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Abstract 
A cell is governed by the interaction of myriads of macromolecules. Such a network of 
interaction has remained an elusive milestone in cellular biology. Building on recent advances in 
large foundation models and their ability to learn without supervision, we present scPRINT, a 
large cell model for the inference of gene networks pre-trained on more than 50M cells from the 
cellxgene database. Using novel pretraining methods and model architecture, scPRINT pushes 
large transformer models towards more interpretability and usability in uncovering the complex 
biology of the cell. Based on our atlas-level benchmarks, scPRINT demonstrates superior 
performance in gene network inference to the state of the art, as well as competitive zero-shot 
abilities in denoising, batch effect correction, and cell label prediction. On an atlas of benign 
prostatic hyperplasia, scPRINT highlights the profound connections between ion exchange, 
senescence, and chronic inflammation. 

Main 
Understanding the cellular mechanism is considered a milestone in biology, allowing us to 
predict cell behavior and the impact of drugs and gene knock-outs1–3. A cell is regulated by a 
complex interplay of myriads of macromolecules that define its state. We can simplify these 
interactions via a gene network4 (GN). Many approaches have been developed to infer these 
networks, focusing on transcription factor (TF)-to-gene links using single-cell omics data 
modalities like scRNAseq and scATACseq5–16. This gene network subset regulating the cell 
gene expression levels is often called a gene regulatory network (GRN). However, many other 
gene products than TFs impact RNA abundances in the cell, like RNA-RNA and protein-TF 
interactions17–22. In addition, most GRN inference methods do not scale to the number of genes 
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present in single-cell RNA datasets, and they need many cells, thus impairing their ability to 
reconstruct cell-state-specific networks. 

Benchmarks like BeeLine23 and MCalla et al.24 have shown that despite the existence of many 
methods, GN inference remains a challenging problem. Indeed, it is underconstrained and has 
limited prior knowledge. New foundational models trained on tens of millions of measurements 
could help solve these difficulties. Transformers like BERT25,26 have gained traction in 
computational biology and have held promise to learn a model of the cell that would translate 
across many tasks of cellular biology, such as cell type annotation, batch-effect correction, 
perturbation prediction, and gene network inference27. Among them, scGPT28 got much 
attention, proposing a novel encoding of genes and their expression, a new pretraining 
methodology similar to autoregressive pretraining in language models, and the possibility of 
extracting GRN from its model (see methods). 

Inspired by these efforts, we propose scPRINT, a foundation model designed for gene network 
inference. ScPRINT brings novel inductive biases and pretraining strategies better suited to GN 
inference while answering issues in current models (see Table S1). scPrint outputs cell type-
specific genome-wide gene networks but also generates predictions on many related tasks, 
such as cell annotations, batch effect correction, and denoising, without fine-tuning. 

We extensively benchmark scPRINT on challenging gene network inference tasks, from 
literature-based networks to cell type-specific ones generated via orthogonal sequencing 
methods. We show that scPRINT outperforms the state of the art on most of these atlas-level 
benchmarks. In addition, our model, focused on GN inference, is also competitive on a 
compendium of tasks like denoising, cell type prediction, and embedding with batch effect 
correction. This suggests that by learning a cell model, scPRINT gains zero-shot abilities in 
many tasks of cellular biology.  

We use scPRINT to analyze an atlas of normal and senescent prostate tissues where we 
identify rare cell populations with early markers of the tumor microenvironment in B-cells. In 
fibroblasts, we study gene networks and recover known hubs such as PAGE4, linking the 
senescence of fibroblasts to changes in the ECM and downstream inflammation. We find key 
interconnected pathways of the oxidative stress response and extracellular matrix building via 
metal and ion exchange in the gene network of BPH-associated fibroblasts. We also show that 
healthy and disease-related cells exhibit different network patterns, demonstrating that scPRINT 
can help identify novel pathways and targets while considering them in their specific cellular 
and molecular contexts. 

scPrint (https://github.com/cantinilab/scPRINT) is an open-source tool that can be readily 
integrated into the bioinformatics pipeline. We make public the code and model weights, but 
also the pretraining strategies, datasets, and our own dataloader for use with vast training sets 
like the cellxgene database29. We also release a Gene Network benchmarking suite: BenGRN 
and GrnnData.  
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Results 

scPRINT: a scRNAseq foundation model for gene network 
inference 
We propose scPRINT (Figure 1A), a novel bidirectional transformer designed for cell-specific 
gene network inference at the scale of the genome. scPRINT is trained with a novel weighted 
random sampling method30 over 40 million cells from the cellxgene29 database from multiple 
species, diseases, and ethnicities, representing around 80 billion tokens (see Methods). We 
train scPRINT at various scales (from 2M to 100M parameters) and very efficiently by using 
flashattention231, e.g. only requiring an A40 GPU for 48 hours to train our medium model, 
significantly reducing the barrier to entry for any computational biology lab (see Table S2). 
 
To push scPRINT to learn meaningful gene networks (GN) and its underlying cell model, we 
design a novel set of pretraining tasks, as well as expression encoding and decoding schemes 
(Figure 1B). Similarly to ADImpute32,33, we expect a good gene network to help denoise an 
expression profile by leveraging a sparse and reliable set of known gene-gene interactions. In 
addition, we expect a cell model to help embed and reconstruct an expression profile by 
leveraging the regularities of modules and communities within its network. Finally, the cell 
model should represent the cell state and its different phenotypic facets. For all these reasons, 
we have designed a novel multi-task pre-training that combines denoising, bottleneck learning, 
and label prediction.  

We implement the novel denoising task as the upsampling of transcript counts per cell (see 
Methods). While most other methods have been using masking as a pretraining task, our 
method is related to the downsampling and masking task of scFoundation34. We show that this 
strategy performs better than masked language modeling and gives scPRINT the ability to 
upsample any expression profile (Figure 4A). 

Bottleneck learning drives scPRINT to generate a cell expression profile only from its 
embedding. The embedding is generated by scPRINT and is used again, this time without the 
cell expression profile, to regenerate the true profile (see Methods). 

Effectively, scPRINT generates not just one such embedding per cell but multiple. For the third 
pre-training task, a hierarchical classifier is applied separately to each sub-cell embedding to 
predict labels such as cell type, disease, sex, organism, ethnicity, and sequencing platform. The 
embeddings are thus “deconvolved”, each representing a specific facet of the cell state. Thanks 
to the cellxgene database requirement for complete annotations and with our novel hierarchical 
classifier, we have added label prediction as part of the pretraining of scPRINT. While the 
assumption is that in other modalities, the scarcity and noisiness of such labels make it 
infeasible, we show that this approach is a net positive in our case (see Table S3). Indeed, it 
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helps us deconvolve the various cell embeddings and performs zero-shot predictions on unseen 
datasets. These deconvolved embeddings are opening a future possibility to perform 
counterfactual generation: mixing embeddings representing different facets of cell states, e.g. 
fibroblast + cancer + pancreas tissue + female, to generate novel unseen expression profiles. 

To encode its input expression profile, scPRINT uses gene embeddings that contain some of 
the prior information needed for a model to infer gene-gene35 and gene-DNA interactions (Figure 
1A). Here, a gene in a cell expression profile is converted to an embedding by summing three 
representations—one of the gene itself, the other of its expression, and finally, its genomic 
location. The gene representation uses the ESM236 amino-acid embedding of the most common 
protein product of that gene (see Supp Figure S1). First proposed in UCE37, the model learns to 
leverage representations that can potentially apply to unseen genes or from unseen species by 
using information about the protein’s structure, ontology, and evolution contained in its 
sequence. The gene expression is embedded via a multi-layer neural network (MLP) using log-
normalized counts. Finally, to help the model understand that genes that share similar locations 
tend to be regulated by identical DNA regions, the gene location is embedded through positional 
encoding. These embeddings are concatenated with placeholder cell embeddings to form the 
input of the transformer model. 
 
scPRINT trains using 2,200 randomly selected expressed genes, padded with randomly selected 
non-expressed genes. However, scPRINT can also make inferences on more extensive 
sequences of genes. We train our model using some unexpressed genes, which, combined with 
the denoising loss, let scPRINT discriminate the true zeros from dropouts38. The expression 
decoder of scPRINT further helps model this statistic of the data. It is a zero-inflated negative 
binomial graphical model inspired by previous literature in single-cell RNAseq modeling39. Here, 
the loss (also used for bottleneck learning) is thus the log-likelihood of the gene expression 
given the distribution parameters. 

As shown in Figure 1C, at inference time, scPRINT can generate multiple outputs across any 
scRNA-seq-like cellular profile of various mammalian species without fine-tuning. Figure 1D 
shows scPRINT’s prediction at the scale of an atlas of 2M randomly sampled cells from 
cellxgene. From its pre-training, scPRINT performs denoising, label prediction, and cell 
embedding without fine-tuning. However, a critical emergent output of scPRINT is its cell-
specific gene networks. Following a similar approach to ESM2, we generate cell-level gene 
networks via the bidirectional transformer’s input-wise weighted matrices, called attention 
matrices. Remarkably, we made this approach scalable enough to compute gene networks from 
1 to 100,000 cells at the genome scale and with commodity hardware. These networks 
represent the ability of scPRINT to chart a meaningful model of cell biology. They also help 
make it a more explainable tool for the community, showing the network assumptions made 
during inference. Finally, these matrices can be further fine-tuned through classification to 
better reflect connections of interest (Figure 1C). For example, using literature-based gene-gene 
connections or perturbation-based signals. 
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Similarly to what has already been done in ESM2 and the Large Language Model literature40–42, 
we deeply investigate the meaning of attention matrices in the context of cellular biology, an 
aspect under-studied in the literature of foundation models applied to genomics.  

