-emission process, even though at the final time re-
ported in the figure, CTMQC shows the lowest presence of
trajectories at q = 0, probably due to the presence of the small
barrier in εVPEN (q,R, t). Such an effect is not, however, suffi-
cient for producing a complete splitting of the density.
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FIG. 10. Same as Fig. 7 but for model B, at times t = 0,270,540 a.t.u.

IV. DISCUSSION AND PERSPECTIVES

In the previous sections, we have developed the EF formal-
ism to describe the dynamics of a PEN wavefunction with il-
lustrative examples on model systems representing typical sit-
uations of nonadiabatic dynamics and spontaneous emission
in the strong light-matter coupling regime as achievable in an
optical cavity. Building upon previous work of Maitra and
coworkers, we have proposed to treat the photonic and the
nuclear degrees of freedom on equal footing, i.e., using the
marginal amplitude in EF, with their dynamics taking place
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FIG. 11. Comparison of the mean-field photon-nuclear density
(upper panels) with the exact density (lower panels) at times t =
500 a.t.u. and t = 1250 a.t.u. for model A.

under the effect of the TDPES and the TDVP that account for
the dynamics of the electrons. Applying this formulation of
EF to CTMQC, we have treated the photon-nuclear dynamics
using coupled trajectories. The comparison between the re-
sults of CTMQC simulations with QD simulations combined
with the analysis of TDPES and TDVP allowed us to point
out the key approximations done in CTMQC that lose valid-
ity when extended to treat “light” particles, as the photons in
this case. Specifically, the geometric contribution of the TD-
PES becomes dominant in determining the shape of the TD-
PES, while it is completely neglected in the current formula-
tion of CTMQC based on arguments depending on the small
electron-nuclear mass ratio applied to the electron-nuclear for-
mulation of EF96. Note that these observations are not lim-
ited to the case of PEN systems, but can be extended to other
multi-component systems where EF and CTMQC are used,
such as systems of protons and heavier nuclei or purely elec-
tronic systems. The question now arises as to whether includ-
ing the geometric part of the TDPES for the photon-nuclear
dynamics based on trajectories is sufficient to recover satis-
factory performance of CTMQC or the corresponding contri-
bution in the PENCO operator (17) in the electronic evolution
equation is also need. Further studies are, however, needed to
address this issue. Nonetheless, the numerical applications
have shown an overall superior performance of CTMQC in
comparison to MTE and TSH when applied to the examples
proposed in Section III, even though we are well aware that
these are simple model studies and that additional investiga-
tions are needed to generalize this observation.

In addition, we believe the classical treatment of photons
within trajectory-based methods, as adopted in this work,
emerges as a compelling alternative for advancing method-
ologies in the study of organic exciton polaritons73,97. Indeed,
considering the significant number of electronic states inher-
ent in organic excitons, the incorporation of the coupling be-
tween electronic and photonic degrees of freedom would re-
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FIG. 12. Same as in Fig. 11 but for model B, at times t = 540 a.t.u.
and t = 810 a.t.u.

sult in a substantial number of polaritonic states, potentially
rendering the system unmanageable.

An interesting idea that we are in the process of exploring,
and it is, thus, not developed here, is that of a “nested exact
factorization”. In this case, we would consider the marginal
photon-nuclear amplitude χ(q,R, t) and the corresponding
TDSE as the starting point of a new EF, which would lead
to introduce, for instance, a marginal nuclear amplitude and a
conditional photonic amplitude. The new evolution equations
derived in this way, still under the effect of the TDPES and the
TDVP, could potentially lead to develop more appropriate ap-
proximations for the photon dynamics. While, as mentioned
above, this avenue is still to be fully investigated, the simplest
approximation to such a photon-nuclear EF is an uncorrelated
Hartree product98 of the marginal photonic η(q, t) and of the

marginal nuclear ζ (R, t) wavefunction, namely

χ(q,R, t)' χ
m f (q,R, t) = ζ (R, t)η(q, t) (30)

where the superscript m f stands for “mean-field”. The per-
formance of this approximation can be easily evaluated here
using model A and model B. Specifically, based on QD results,
we can define the mean-field photon-nuclear density as

|χm f (q,R, t)|2 = |ζ (R, t)|2|η(q, t)|2 (31)

where the marginal nuclear density is |ζ (R, t)|2 =∫
dq|χ(q,R, t)|2 and the marginal photonic density is
|η(q, t)|2 =

∫
dR|χ(q,R, t)|2.