In the following sections, we benchmark scPRINT on gene network inference against scGPT 
and GENIE3. scGPT is an easy-to-use, highly cited, and published transformer model28. 
GENIE343, generating a network via regression by finding the set of genes that best predict 
another gene’s expression, is one of the top-performing and most used methods for GRN 
inference. 

scPRINT recovers biological features in its gene networks 
We now benchmark scPRINT against the state-of-the-art based on whether their recovered 
networks contain meaningful biological knowledge. We consider that a meaningful gene 
network should have some of its hub nodes being TFs. TFs should be more connected to their 
known target, on average. We should recover known gene-gene connections and expect 
enrichment of cell type-specific marker genes in the network. 
 
We noticed that depending on cell type and datasets, the different tools could vary in the 
similarity of their GNs to Omnipath44. Because of this, we focused our benchmark on three 
randomly selected test datasets of kidney, retina, and colon tissues comprising 26 cell types45–

47 (see Methods, per dataset results in Supp. Figure S2). Of note is that we could not determine 
if these datasets were used during the training of scGPT.  

We build one network per cell type, using 1024 cells and their 5000 most differentially 
expressed genes. We evaluate the quality of the networks based on their overlap with Omnipath. 
We also compute the network enrichment for cell type markers, TFs, and ENCODE TF targets48 
using the prerank49 algorithm (Figure 2A). 

Although the scGPT code mentions GRN inference only using perturb-seq data, we reapply the 
same method without the perturbation-baseline comparison. This is to make it comparable with 
other benchmarked methods and because most of our datasets are not perturbartion-based. 
Similar to what is presented in its paper, we use the mean of the attention matrices across cells 
and the four attention heads of the last layer of the human pre-trained model. We retain this 
method across our benchmarks for scGPT. 

For scPRINT, we generate three network versions: scPRINT-mean, based on the average of all 
heads in the model.  scPRINT-omni, based on the average of the heads selected with our head 
selection method inspired by ESM2. scPRINT-full, which uses our method to generate genome-
wide networks (see Methods). Indeed, in transformer models, the choice of attention heads is 
important. Although transformers can learn the causal structure of their input, it has been 
shown that some attention heads, especially in larger networks, can become unused, containing 
predominantly random connections50. Some work has been done at pruning these heads51 or 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.29.605556doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.29.605556
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 

forcing a head selection mechanism during inference and training52. For scPRINT-omni, we 
select heads based on a linear classifier’s prediction of the best head combination to predict 
Omnipath (see Methods). To perform this selection, we carefully split the dataset into train/test 
and select, using 50% of the ground truth on the first cell type of each dataset and reusing the 
same combination of heads across all other cell types. This shows that our selection process 
builds consistent networks across cell types and parts of the ground truth. 

First, we look at how much information from Omnipath is contained in the inferred networks. 
Omnipath44 contains around 90,000 curated gene-gene connections, mainly from the literature. 
These connections are cell type agnostic, and most are TF - gene. On this benchmark, we 
evaluate the networks based on AUPRC and EPR, two metrics often used in GRN benchmarks23 
(see Methods), where we define our task as a binary classification of connections on all gene-
gene pairs. Due to the row-wise normalization of networks generated by both scPRINT, scGPT, 
and GENIE3, and because Omnipath has many sources with only a few targets (see Supp Figure 
2), we here use the transpose of our inferred networks when making comparisons with 
Omnipath (see Methods). 

In Figure 2B, we can see that scPRINT-omni outperforms both GENIE3 and scGPT on average 
across all cell types. Interestingly, all versions of scPRINT and GENIE3 outperform scGPT on the 
EPR metric, showing that their top predicted edges more closely match the ground truth.  
AUPRC results are very low overall because we do not expect most Omnipath connections to be 
present in the cell type’s gene network, as many connections in Omnipath might only be true in 
some cellular contexts. Moreover, we do not expect most connections in our generated network 
to exist in Omnipath as it only contains a small fraction of all real gene-gene connections. 
Although overall AUPRC values are small, we can see that both transformers outperform 
GENIE3 in the number of connections recovered. Indeed, on average, scGPT and scPRINT 
respectively recover 42% and 67% more connections than GENIE3. 

However, GENIE3 is often used by biasing the model to generate a TF-gene graph (called 
GENIE3-TF, see Methods). This type of network, usually called a gene regulatory network (GRN), 
is most often used, given the importance of TFs in regulating gene expression. To compare the 
transformer models to GENIE3-TF, we also implement a "GRN" version of scPRINT and scGPT 
by subsetting their network to TF-gene connections. In this context, all the methods significantly 
improve their predictions without altering their relative performances. This is unsurprising, 
considering that Omnipath has a strong bias towards TF-gene interactions.  

Interestingly, we have seen that smaller scPRINT models containing fewer heads perform better 
when taking the average of their heads. In contrast, head selection is often more advantageous 
in larger models with more heads (see Table S4). As presented at the beginning of the results 
section, it might be that as models become larger and less regularized, some heads tend to 
become unused and contain mostly noise. As a consequence, a head selection is advantageous 
in larger models.  
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We also expect biologically meaningful gene networks to have their central nodes enriched for 
TFs. In addition, because these networks are cell type-specific, we expect their central nodes to 
be enriched for some marker genes of their associated cell types (see Methods). In this regard, 
both transformer models achieve very similar and strong network enrichment for TFs compared 
to GENIE3, whose networks are not enriched for TFs (Figure 2C). 
Moreover, amongst the 178 cell types we have marker gene sets for in pangaloDB53, all methods 
find some enrichment, especially GENIE3 and scGPT (see Methods). We notice that selecting 
heads based on Omnipath significantly improves scPRINT’s network enrichment for cell-type 
markers. Of note, our goal is not to annotate cell types from the gene network but mainly to 
showcase the cell type specificity of the networks.  

Finally, we also examine how much the connections of each TF are enriched for that TF’s target. 
Here, scPRINT overperforms all other methods (Figure 2D). In the scPRINT-mean networks, 20% 
of the Transcription Factors for which we have data on ENCODE have connections significantly 
enriched for their ENCODE-validated gene targets54. Interestingly, only our large cell model 
achieved a great performance, and scGPT did not display any enrichment across the 26 cell 
types assessed. While we acknowledge that ENCODE is used in the Omnipath database, we 
cannot expect  Omnipath to represent the ENCODE targets. Indeed, it combines and processes 
57 additional data sources to build its consensus network. 

scPRINT-full has been added despite its performances not being comparable to other models. 
Indeed, comparing its overlap with Omnipath is unfair as it includes many more genes and 
connections, many of which will have almost no data on this ground truth. While scPRINT-full 
showcases our ability to generate genome-wide networks, it also shows strong performances in 
TF enrichment and ENCODE TF-target enrichments. This highlights that even at such a large 
scale, networks generated by scPRINT are enriched in biological knowledge gained solely from 
its pre-training tasks. 

Overall, we have shown that scPRINT’s cell type-specific gene networks are biologically 
meaningful. We will now examine cell type-specific ground truths extracted from orthogonal 
experiments. 

scPRINT outperforms GENIE3 and scGPT on cell type-
specific ground truths 

Although we have shown that our networks represent meaningful biology, the Omnipath 
literature-based ground truth does not reflect the topology of a biological network and is not cell 
type-specific. Here, we use two different modalities, perturb-seq55, and ChIP-seq56, as ground 
truths to compare predicted gene networks against. 

In the MCalla et al.24 ground truth, ChIP-sequencing and perturb-seq are intersected to get at the 
small subset of possibly direct connections between TFs and genes for both human and mouse 
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embryonic stem cells (ESC) (Figure 3A, see Methods). We have seen that these ground truth 
networks show a different pattern than literature-based networks (see Supp Figure S3). Some 
TFs regulate only a few genes, whereas others are highly connected.  

To generate our networks, we use as input one human and two mouse ESC scRNA-seq datasets 
from MCalla et al. with the addition of another human dataset from Yan et al.57. For scPRINT, 
three networks have been generated: one averaging all the attention heads (scPRINT-mean), one 
averaging heads selected based on how well they predicted Omnipath ground truth data 
(scPRINT-omni, for more details see scPRINT recovers biological features in its gene networks), 
and one averaging heads selected from the MCalla ground truth itself (scPRINT-self). We do not 
add the genome-wide network versions here as the ground truth networks are smaller, and we 
only assess the classification performances. 

Contrary to Omnipath, some elements in these biological networks are highly connected 
whereas many others display no connections. This imbalance means that a model predicting 
only the highly connected TFs will perform well on the MCalla et al. benchmark. As a 
consequence we are not transposing the attention matrix as done in the previous section. 

Based on both AUPRC and EPR, scPRINT outperforms GENIE3 and scGPT on this benchmark 
(Figure 3B). Moreover, using the TF-gene-only version of GENIE3 shows little performance gains 
on these ground truths, meaning that GENIE3, although only using TFs, is not selecting the right 
ones amongst the set of a few dozen assessed in MCalla et al.. Compared to GENIE3, which 
makes predictions close to random guesses, scGPT—and, in a few cases, scPRINT—can have 
values worse than random guessing. This means the predictions are over a specific set of TFs 
but not necessarily the right ones (Figure 3B) 

It appeared also that selecting heads based on Omnipath, although helping slightly in one 
instance, is not a net benefit for this dataset. This makes sense since MCalla et al. itself does 
not overlap much with Omnipath (see Table S5). However, selecting heads based on the ground 
truth itself, only using 50% of the connections available, shows substantial improvement. These 
same heads also show reliable behavior when using them on the second dataset of the same 
species.  

Overall, this shows that scPRINT can better decipher “direct” from “indirect” TF-gene 
connections than scGPT and GENIE3, although more tests would likely be needed.  
However, the results also highlight that the high imbalance (i.e., TFs being not connected or 
highly connected) combined with the dataset size (i.e. only a few dozen TFs assessed) and the 
low number of cells make the results in MCalla et al. very variable. Some of this might be true 
biology or explained by ChIP-seq, which can be very noisy depending on the quality of its 
antibodies58. 

To answer this issue, we selected another dataset: genome-wide perturb-seq (gwps)59. Here, we 
measured the effect on transcription of knocking out all expressed genes in the K562 cell line. 
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We transformed it into a network using a cutoff of 0.05 on the significance level of each gene’s 
differential expression before and after the KO of each other gene. Although this does not tell us 
which connections are direct or indirect, we now have a much broader set of connections over 
thousands of genes and better statistics to assess our gene network inference models.  

Interestingly, while GENIE3 shows good results, GENIE3-TF performs poorly on this ground truth 
(Figure 3C). While the ground truth is not biased towards TF-gene connections, we could have 
expected a better overlap than random guessing from GENIE-TF.  

Overall, scPRINT achieves strong performances and outperforms scGPT and GENIE3 when 
selecting the heads containing information on the dataset. However, again, in this dataset, 
selecting heads based on Omnipath does not help; the small overlap between the gwps network 
and the Omnipath ground truth network seems likely to be the culprit (see Table S5). These 
overlaps show that the three ground truth networks are very different and that a different set of 
heads predicts each type of ground truth. 

Finally, we have seen that on both MCalla and gwps, scPRINT also predicts networks that agree 
with the Omnipath ground truth and are again enriched for cell type markers and TFs (see Table 
S6, S7). 

Since GNs can be seen as approximations of a cell model, we expect that when a tool has good 
internal cell models, it should generate meaningful results on tasks such as denoising, cell type 
prediction, embedding and batch effect correction, perturbation prediction, trajectory inference, 
and more. We will now focus on three tasks orthogonal to GN inference to compare the ability 
of scPRINT to the state-of-the-art. 

scPRINT is competitive on tasks orthogonal to GN inference 

To test the quality of the cell model learned by scPRINT, we now consider denoising, cell type 
prediction, and batch effect correction as a representative set of classic scRNAseq and cellular 
biology benchmarks. 

Similarly to our pretraining task, we simulate lower transcript count profiles and then ask 
scPRINT and two other state-of-the-art methods, MAGIC60 and KNNsmoothing261, to recreate 
the true expression profile. We use Spearman correlation to the original gene expression profile 
as our metric. In Figure 4A we show the increase in correlation after denoising the 
downsampled profile on 3 test set datasets, composed of ciliary body, colon, and retina 
tissues46,62,63, randomly selected from cellxgene (see Methods).  

ScPRINT is competitive with both SOTA methods, while contrary to MAGIC and 
KNNSmoothing2, it operates independently over each cell in the test set. We have also seen a 
10% variability in denoising ability across the different datasets used (see Table S8). This was 
similar across all tools and possibly related to the number of genes expressed in each dataset. 
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However, these test cases mostly contain very similar cell states, whereas denoising is helpful 
in cases with rare cell types or transitory cell states that have low cell counts by default. We 
show that since scPRINT does not aggregate profiles over neighboring cells, it outperforms 
MAGIC and KNNsmoothing2 in rare cell states subsets of the datasets (respectively: pericytes 
microfold cells of epithelium of small intestine and microglial cells) with around 10 to 200 cells 
(Figure 4A, Supp Figure S4). Computing MAGIC and KNNsmoothing2 over only this rare cell 
population, Gives even lower performances for MAGIC and creates an error for KNNsmoothing2 
(see Table S8). These results suggest that a good cell model, which reliably uses learned gene-
gene interactions, can help denoise an expression profile. 

For cell type classification, we expect scPRINT to be able to find sets of genes that can predict 
a cell type across multiple batches and under the high dropout rate of single-cell RNAseq. To 
evaluate cell type classification, we use the multi-batch benchmark pancreas dataset of 
openproblems and its metrics64,65. 

While scPRINT does not train on the test dataset itself and makes predictions over hundreds of 
labels, it still reaches 62% classification accuracy (Figure 4B, Supp Figure S5). Interestingly, with 
the macro F1 score, which considers each cell type group equally regardless of its size, 
scPRINT achieves similar results to the state-of-the-art65 methods: logistic regression and 
xgboost. This is probably because scPRINT is not influenced by the size of cell type groups. 
In addition, we have noticed that scPRINT is challenged by some specific pancreatic cell types 
in this dataset. Indeed, scPRINT often switches the assignment of A, B, D, and E cells. Thus, 
when using the coarser “endocrine” label defining these cell types, we see a strong 
improvement in the accuracy and macro-F1 score of scPRINT, outperforming state-of-the-art 
methods on the latter metric. 

Here, we have shown the accuracy of scPRINT independently of cell neighborhood. However, 
like gene marker-based methods, scPRINT can annotate cell types in novel datasets. In this 
context, its predictions could be smoothed and improved using majority voting over predefined 
cell clusters. 
Finally, scPRINT predictions are given as probability vector overall cell type labels. They can be 
used to display the top K labels and learn about the uncertainty of the model. 

Thanks to its deconvolved embeddings, scPRINT can generate cell representations that partially 
remove batch effects from cell profiles. On the human pancreas and lung datasets of open 
problems66, we see that, based on the scIB metrics, scPRINT shows convincing batch effects 
removal ability, while not on par with the SOTA methods scGEN and scVI (Figure 4C, Supp 
Figure S6). 

Moreover, scPRINT is one of the few methods that do not train on the test dataset and do not 
use already annotated batch labels. When only looking at methods that do not use batch labels 
as prior information, e.g. SAUCIE67, LIGER68, scPRINT is the top performer. We have also noticed 
that the scPRINT cell embeddings preserve biological information in a competitive way to state-
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of-the-art methods (Figure 4D, Supp Figure S7). This also exemplifies that a reliable cell model 
can perform well at deconvolving the different facets of a cell expression profile and its 
underlying batch effect. 

Overall, we have seen that scPRINT can achieve zero-shot performances on par with many 
famous single-cell RNAseq tools on multiple important tasks of single-cell biology, showing that 
our architecture and novel pre-training tasks are a powerful new foundation for large cell 
models. 

scPRINT highlights the role of ion exchange and fibrosis in 
the ECM of Benign Prostatic Hyperplasia 

To showcase the ability of scPRINT, we focus on premalignant neoplasms from an atlas of two 
studies of human prostate tissues69. The data contains both normals and pre-cancerous 
lesions, also called benign prostatic hyperplasia (BPH), across sequencers and age groups. 
Starting from post-alignment raw counts, scPRINT generates a consistent and batch-corrected 
embedding of the datasets (Figure 5A, Supp Figure S8). scPRINT also annotates the cell type, 
sequencer, sex, ethnicity, and disease type of each cell with an accuracy of 0.71, 0.99, 0.99, 
0.95, and 0.85, respectively. 

We then focus on a switched memory B-cell cluster composed of a group of cells labeled as 
benign prostatic hyperplasia and another as normal (Figure 5A). B-cells are known to be 
dominant in prostate cancer and are often switched memory B-cells70. First, we show that they 
differentially express many known B-cell markers (see Supp Figure S9). In addition, when 
comparing the BPH to the normals B-cells, we recover that the top 10 BPH B-cells differentially 
expressed genes contain many known cancer markers, B cell markers, and a specific B-cell 
associated prostate cancer markers: BAG571 (highlighted in Figure 5B, Table S9). Moreover, 
many other genes have evidence in other cancers, like CLIC4, known to be involved in the 
maintenance of the tumor microenvironment (TME) in breast cancer72. 

However, the number of healthy cells, especially normal memory B-cells, in this dataset is small: 
only 26. By performing denoising, we can recover genes that might have been missed during 
differential expression analysis of such a low cell count. Increasing the counts of all the genes 
by a factor of ten and re-doing differential expression analysis highlights some new genes 
whose differential expression scores are even higher than those previously cited.  

Interestingly amongst them, TSEN54, EHMT2, and IL10RB are known to impact the function of B-
cells in malignancies (see Table S9). Other genes have evidence in immunity and cancer, like 
TAP1, which is known to be highly expressed in immune organs and is an immunomodulation 
gene known to play many roles in various cancers73, while some genes have, of yet unknown 
significance, like LIP, whose paralog LIPA is a known cancer target74 (Figure 5B).  
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This demonstrates how scPRINT can embed, align, and annotate diverse datasets in a 
meaningful way so that one can then analyze specific and rare cell clusters to recover both 
known and new biology. 

Finally, for the second part of the analysis, we move to another cell type of interest: fibroblasts. 
Fibroblasts are known to be involved in cancer75, also called cancer-associated fibroblasts 
(CAFs), of which many subtypes exist, with different roles in tumor progression and invasion76. 
In our dataset, we can see a large cluster of cells labeled as “fibroblast of connective tissue of 
glandular part of prostate”, of which 500 are coming from normal tissues, and 600 are coming 
from hyperplasia and are possible precursors of CAFs. Interestingly here, 40% of the annotated 
as BPH-associated fibroblasts are coming from healthy tissue, according to the authors of the 
dataset. However, it is known that more than 50% of adult males over the age of 50 will have 
BPH77. Thus, one possibility is that some of the fibroblasts of these healthy tissues already 
present patterns of gene activation similar to those of pre-cancerous ones.  
 
We generate a gene network of the BPH and normal fibroblasts using the 4000 most variable 
genes and taking the average over all heads in the network (Figure 5C). Looking at the top 15 
hubs, using degree centrality, we can see S100A6 as being the top element in normal 
fibroblasts. This gene is known to be a fibroblast and epithelial cell marker that regulates 
amongst other things, cell cycle and differentiation78,79. We also see MIF, IGFBP7, and other 
genes involved in immune signaling and growth80,81,82. 
However, some of these genes are not in common with the BPH fibroblasts ones. Over the set 
of 2881 common nodes between the two networks, the genes HSPA1A, MT2A, SPOCK3, 
ATP6V0C, DEFA1, EIF4A1, and CD99 are considered differential hubs (i.e. more central) in the 
BPH fibroblasts compared to normal ones (see Table S10).  
 