In Figs. 11 and 12, we compare the exact photon-nuclear
density (lower panels) at times t = 500 a.t.u. and t =
1250 a.t.u. for model A and at times t = 540 a.t.u. and
t = 810 a.t.u. for model B, respectively, with their correspond-
ing mean-field approximations (upper panels). Note that this
analysis is different from the work by Maitra and cowork-
ers38, where the performance of the mean-field approximation
in terms of MTE was investigated between the photons and
the electrons. Here, we aim to retain the full correlation be-
tween the electronic and the photon-nuclear dynamics, while
investigating the effect of the mean-field treatment of the pho-
tonic and nuclear coupling for the particular dynamics studied
in this work. Indeed, we note that, as expected, the details
of the dynamics are slightly washed out, but the mean-field
approximation seems to perform quite well. The mean-field
approximation analyzed in Figs. 11 and 12 via Eq. (31) is to
be considered the “best” possible mean-field description of the
photon-nuclear density since it is derived using the exact QD
density as starting point to define the marginal densities.

The interesting property of the uncorrelated Hartree prod-
uct is that, when inserted into Eq. (9), it yields straightfor-
wardly evolution equations for the marginal amplitudes in the
form of TDSEs, where the effects of the TDPES and of the
TDVP is averaged over the marginal amplitudes themselves.
Namely, inserting the Hartree product form given in Eq. (30)
into Eq. (9), we can derive the evolution equations for the
marginal amplitudes, by multiplying by η∗(q, t) and integrat-
ing over q or by multiplying by χ∗(R, t) and integrating over
R, thus obtaining

i
∂ζ (R, t)

∂ t
=

[
∑
α

(
−i∇α + 〈Aα(q,R, t)〉

η

)2

2Mα

+V̂ P
m f (R, t)

]
ζ (R, t) (32)

i
∂η(q, t)

∂ t
=

[
∑
ν

(
−i∇ν + 〈Sν(q,R, t)〉

ζ

)2

2
+V̂ N

m f (q, t)

]
η(q, t) (33)

Here, we have defined the “weighted” R-TDVP over
the photonic wavefunction, i.e., 〈Aα(q,R, t)〉

η
=

〈η(q, t)|Aα(q,R, t) |η(q, t)〉q , where the the sym-
bol 〈·〉q indicates an integration over q, and the
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“weighted” q-TDVP over the nuclear wavefunction, i.e.,
〈Sν(q,R, t)〉

ζ
= 〈ζ (R, t)|Sν(q,R, t) |ζ (R, t)〉R, where

the the symbol 〈·〉R stands for an integration over nuclear
positions. In addition, the effect of the photons in Eq. (32) is
encoded in the photonic mean-field potential V̂ P

m f (R, t),

V̂ P
m f (R, t) =

〈
η(q, t)

∣∣∣∣∑
ν

ˆ̃Tν + ε(q,R, t)− i∂t

∣∣∣∣η(q, t)
〉

q

(34)

where ˆ̃Tν = 1
2 (−i∇ν +Sν(q,R, t))2 expresses the kinetic con-

tribution of the photons averaged over the photonic wavefunc-
tion. Similarly, the effect of the nuclei in Eq. (33) is encoded
in the nuclear mean-field potential V̂ N

m f (q, t), namely

V̂ N
m f (q, t) =

〈
ζ (R, t)

∣∣∣∣∑
α

ˆ̃Tα + ε(q,R, t)− i∂t

∣∣∣∣ζ (R, t)
〉

R

(35)

with ˆ̃Tα = 1
2Mα

(−i∇α +Aα(q,R, t))2 the kinetic contribution
of the nuclei averaged over the nuclear wavefunction.