Another definition of centrality, eigenvector centrality, recovers 55% of the genes already 
identified as hubs, plus some new ones. As an example, Prostate Associated Gene 4 (PAGE4), 
which is part of the GAGE family of genes, is expressed in a variety of tumors and reproductive 
tissues, especially BPH, where it is related to oxidative stress response and fixation (i.e. anti-
invasion)83–85. Interestingly, although the networks share 75% of their genes, they only share 
50% of their edges when considering the top 20 edges per gene. It shows that over the same set 
of genes, scPRINT discovers distinct gene networks across biological contexts. Taking as an 
example the differential hub PAGE4 (see Figure 4C), we see that it is connected to many of the 
top 15 hub nodes in the BPH network, such as MT2A, HSPA1A, SPOCK3, and CD99. This shows a 
master node sub-network linking metal and ion exchange, oxidative stress response, and 
inflammation86–89. Some genes are also part of the IL24 signaling inflammatory pathway 
(EIF4A1;COL6A2;HLA-C;HSPE1), and the secretory senescence phenotype 
(H2AZ1;UBE2S;UBE2C;IGFBP7)80,90, hallmarks of fibrosis and malignancies91,92. The PAGE4 
network in normal fibroblasts, while having some elements in common, like metal transport, is 
much less connected (seen by the strength of the edges in Figure 4C). It also contains a 
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different set of genes, which are less related to senescence, inflammation, and ion exchange 
(see Supp Figure S10). 
 
Furthermore, we can use these networks, defined over only a few cells, to perform community 
detection. Taking community 4, containing 92 genes and defined with the Louvain algorithm on 
the BPH-associated fibroblasts GN, we see two hub nodes: SPOCK3 and HERC3. Interestingly, 
not much is known about those genes except that HERC3 has been linked to inflammation and 
the extracellular matrix (ECM) via metallopeptidase and the NCOA1 gene93. SPOCK3, moreover, 
is known to be related to prostate malignancies and collagen in the ECM94. Gene set enrichment 
tells us that the genes in this subnetwork are mostly related to calcium, sodium, iron, and metal 
transport, validating the evidence around HERC3 and SPOCK395. In normal fibroblast, however, 
taking the community most associated with metal transport  (community 4, see details in Supp 
Figure S11 and Methods) shows RNASEK, SELENOM, and an unknown ubiquitin ligase, paralog 
of ITCH. While RNASEK is related to RNA degradation, its expression has been linked to a lower 
risk of prostate cancer96.  SELENOM is of unknown function, but some SEL proteins have been 
related to cell adhesion97.  
 
Through its networks, scPRINT highlighted the role of ion exchange and fibrosis in the ECM in 
Benign Prostatic Hyperplasia. While some of the same genes would have been found from 
differential expression analysis, these results show us how gene networks can be used to 
describe the intersection of genes and their molecular functions. Putting genes into the context 
of their connections, one can validate known functions or relate them to new ones. From such 
contextualization, a picture starts to emerge, whereby through specific genes, glandular 
fibroblasts in senescence enter a wound-healing state. This fibrosis is caused by the export of 
more metal and ions to generate ECM and change its acidity levels. This might cause a loss in 
tissue flexibility and potentially create oxidative stress98. In our networks, these pathways seem 
connected to inflammation. Chronic inflammation and wound healing states are hallmarks of 
BPH and a predisposition to future malignancies99,100 

Discussion 
We can simplify the complex macromolecular interactions governing a cell through what is 
often referred to as a gene network. However, creating such a network in a meaningful way 
remains a challenging task. 

We have created and benchmarked scPRINT, a novel single-cell RNA sequencing foundational 
model trained on more than 50 million single-cell profiles across tissues, diseases, and species 
contexts. scPRINT uses three novel pre-training tasks, as well as new encoding and decoding 
mechanisms specifically designed for gene expression data. Although it has not been directly 
trained for it, scPRINT generates gene networks. These networks can be used to better 
understand the model predictions and help make more informed decisions about the 
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significance and role of a potential target. Finally we present a mechanism to best select heads 
containing the known biology of these networks. This approach also helps users fine-tune the 
type of network they are interested in. 

We show that we outperform scGPT on many of our benchmarks while using a similar model 
size. We believe that our inductive biases and novel training procedures helped scPRINT 
achieve such a performance. Moreover, while GENIE3 is still a competitive tool, we also 
outperformed it on most of our benchmarks, showing that pushing training to millions of cells 
and large parameter sizes will be an essential direction for further work on gene network 
inference. 

In addition, contrary to GENIE3 and scGPT, our large cell model can also achieve zero-shot 
performances on par with many famous single-cell RNAseq tools on multiple important tasks of 
cell biology. While some specialized tools might be better suited to some use cases, scPRINT’s 
versatility makes it a worthwhile alternative in many instances. Indeed users can directly use 
scPRINT in their bioinformatics workflows with commodity hardware (1 CPU, 1 GPU with 10GB 
of memory and 16GB of memory). 

Finally, we put scPRINT to the test on a challenging atlas of normal and senescent prostate 
tissues showing benign prostatic hyperplasia. We identify rare cell populations with early 
markers of TME in B-cells. In fibroblasts, we study gene networks and recover known hubs such 
as PAGE4, thereby linking the senescence of fibroblasts to changes in the ECM and 
downstream inflammation. We find key interconnected pathways of the oxidative stress 
response and extracellular matrix building via metal and ion exchange in the gene network of 
BPH-associated fibroblasts. We also show that healthy and disease-related cells exhibit 
different network patterns, demonstrating that scPRINT can help identify novel pathways and 
targets while considering them in their specific cellular and molecular contexts. 

An assumption in natural language processing is that fewer inductive biases make for better 
models. Our work shows that adding good inductive biases and rethinking architectures will 
likely be important directions for AI models in biology.  

A challenging aspect of GN inference is that no perfect ground truths exist, and many GN 
methods are, unfortunately, benchmarked on ODE-generated mock-up expression data. In 
contrast, ChIP-seq, perturb-seq, and literature-based ground truths remain scarce and 
ambiguous. With BenGRN and GRnnData, our suite of tools for benchmarking Gene Networks 
inferred from single-cell RNA sequencing; we present an extensive set of real-world ground 
truths representative of the diversity of networks we can assess. However, improvement in 
performance and benchmarking will need to come from novel experimental approaches that 
can produce causal, genome-wide, and cell-type-specific networks. 

We acknowledge that work remains to be done, from the ability of transformers to generate 
graphs to their explainability and the breadth of tasks they can undertake. Questions still remain 
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regarding the pre-training tasks and how to integrate other omics modalities into foundational 
models. 

Transcription is much more complex than what gene networks currently represent. In the future, 
we expect such large cell models to work in tandem with new sequencing techniques 
measuring modalities such as protein amounts, DNA configuration, and non-coding RNA 
species to solve the gap in our understanding and our ability to model cell biology. 

Methods 
we propose scPRINT, a foundation model designed for gene network inference. ScPRINT brings 
novel inductive biases and pretraining strategies better suited to GN inference while answering 
issues in current models. scPrint outputs cell type-specific genome-wide gene networks but 
also generates predictions on many related tasks, such as cell annotations, batch effect 
correction, and denoising, without fine-tuning. 

Architecture 
The model architecture is composed of:  

- An encoder that takes the raw data and embeds it in a high-dimensional space 
used by the transformer. 

- A bidirectional multi-head transformer 
- A decoder to transform the expression embeddings into expression values  
- A decoder that transforms the cell embeddings into cell-specific label prediction 

over a range of classes. 

Expression encoder 

In scPRINT, each gene in a cell is converted to an embedding: It corresponds to the sum of 3 
different elements:  

1. An embedding representing the gene itself (see Table S2 for model embedding size). ESM236 
embedding of each gene's most common protein product was used to represent that gene. 
While imperfect in some ways, this inductive bias allows the model to learn representations that 
potentially apply to even unseen genes from unseen species or integrate specific genetic 
mutations into its representation. First implemented in  UCE37, this provides the model 
information related to the gene product’s structure, ontology, and similarity to other genes. This 
also speeds up the training greatly, particularly for small models. We show that this is a great 
gene representation but that model performance can be increased by refining gene embeddings 
further during training. However, we elect not to do so to maintain the model’s versatility in 
working on unseen genes. 
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We encode the genes’ embeddings using ESM2. The mapping process happens the following 
way: 

- A gene name is mapped to its canonical protein name using Ensembl101. 
- We recover the protein sequence of the protein using Ensembl 
- We use the protein sequence to generate an embedding using ESM2 by 

averaging over all the amino-acid output embeddings as done in the ESM2 paper. 
 
With the embedding function provided in our code, one can easily do this with any species in 
Ensembl. 
scPRINT can effectively be retrained with any set of gene embeddings, which can be frozen 
during training or used only for initialization (tried, for example, in our ablation studies, Table 
S3). 

2. An embedding of the gene location in the genome. This has also been proposed in UCE and 
helps the model understand that genes with similar locations tend to be regulated by similar 
regulatory regions102, a relationship well-known in cellular biology. 

We encode the genes’ locations using positional encoding. Here, every gene less than 10,000 bp 
from the next is said to be in the same location; otherwise, we increment location by 1. We do 
this for all genes in the Ensembl database per species. 
We then embed these locations by applying the Positional Encoding (PE) algorithm of Vaswani 
et al. 25. 

3. An embedding of the gene expression in the cell. For this, we embed the gene’s expression 
using an MLP. While GeneFormer came up with a ranking strategy based on a gene expression 
compared to a baseline expression, scGPT instead used binning of log normalized counts. On 
our end we haven’t found that this approach was the simplest nor was performing better than 
only using the log-transformed counts. We thus directly take the log-transformed counts 

𝑒𝑥𝑝𝑟!,# 	= 	𝑀𝐿𝑃(𝑙𝑜𝑔$(𝑥!,# + 1)), 𝑥!,# ∈ 	ℜ	, 𝑒𝑥𝑝𝑟!,# 	 ∈ 	ℜ	% , 

where 𝑒𝑥𝑝𝑟!,# 	is the embedding of the expression, 𝑥!,# is the expression value of the gene j in the 
cell i, and  the MLP is a two-layer neural network, where each layer is composed of 

𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑅𝑒𝐿𝑈(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐿𝑖𝑛𝑒𝑎𝑟(𝑒𝑥𝑝𝑟!,# 	)))) , 

where the Dropout rate is fixed at 0.1, and the dimensions are specified as 1 → d for the first layer of 
the MLP and d → d for the second layer, with d representing the model dimension. 

Finally, when encoding a cell expression profile, only a subset of 2200 genes is used during 
pretraining. If less than 2200 genes are expressed, we randomly choose 2200 expressed genes 
and pad them with randomly sampled unexpressed genes (meaning with an expression value of 
0).  This approach allows the model to see different patches of the same cell profile during 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.29.605556doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.29.605556
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 

training. We chose 2200 genes as 2/3rds of the cells in cellxgene had less than this number of 
genes expressed, striking a balance between computation and gene usage. 
 
We decided to add unexpressed genes because, combined with our denoising methodology, 
this lets the model figure out that some genes are true 0s during training. In contrast, others are 
only caused by dropout and a function of the transcript counts. This causes scPRINT to model 
dropout as a function of read depth (i.e. total transcript count). 
Moreover, this completes the minibatch by token matrix without padding and fully utilizes 
the GPU during the attention computation.  
 
The full set of embeddings sent to the transformer looks the following way 
 
[𝑔𝑒𝑛𝑒& + 𝑒𝑥𝑝𝑟!,& + 𝑝𝑜𝑠&	, 𝑔𝑒𝑛𝑒' + 𝑒𝑥𝑝𝑟!,' + 𝑝𝑜𝑠'	, . . . , 𝑒𝑚𝑏()(*+,)-.(,! 	, 𝑒𝑚𝑏_𝑝𝑙𝑎𝑐𝑒ℎ𝑜𝑙𝑑𝑒𝑟%/0*-+( , 

𝑒𝑚𝑏_𝑝𝑙𝑎𝑐𝑒ℎ𝑜𝑙𝑑𝑒𝑟,/++(12/ 	, 𝑒𝑚𝑏_𝑝𝑙𝑎𝑐𝑒ℎ𝑜𝑙𝑑𝑒𝑟%!3/*3/ 	, . . . ], 
 
where 𝑔𝑒𝑛𝑒# is the gene j encoding, 𝑒𝑥𝑝𝑟!,# is the encoding of the expression of gene j in cell i, 
and 𝑝𝑜𝑠# is the gene j location encoding. 
The total count information is stored separately and encoded similarly to the expression, 
 
𝑒𝑚𝑏()(*+,)-.(,! 	= 	𝑀𝐿𝑃(𝑙𝑜𝑔$(1 + 𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑢𝑛𝑡!)), where 𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑢𝑡! =	∑ ⬚⬚

# 𝑥!,# , 
 
with 𝑥!,# the expression value of gene j in cell i, and the MLP is a two-layer neural network similar 
to the previous one. 
The full cell total count (totalcount) lets scPRINT model its denoising based on this required 
total count parameter. 
 
The placeholder tokens (total count, default cell embedding, cell type, disease, sex, ethnicity, 
assay, organism) are learned embeddings that stay the same across all inputs. They only act as 
placeholders for the model to fill in during the forward process. At the transformer output, they 
will have been modified to contain the embeddings requested. At least two are used, one 
containing the default cell embedding and another the profile’s total depth. More tokens can be 
used, one for each predicted cell label. 

Model 

The model is a bidirectional autoencoder similar to BERT26 with n layers, h attention heads, and 
a dimension of d. It uses the flashattention231 methodology implemented in Triton to compute 
its attention matrix. It uses the pre-normalization technique103, with a sped-up layer norm 
implemented in Triton’s tutorial104. It uses a stochastic depth with increasing dropout 
probability105. 
It has a 2-layer MLP with a 4x width increase in its hidden layer and a gelu activation function. 
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Expression decoder 

scPRINT uses a novel expression decoder for foundation models, which outputs the parameters 
of a zero-inflated negative binomial (ZiNB) function for each gene i in cell j. The ZiNB 
distribution is defined as 
 
𝑋~𝑍𝑖𝑁𝐵(𝜇, 𝜃, 𝜋), 
 
where the parameters 𝜇, 𝜃, 𝜋 are obtained from a multi-layer perceptron (MLP) applied to the 
expression embeddings outputted by the transformer model at its last layer (𝑒𝑚𝑏/526), which 
are the: 
 

 
 
The MLP is a two-layer neural network with dimensions [d, d, 3] 
 
Based on the work of Jiang et al.38, zero inflation is the best distribution when considering a 
broad range of transcriptomic measurements, where some have enough dropouts, and a zero 
inflation term is needed to model it. In our case, and similarly to scVI39, we define our ZiNB as 
 

, 
 
where 𝛿&(𝑥) is a point mass at zero, and 𝑁𝐵(𝑥	|	𝜇, 𝜃) is the negative binomial distribution with 
mean 𝜇 and dispersion 𝜃. 
 
With these parameters, the negative binomial distribution is represented in the following way 
 

, 
 
where 𝜇 is the mean and 𝜃 the overdispersion parameter, which here represents the inverse of 
the dispersion. From Hibe et al.106, we know that this is a parameter change from the most used 
probability mass function (PMF) given by 
 

, 
 
where r is the number of successes, p is the probability of success, and k is the number of 
failures. 
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One can interpret such a negative binomial distribution as a Poisson distribution with an 
additional overdispersion term that makes the variance not tied to the mean. In scPRINT, we 
use the zero-inflated Poisson for count downsampling as we can’t easily infer the gene 
overdispersion parameter from each cell profile. By removing this zero-inflated Poisson from 
the gene expression profile, we keep the potential overdispersion in the profile (see the Negative 
Binomial to Poisson relationship section in Methods). 
 
Compared to scVI, where the overdispersion parameter 𝜃 is learned for each gene, we make 
scPRINT output it together with 𝜇, 𝜋  (see Supp. Figure S12) 
 
Effectively, the model learns that the dispersion might change depending on the gene, the 
sequencer, the cell type, and the sequencing depth. 

Class decoder 

scPRINT also outputs a variety of class embeddings, such as default cell embedding, cell type 
embedding, disease embedding, etc., by filling the different placeholder tokens given as input 
(see the Expression encoder section in the Methods). 
 
Effectively, for each class, we have the model learn to produce a new deconvolved embedding 
(e.g. cell type, disease, tissue, age). This means the model uses an MLP to transform each 
token where A is a class. For each, we jointly train a classifier 
 
𝑙𝑜𝑔𝑖𝑡𝑠7 	= 	𝜎(𝑀𝐿𝑃7(𝑒𝑚𝑏,+*33!)), 
Where: 

-  𝑙𝑜𝑔𝑖𝑡𝑠7	represents the logits for a class A of a dimension 𝑑7 whose size 
corresponds to the number of labels. 

- 𝜎 denotes the Sigmoid activation function. 
- 𝑀𝐿𝑃7stands for the Multi-Layer Perceptron trained to predict the logits of the 

class A. 
- 𝑒𝑚𝑏,+*33! is the output embedding for the class A of dimension d. 

However, some classes, like cell type, have up to 800 labels. Fortunately, cellxgene classes 
follow an ontology, a robust structure that defines relationships among the labels. We reduce 
the size of the output labels by training the model only on the leaf labels in the ontology 
hierarchy (i.e. the most precise available). For cell types, this represents around 400 different 
labels (see Table S11).  

Thus, when a label is not very specific for a cell type (e.g. neuron), the model will predict the 
best leaf label (e.g. dopaminergic neuron). This way, we can generate meaningful training 
signals from even very coarse labels (see The classification task section in methods for more 
information and definition of the loss). We only apply this hierarchical classifier to the cell type, 
disease, and assay labels. 
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In the following section, we show how we train such classifiers. During the classifiers' training, 
we sum up their loss without applying any scaling between the different classes. 

Pretraining 
The three tasks of the multi-task pretraining are the denoising task, the classification task, and 
the bottleneck learning task. While the denoising loss enhances the model's ability to find 
meaningful gene-gene connections, the other two try to make the model and its underlying 
networks more robust and cell-type-specific. All three losses are summed without rescaling. 

Optimization method 

The optimization is done with fused ADAMW, with a weight decay of 0.01. We noticed a total 
inability to learn when using base ADAM, which has a similar weight decay. This can be 
explained by a known inequivalence issue in ADAM107. 
We use the stochastic weight averaging108 method during training with a learning rate of 0.03. 
During pre-training, the hyperparameters are set to dropout of 0.1, a learning rate (LR) of 1e-4, 
the precision is set to 16-mixed with residuals in fp32. We clip gradients to 100 and train in 
many sub-epochs of 7000 training batches and 2000 validation batches with a warmup duration 
of 500 steps.  
Across epochs, we use a linear LR decrease of 0.6 with a patience of 1 and stop training after 
three consecutive increases in validation loss (patience: 3). In the final layer of the class 
decoders, we initialize values to a normal distribution around 1 for weights, 0 for biases, and -
0.12 for biases.  
Our batch size is 64, and we use a pre-norm strategy for the transformer with a linearly 
increasing stochastic depth dropout rate of 0.02 per layer. We use a noise parameter of 60%. 
We split the cells in the datasets into 98% train and 2% validation and reserve at minimum 2% of 
separated datasets for testing. 
 
Finally, we use weighted random sampling on our training data based on the different class 
values we have to predict. We use a factor of 50, meaning the rarest elements will, on average, 
be sampled only 50 times less than the most common ones. The sampling factor used for each 

group is then 
!"

#$%&'(!"
, instead of 

)
#$%&'

 where count is the number of cells in each group. 