Furthermore, expressing the nuclear wavefunction ζ (R, t)
and the photonic wavefunction η(q, t) in polar forms en-
ables us to derive the equations governing the evolution of
their phases, WN(R, t) and WP(q, t), respectively. Interest-
ingly, similarly to the EF of the electron-nuclear wavefunc-
tion, these equations have the form of Hamilton-Jacobi equa-
tions, namely

−∂WN

∂ t
= ∑

α

(∇αWN + 〈Aα(q,R, t)〉
η
)2

2Mα

+V̂ P
m f (R, t)+Qm f

R (R, t)+σ(〈Aα(q,R, t)〉
η
) (36)

−∂WP

∂ t
=

NP

∑
ν=1

(∇νWP + 〈Sν(q,R, t)〉
ζ
)2

2
+V̂ N

m f (q, t)+Qm f
q (q, t)+σ(〈Sν(q,R, t)〉

ζ
) (37)

and are potentially solvable using the method of char-
acteristics, as it has been illustrated in detailed for the
derivation of CTMQC93. Note, however, that apart from the
“standard” quantum potentials Qm f

R (R, t) = − 1
2Mα

∇2|ζ (R,t)|
|ζ (R,t)|

and Qm f
q (q, t) = − 1

2
∇2|η(q,t)|
|η(q,t)| , which are usually ne-

glected within a classical-like treatment of the dy-
namics, additional (and new) effects appear via

σ(〈Aα(q,R, t)〉
η
) = ∑α

〈A2
α (q,R,t)〉

η
−〈Aα (q,R,t)〉2η

2Mα
and

σ(〈Sν(q,R, t)〉
ζ
) = ∑ν

〈S2
ν (q,R,t)〉

ζ
−〈Sν (q,R,t)〉2

ζ

2 that look like
standard deviations of the weighted TDVPs.

The ideas developed in this work and the additional inves-
tigation avenues briefly sketched in this section show that the
EF formalism offers a rich range of possibilities to analyze
the dynamics of multi-component systems under different per-
spectives and to propose algorithms for molecular-dynamics
simulations based on trajectories. The implications of these
approximations can only be assessed through numerical tests,
and this constitutes a subject for future study.

V. CONCLUSIONS

In this work, the formalism of the exact factorization was
extended to treat the photon-electron-nuclear dynamics, to de-
scribe the coupled motion of photons, electrons, and nuclei at

the quantum-mechanical level. The factorization choice was
the one where the marginal amplitude is chosen as the wave-
function for the photon-nuclear subsystem, and the electronic
subsystem is then conditionally dependent on the photon-
nuclear positions. This choice is particularly interesting since,
when CTMQC is employed for trajectory-based simulations,
it suggests a treatment of photonic and nuclear degrees of
freedom on equal footing in terms of coupled trajectories. In
this way, the full correlation with the electronic subsystem is
maintained, clearly within the approximations underlying CT-
MQC.

Aiming to assess the quality of CTMQC dynamics for
photon-electron-nuclear problems, we have studied two
model situations illustrating nonadiabatic dynamics and spon-
taneous emission of an electron-nuclear system strongly cou-
pled to a single-mode cavity in resonance with a typical elec-
tronic excitation window of the system. Our analysis of the
exact factorization formalism was based on the analysis of the
time-dependent potentials of the theory combined with the as-
sessment of the performance of CTMQC. In particular, we
employed the results of numerically-exact quantum-dynamics
simulations as benchmark for CTMQC and we compared CT-
MQC with multi-trajectory Ehrenfest and with Tully surface
hopping. The calculations revealed that CTMQC and Ehren-
fest presented better agreement with exact quantum dynam-
ics than surface hopping in terms of average photon num-
bers and electronic populations all along the dynamics. How-
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ever, quantitative agreement with the reference results is lack-
ing across all methods, but we pointed out the most probable
source of error in CTMQC, which will be investigated further
in the future. Specifically, the geometric component the time-
dependent potential energy surface, which is neglected in CT-
MQC, showed to be dominant along the photonic coordinate
for the considered systems, as it seems to have significant ef-
fect in the splitting of the photon density.

The implications of the photon-nuclear correlation were in-
vestigated by comparing the exact photon-nuclear density and
the uncorrelated Hartree product for both models considered,
while keeping intact the correlation with electronic subsys-
tem. In general, as expected, such a mean-field approxima-
tion washes out some details of the dynamics. However, the
equations for the marginal photonic and nuclear amplitudes
seem interesting, especially in view of their possible solution
in terms of trajectories.
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