The classification task 

We perform label prediction during pretraining for different classes, currently: cell type, disease, 
sequencer, ethnicity, sex, and organism. Due to issues in the ontologies, we have omitted tissue 
type and age classes. 
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Due to the hierarchical structure of the prediction, we also created a hierarchical loss. Here, we 
compute the loss regularly when the label is a leaf label. Otherwise, we replace all associated 
leaf labels to the given label by the log-sum-exp, such that for a cell label, the loss is: 
 

, 
 
with: 

 
where: 

- 𝑌	 = 	 {𝑝𝑟𝑒𝑑_𝑙𝑎𝑏𝑒𝑙𝑠8 , ∀	𝑝𝑟𝑒𝑑_𝑙𝑎𝑏𝑒𝑙𝑠8 	 ∉ 	𝑛𝑜𝑑𝑒_𝑔𝑟𝑜𝑢𝑝} 
- 𝑋	 = 	 {𝑝𝑟𝑒𝑑_𝑙𝑎𝑏𝑒𝑙𝑠8 , ∀	𝑝𝑟𝑒𝑑_𝑙𝑎𝑏𝑒𝑙𝑠8 ∈ 	𝑛𝑜𝑑𝑒_𝑔𝑟𝑜𝑢𝑝} 
-  
-  a vector of size  
-  is the subset of the labels that share the common parent node 

 when . 
 
The CE (cross-entropy) is defined as: 
𝐶𝐸(𝑝, 𝑞) 	= 	−	∑ ⬚⬚

- 𝑞-𝑙𝑜𝑔(𝑝-) . 
And the LSE (log-sum-exp) is defined as 
 

. 
This loss allows the classifier to learn even in cases where the labels can be of varying 
coarseness without the coarseness of some labels impacting the ability of the model to predict 
the true fine-grained labels (see Supp. Figure S13) 
The loss is hierarchical for the classes: cell type, disease, sequencer, ethnicity; the labels follow 
a hierarchy defined by Cell Ontology, MONDO, EFO, HANCESTRO109–112, respectively. 
We do not compute the loss for cells where a class has an unknown label. We perform these 
classification tasks in one pass, using the embeddings generated directly from the 
downsampled expression profile. 

The denoising task 

Similarly to ADImpute, we expect a good gene network to help denoise an expression profile by 
leveraging a sparse and reliable set of known gene-gene interactions. In addition, we expect a 
good cell model to help embed and reconstruct an expression profile by leveraging the 
regularities of modules and communities within its network. 
We view denoising similarly to upsampling, and inversely, we view adding noise as 
downsampling a cell profile. 
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Noise is similar to downsampling because of the distribution we are working with. Note that 
contrary to vision tasks (e.g. diffusion models), where additive Gaussian noise is added, in the 
context of expression data, where the distribution is often seen as a Poisson, NB, or ZINB, the 
data is already noisy, and the more counts are sampled, the less noise. No information is similar 
to not sampling data. 
 
We downsample an expression profile using a zero-inflated Poisson model of the data. With this 
formulation, on average, half of the counts to be dropped are dropped by randomly removing a 
number of reads per gene, given by sampling from a Poisson whose lambda parameter is 
proportional to the number of counts in that gene. The remaining half of the counts to be 
dropped are dropped by randomly setting some genes to 0, i.e. a complete dropout of that gene. 
It is to be noted that with this definition of downsampling, the exact average amount of counts 
dropped for both parts depends slightly on the dropout r. During our pretraining, r is set to 0.6, 
meaning, on average, 60% of the transcript counts are dropped per cell.  
 
Let 𝑥! be the gene expression vector of cell i with dimensions 𝑛9/./3; we create a downsampled 
version by doing 
𝑥!,%):.3*;2+/% = 	𝑚𝑎𝑥((𝑥! −	𝑝!) ⋅ 	𝜋! , 0), 
with: 

- 𝑝! 	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑥! 	× 𝑟 × 0.55) a vector of size 𝑛9/./3 where the poisson is samples 
for each element 𝑥! of x 

- 𝜋! 	= 	𝐼(𝑢 ≥ 𝑟 × 0.55) a vector of size 𝑛9/./3 , the binary mask vector indicating 
non-dropout genes. 

- 𝑢! 	~	𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1), a vector of size 𝑛9/./3. of random values drawn from a 
uniform distribution. 

- ⋅ denotes the element-wise multiplication. 
- r being the dropout amount. We scale it by a tuning hyperparameter of 0.55 

instead of 0.5 for numerical reasons. 
 
The goal of the model is then, using 𝑥!,%):.3*;2+/% as an input, to output the parameters 
𝜇! 	, 𝜃! 	, 𝜋!  of a ZINB distribution of the true profile 𝑥! , all vectors of size 𝑛9/./3. The contribution 
of cell i to the loss is then computed as the negative log-likelihood of the count data given the 
distribution parameters being generated by the model 
 

𝐿𝑜𝑠𝑠%/.)!3!.9 	= 	𝐿𝑜𝑠𝑠<=>? 	= 	−
1

𝑛9/./𝑚
d ⬚

."#$#,;

!@&,#@&

𝑙𝑜𝑔(𝐿(𝑥!,#|	𝜇!,#	, 𝜃!,# 	, 𝜋!,#)),	 

 
where 𝑛9/./ is the size of the expression profile 𝑥! , m is the size of the minibatch and 
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with 𝜎 the sigmoid function. 
 
We show that models trained with such a framework perform better than regular MSE-trained 
models (see Table S3), for which one only outputs one value instead of three, which directly 
represents the log-transformed count of the data. In this case, the loss is the mean squared 
error between the predicted and true count values. 
scPRINT effectively lets the user choose between the three formulations: ZINB with a ZINB loss, 
NB with an NB loss, and direct log-transformed count reconstruction with an MSE loss. 
 
However, we have noted that the NB and ZINB loss still have some notable issues. They can 
easily overflow, especially when working with lower precision systems (like fp16, bf16, …). 
These losses are also proportional to the total expression count, meaning cells with higher 
expression will have a higher loss on average. It also appears that the log-likelihood cannot go 
below ~1.1 loss on average and plateaus quickly. This makes evaluation of the loss less 
practical when comparing models. Finally, this minimal loss also depends on the total number 
of zeros in the true expression dataset, as the zero-inflation part of the loss converges smoothly 
to 0. 

The bottleneck learning task 

Bottleneck learning is a method that drives the model to generate a cell expression profile only 
from its embedding. Cell-embedding that can be passed again to that same model without the 
gene expression information, such that from the cell-embedding only, scPRINT can re-generate 
the cell’s expression profile. The model thus finds the best compression of the cell’s expression 
according to the information-theoretic theorem by Tishbi et. al.113. 
 
While many transformer models and Geneformer directly use the average of gene embeddings 
to generate a cell embedding, this will likely squash the expression information. 
scGPT used another methodology (called “MVC”) to generate an embedding vector such that 
 
𝑥!,# = 	𝑒𝑚𝑏! ⊙𝑔𝑒𝑛𝑒# 		, 
 
where 𝑥!,# is the expression of gene j in cell i, and ⊙ is the dot product. For each gene 
embedding 𝑔𝑒𝑛𝑒# , the embedding only contains information about the gene name, not gene 
expression. Regular MSE on each 𝑥!,# is then used as the training loss. 
This pushes the cell embedding 𝑒𝑚𝑏! to contain all the expression information of the cell i.  
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This is less computationally intensive to train than our bottleneck learning method. However, we 
have noticed poorer reconstruction through this methodology than ours (see Table S3). 

In our case, we consider that our model scPRINT can act as two parts of an autoencoder. The 
encoding part is when we give scPRINT the expression profile of a cell and retrieve a set of 
deconvolved cell embeddings (see the Class decoder section of the methods). The decoder part 
is when we provide scPRINT only the gene labels without their corresponding expression values 
and the deconvolved cell embedding in place of the empty placeholder embeddings (see Supp 
Figure S14). 

This means the encoder is considered as 
 

, 
 
where 𝑒𝑚𝑏-,!  is the output embedding of the placeholder embedding token u for the cell i (in 
our case, we use multiple (default, totalcount, cell_type, disease, sex, organism, ethnicity, 
sequencer). Then the decoder is defined as 
 

, 
 
With 𝜇! 	, 𝜃!	, 𝜋! vectors of size 𝑛9/./3. Finally, the loss is given by the ZINB loss: 
 
𝐿𝑜𝑠𝑠B)((+/./,C 	= ∑ ⬚;

!@& 𝐿𝑜𝑠𝑠<=>?(𝑥!|	𝜇! 	, 𝜃! 	, 𝜋!)	, 
 
where 𝑥! is the cell i expression profile and m the minibatch size. 
Implementing a set of deconvolved embeddings is not straightforward. In our case, we push the 
embeddings to be as different from one another as possible with a contrastive loss defined as 

, 
where 𝑒𝑚𝑏! and 𝑒𝑚𝑏!D are the cell embeddings, m is the minibatch size, and cos denotes the 
cosine similarity.This pushes each embedding to represent the correct information using the 
classifiers. However, more is needed to remove all the batch effects or entirely prevent 
information leakage across embeddings. 
 
Finally, we have also used the classifier output logits as cell embeddings. This works 
particularly well for cell type, disease, or sequencer classes containing many labels. It has been 
shown that classifier logit outputs behave similarly to embeddings114 and, in our case, offer an 
even better removal of the batch effects (see Supp Figure S6). 
 
For the bottleneck loss, we directly reconstruct expression using the cell embeddings generated 
from the noisy, downsampled expression profile of the denoising process, doing the entire 
process in one single pass. We sum all the losses without scaling them: 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.29.605556doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.29.605556
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 

 
𝐿𝑜𝑠𝑠	 = 	𝐿𝑜𝑠𝑠,).(6*3(!E/ + 𝐿𝑜𝑠𝑠B)((+/./,C + 𝐿𝑜𝑠𝑠%/.)!3!.9 + 𝐿𝑜𝑠𝑠,+*33 

 

scDataloader 
Parallel to this work, we worked with Lamin.ai to develop a dataloader for large cell atlases, 
described and benchmarked in Rybakov et al.30. One key advantage of this dataloader is its 
ability to perform weighted random sampling on hundreds of millions of cells without being a 
bottleneck during pretraining. scDataloader samples cells amongst the 800+ datasets of 
cellxgene’s mid-2023 release, using the cell labels to inform how rare the specific combination 
of labels is.  
From this, the dataloader produces a cell sampling weight, rescaled with a hyperparameter. The 
dataloader will sample, with replacement, more consistently rare cell types than more common 
ones.  
 
We have produced an additional wrapper package around the laminDB “mapped-dataset” called 
scDataloader. scDataloader works with lamin.ai but can also interface with scVI and AnnData 
formats to enable downloading, preprocessing, and QC of large single-cell databases and 
datasets. It is very flexible and can represent expression data in the formats used by scPRINT, 
scGPT, and Geneformer. It also implements a lightning datamodule scheme and command line 
interfaces for quick setup (see Supp Figure S15). 
 
Overall, we preprocess each of the 1200 datasets in cellxgene by only keeping primary cells 
from either humans or mice and dropping all the spatial omics datasets. Spatial omics are not 
true single-cell assays, and we decided for now not to include them. We also drop any cells with 
less than 200 expressed genes. Finally, we drop any resulting dataset smaller than 100 cells, 
with less than 10,000 genes, or from which more than 95% of the cells have been removed. This 
results in a new database of 54,084,961 cells and 548 datasets. 
 
We believe that the weighted random sampling strategy allowed our pre-training to be much 
faster by creating more diverse minibatches. 

Extracting meta-cell gene networks from attention matrices 
in scPRINT 
Transformers compute multiple attention matrices per layer, called attention heads. This is 
done by splitting the generated K, Q, and V embedding into m sub-embeddings, thus defining m 
attention heads. Each attention head computes the attention matrix via the equation: 
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. 
However, we would want to aggregate those over multiple cells from a similar cell state to 
increase the signal obtained from only one cell. We are doing so by averaging the Keys and 
Queries embeddings over the set of cells 𝑈 passed to the model: 
 

. 
 
By doing this, the attention matrix behaves as if each query vector for cell i was “looking” across 
the key vectors of all the cells in U.  
The resulting object is a row-wise normalized n*n matrix, where n is the size of the input context 
(i.e. the number of genes passed to the model). However, we also include the possibility to 
generate large matrices and gene networks, referred to as genome-wide gene networks. We 
take the average over different sets of expressed genes for each cell in the set U. This allows us 
to compute a genome-wide attention matrix while only doing forward passes on smaller 
subsets of the genome per cell.  
 

Heads selection 
With scPRINT, we present a method to select heads based on some available ground truth data. 
This is inspired by the ESM2 paper115 and uses a somewhat similar method. Using all the 
available attention matrices from all of the model’s heads, we use a linear classifier  
RidgeClassifier from scikit-learn116 (with an L2 penalty set to 1, a positivity constraint on the 
coefficients, and without an intercept) to classify the ground truth’s edges based on a 
combination of each head. The classifier converts the target values into {-1, 1} and then treats 
the problem as a regression task with mean squared error. 

Instead of taking the classifier’s output, we directly take the average of the subset of each head 
associated with a non-zero coefficient in the classifier without weighting them. Thus, the 
classifier only serves as a means to select the heads with relevant information in predicting a 
ground truth of interest (see Figure 1C).  

Normalization and network interpretation  
In scPRINT and scGPT, the attention matrix is normalized via the softmax function over the 
query (i.e. row) dimensions. This means that all row elements sum up to 1 or that the same 
mass flows from each network component. This rescaling is essential as it corrects that some 
row element scales can be much higher than others in the attention matrix. Similarly, in 
regularized models like GENIE3, only a small set of genes are connected for each gene in the 
matrix, meaning all genes have directed edges toward a small subset of genes. Thus, our 
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interpretation is that the row elements are the targets in our network, each connected to a small 
subset of genes. The column elements are thus the regulators and can regulate many / most 
genes in the network. 
 
For biological ground truths like MCalla et al. and gwps, which fit this assumption of highly 
connected regulators and sparsely regulated targets, we directly compare them to the inferred 
network. Table S12 and S13 show that this performs better than taking the opposite view by 
transposing the inferred networks. 
 
This assumption is challenged for Omnipath, which has most of its elements connected to a 
sparse set of other elements (see Supp Figure S3). Due to the sparsity of connections for 
regulators (i.e. sources) in the ground truth network and the large number of regulators (8000+), 
the methods are challenged and perform much better when taking the transpose of their 
network and matching the regulators to the sources and sources to regulators.  

BenGRN and gene network metrics 
We use the packages benGRN and GRnnData released with this manuscript to work With Gene 
networks and perform our benchmarks.  
Our three main metrics are EPR, AUPRC, and enrichment. They all take advantage of the fact 
that the predictions are generated as scores over edges between nodes: 

- Expected Precision Recall (EPR) is computed as the odds ratio  

 at the cutoff of the scores given by the K top predicted 
elements, where K is the number of positive elements in the ground truth.  

- Area Under the Precision-Recall Curve (AUPRC) is the area (computed with the 
composite trapezoidal rule) under the curve defined by the precision (PR = TP / (TP + 
FP)) and recall (RE = TP / (TP + FN)) where TP is the number of true positives, FP is the 
number of false positives, and FN is the number of false negatives. This curve is 
obtained through a range of cutoffs going from 0 predicted positives to all predicted 
positives. Here, we compute a version of the AUPRC where the floor of the area is not 
given by the Precision=0 line but by the line of the prevalence of the positive class. 
Moreover, we do not interpolate the curve between the last recall value and the perfect 
recall: 1. We do this to properly compare AUPRC values across benchmarks and models. 
Random precision values are given in the supplementary data. 

- Enrichment is computed using the prerank methodology49, where, given an 
ordered set of genes, is computed by:  

- 1. Summing all scores of edges of the matrix row-wise. (Target - Hub) Or  
- 2. Summing all scores of edges of the matrix column-wise. (Regulators - Hub) Or  
- 3. Computing the eigenvector centrality of nodes in the graph117 using 

NetworkX’s implementation. Prerank’s background comprises all the genes in the 
set (centrality). 
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Of note, we did not design an automated method for cell type enrichment. Instead, the 
assessment of whether or not a network is enriched for the correct cell type is done manually, 
identifying cell type names in the top 10 cell types listed in the enrichment results of the 
network. 

Other evaluation metrics 
All evaluation metrics from the section scPRINT is competitive on tasks orthogonal to GN 
inference of the results come from the openproblems benchmark and are standards in the field. 
 
scIB’s batch correction score is an average of the avgBatch score and the avgBio score, which 
are themselves averaged over many scores. Details of each value are available in our package’s 
notebooks. 

- scIB avgBio is a combination of label-based and label-free metrics using for 
example: the Adjusted Rand Index (ARI)118 and the Normalized Mutual Information 
(NMI)116 on clusters computed from the K-Nearest Neighbor graph. Other scores are 
used, some using the conservation of trajectories and of the cell cycle variance, and 
some on the rare cell population conservation, overlap of highly variable genes (see 
scIB64), and more. 

- scIB avgBatch is a similar combination of label-based and label-free metrics 
using for example the average connectivity across clusters of different batches: ASW119 , 
the graph integration local inverse Simpson’s Index: graph iLISI120, as well as the the k-
nearest-neighbor Batch Effect Test (kBET)119  and more. 

 
Finally, we also use two metrics in our classification task: 

- macro-F1: also called macro-average, is the average of the F1 score across each 
class in a multi-class task. Where the F1 score is: 2 ×	 FG∗GI

FGJGI
. 

- Accuracy: the accuracy is computed as KF	J	K>
KFJK>	JL>JLF

  

Denoising validation test 
To validate the denoising ability of scPRINT, MAGIC60, and KNNsmoothing261, our test function, 
available in the scPRINT package, uses the complete set of cells in the dataset to generate the 
denoised expression over the 5000 most variable genes in this dataset. This is mainly done for 
the compute efficiency of the other models (MAGIC / KNNsmoothing2), which do not scale well 
with respect to the number of genes as they compute multiple PCAs over their datasets.  
Before that, counts are removed from the dataset following the same procedure as done for 
scPRINT’s pretraining (see The denoising task section of the methods).  
For each cell, we compare the denoised and un-denoised profiles to the “true” profile (e.g. 
before denoising). We compute the Spearman’s correlation over the genes initially expressed in 
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the cell, taking the average across all cells. We do not use the unexpressed genes as we are 
working with a dataset with high dropout and expect that a good denoiser will set genes that are 
0 in the profile with some value. We notice that this improves the score of all denoising 
methods and makes more sense given the data. 

For the rare cell population test, we keep everything similar but compute only the Spearman 
correlation over a rare cell population in the dataset. 

State-of-the-art methods used in benchmarking 
Gene network inference with ensemble of trees (GENIE3) 

Developed originally for bulk transcriptional data, GENIE3 computes the regulatory network for 
each gene independently. It uses a random forest, a weak learner ensemble method, to predict 
the expression profile of each target gene from profiles of all the other genes. The weight of an 
interaction comes from the feature importance value of an input gene in the predictor for a 
target gene’s expression pattern. Aggregating these weighted interactions over all the genes 
yields the regulatory network. This method was the top performer in the DREAM4 in silico 
network challenge (multifactorial subchallenge). 

GENIE3 can be seen as a generalization of correlation-based methods for infereing gene 
networks. Instead of looking at genes that correlate most with another gene, GENIE3 finds how 
to combine a set of correlated genes to get an even better “correlation”. 
 
We also use a version of the model we call GENIE3-TF. Here, the regression is performed only 
using the expressed transcription factors instead of all expressed genes as input. This is the 
most used version of GENIE3 and is much faster. 

Single-cell generative pretraining transformer (scGPT) 

scGPT is a transformer-based model of roughly 100M parameters, pre-trained with a generative 
process similar to Language models. scGPT proposes to build similarity networks based on the 
output gene embeddings of the model but also based on its attention matrices. It computes 
networks as the difference between the rank-normalized version of the average attention matrix 
in a baseline expression profile vs a perturbed one in perturb-seq data. The attention matrix is 
the average of attention matrices over the heads of the last layer and over the cells given to the 
model. 
We run scGPT following the examples given in their “Tutorial_Attention_GRN.ipynb” notebook. 
All runs are in our fork: “https://github.com/jkobject/scGPT”  in the “mytests/” folder. Similarly, 
we take the mean over cells and over the heads of the last layer. We compute softmax similarly 
to the attention computation but without applying the rescaling factor g𝑑C . We finally drop the 
first element corresponding to the cell embedding token. 
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Ground truth preparation 
MCalla et al. 

For the MCalla et al. dataset, we downloaded the data from the supplementary datasets of their 
paper https://www.biorxiv.org/content/10.1101/2021.06.01.446671v2.supplementary-material 
. After undoing the logp1 transform, we re-generate the true count expression matrix from the 
normalized one by dividing the expression of each cell by the smallest value in its expression 
profile. This fully recovered the true counts, all values being integers. For the additional human 
dataset we used, we downloaded it from the gene expression atlas database 
https://www.ebi.ac.uk/gxa/sc/experiments/E-GEOD-36552/downloads. 

We used the intersection (gold standard) ground truth dataset for both human and mouse. 
Converting this list of source to target genes into a directed binary network. 

Omnipath 

We generate the Omnipath network using all the interactions from the Omnipath Python 
package, excluding small molecules, lncRNAs, and any element without a unique HGNC symbol. 
We then transform it into a directed binary network of source to target. 
 

Gene networks from genome-wide perturb-seq 

We created a gene network from the genome-wide perturb-seq dataset using the supplementary 
matrix containing the results of differential expression in the dataset. This matrix represents the 
multiple hypothesis testing corrected p-values of a differential expression test of cells with KO 
of gene A compared to the baseline cell expression. This is available for all 8000+ expressed 
genes in the K562 cell line. We used a cutoff of 0.05 on these values to define the directed 
binary connection between genes. 
This effectively gives a gene x gene-directed binary graph that tells if a statistically significant 
connection exists from the source 𝑔𝑒𝑛𝑒7 to the target 𝑔𝑒𝑛𝑒? according to genome-wide perturb-
seq. 
 
For all ground truths, download, preprocessing, and extraction of the network and expression 
data are available in the BenGRN package. 

Details on the Benign Prostatic Hyperplasia analysis   

We download our dataset from cellxgene under the reference: 574e9f9e-f8b4-41ef-bf19-
89a9964fd9c7 .  

We preprocess the dataset using scDataloader’s preprocessing function. We generate 
embedding and classification using 3000 expressed genes in each cell. Similarly to pretraining, 
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we take 3000 randomly expressed genes; if less than 3000 are expressed, we complete with 
randomly selected unexpressed genes. We display embeddings generated using the cell type 
classifier logits (see section The classification task in methods)  

We use the Scanpy toolkit121 to generate our Umap plots directly from the embeddings, as well 
as our differential expression results and our clusters. We define the clusters using the Louvain 
algorithm with 10 k-nearest-neighbors and a resolution of 1. We perform denoising on 5000 
genes per cell selected similarly to the embedding and classification part. We use the 4000 
most variable genes in each cell type to generate our gene networks in the BPH and normal 
fibroblasts. 

On the gene networks, we perform gene set enrichment with the Enrichr method122. For 
community detection, we use Louvain algorithm with parameter 1.5. We perform analysis only 
on the communities with between 200  and 20 genes. (4 and 5 in the BPH-associated 
fibroblasts, 3 and 4 in the normal fibroblasts)   

All analysis and results are available in the cancer_usecase_1 and cancer_usecase_2 notebooks. 

Negative Binomial to Poisson relationship 

As explained in The denoising task and Expression decoder section of the methods, in our 
model, we have used the ZINB as our loss, an extension of the NB distribution to zero-inflated 
data. Moreover, we have also used the zero-inflated Poisson - like mechanism to downsample 
the cell expression profiles. These are consistent because we can view the Poisson distribution 
as a NB without overdispersion. The relationship between NB and Poisson is given by making 
the dispersion term go to 0 and the inverse dispersion term 𝜃 → 	𝑖𝑛𝑓. Doing so, the term M

MJN
 

approaches 1. Thus, the PMF simplifies to: 

 

For large 𝜃, we use Stirling's approximation123 of the Gamma function  we 
get: 

 

 
 
Simplifying the ratio of the Gamma functions: 
 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.29.605556doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.29.605556
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 

 
 

For large 𝜃, 5JM
M
~1, so: 

 

 

 
 
Thus, the expression simplifies to: 
 

 
 

Finally,  for large 𝜃, so:  
 

 
 
This is the PMF of the Poisson distribution with mean 𝜇. 

Data availability 
● model weights on: https://huggingface.co/jkobject  
● pre-training logs on: 

https://wandb.ai/ml4ig/scprint_scale/reports/scPRINT-trainings--
Vmlldzo4ODIxMjgx?accessToken=80metwx7b08hhourotpskdyaxiflq700xzmzym
r6scvkp69agybt79l341tv68hp  

● CellxGene datasets: https://cellxgene.cziscience.com/  
● All of the other datasets used in this work can be downloaded via the helper 

scripts on the scPRINT, BenGRN, GRnnData and scDataLoader packages. 

Code availability 
● scPRINT and notebooks to reproduce the results: 

https://github.com/cantinilab/scPRINT  
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● GrnnData package: https://github.com/cantinilab/GRnnData  
● BenGRN package: https://github.com/jkobject/benGRN  
● scDataLoader package: https://github.com/jkobject/scDataLoader  
● scGPT and notebooks to reproduce the results: 

https://github.com/jkobject/scGPT/tree/main/mytests  

Figure legends 
Figure 1: presentation of the scPRINT model and training. (a) Schematic representation of 
scPRINT with its bidirectional encoder, gene expression embedding encoding via gene location, 
matched protein ESM2 embedding, and gene expression. (b) scPRINT pre-training tasks: Denoising 
task whose goal is to recover the known transcriptomic profile from a purposefully downsampled 
expression profile. Bottleneck learning reconstructs the expression of requested genes using only 
their cell embedding. The same model is used for both The encoding and decoding steps. 
Hierarchical classification is achieved by applying a hierarchical classifier to each deconvolved 
embedding. This pushes the first embedding to contain cell type info, the second embedding to 
contain disease info, and so on (see methods). (c) The different outputs in scPRINT. scPRINT 
generates label predictions of cell type, tissue, disease, sex, sequencer, ethnicity, and organism. 
scPRINT generates multiple embeddings (which we call deconvolved embedding), a general one 
as well as a specific embedding for each class. scPRINT also generates a reconstructed 
expression profile at any requested sequencing depth (i.e. total transcript count) (denoising). 
scPRINT also generates a Gene Network by selecting and combining various attention heads into 
a gene x gene matrix. (d) Example of a scPRINT output from a random subset of 2 million cells 
from the cellxgene database. Embeddings and labels are generated by scPRINT, together with the 
example cell type-specific gene networks. We show only subparts of the networks extracted from 
a central node, represented in red.  
 
Figure 2: Analysis of the gene networks generated by scPRINT. (a) We extract cell type-specific 
gene networks for each cell type in the dataset. We perform GSEA49 on the network’s nodes. We 
compute the ability of the edges to recover the Omnipath ground truth’s connections. (b) Violin 
plot of the ten different AUPRC and EPR values obtained when comparing the inferred cell type-
specific networks with the Omnipath network for scPRINT-full (with its genome-wide gene 
network), scPRINT-mean (average of all attention heads) scPRINT-omni (average of heads 
selected with our classifier-based method), scGPT, and GENIE3 (when considering only TF-gene 
connection or all gene-gene connections). (c) Violin plot of the average number of TF with 
enrichment for their ENCODE target in each cell type-specific network. (d) Number of GNs with a 
significant enrichment of TFs and of their cell type's marker genes. 
 
Figure 3: scPRINT GN inference performance on cell-type specific ground truths. (a) The ground 
truths are generated via orthogonal sequencing assays on the same cell type. ChIP-seq and 
perturb-seq are intersected for the MCalla et al. dataset on hESCs and mESCs, whereas perturb-
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seq on K562 is only used for the genome-wide perturb-seq ground truth. (b) Performance of 
scPRINT compared to GENIE3 and scGPT on the MCalla et al. ground truth using the AUPRC and 
EPR on two human and two mouse ESC datasets. (c) Same as (b) but on the genome-wide perturb-
seq dataset. EPR and AUPRC are provided here in one barplot, left to right. 
 
Figure 4:  Benchmark of scPRINT on orthogonal tasks to GN inference. (a) Performance for a 
denoising task compared to state-of-the-art methods on a random kidney dataset from cellxgene. 
Here, we generate a "noisy" profile by downsampling  70% of the cell transcripts and computing the 
Spearman correlation increase of the correlation between the denoised and the true profile 
compared to the one between the noisy and the true profile. (b) Performance on cell-type label 
prediction compared to state-of-the-art methods. Showing accuracy, F1 and macro-F1 scores for 
the open-problems human pancreas dataset. (c) The performance of scPRINT compared to state-
of-the-art methods on batch effect correction on the human pancreas and lung datasets from the 
openproblems challenge showing the scIB aggregated scores and (d) the scIB avgBIO score on 
both datasets  
 
Figure 5: presenting a scPRINT-based bioinformatics analysis of early prostate cancer. (a) Single-
cell RNAseq atlas of benign prostatic hyperplasia (BPH) and normal prostate tissues of 83,000 
cells given to scPRINT. scPRINT generates a set of embeddings and label predictions for each cell. 
To clean our predictions, we drop cell types with less than 400 cells and diseases with less than 
1000 cells, replacing them with the “other” label (see Supp Figure S8). (b) Zooming in on one 
cluster, we see annotations of a switched memory B-cell cluster, some labeled "benign 
hyperplasia" and others "normal". Differential expression analysis on the two groups of B-cells 
showing enrichment of B-cell & cancer markers when assessing its top 10 genes. We performed 
upsampling of the transcript count before performing a new differential expression analysis where 
we now see new genes amongst the top 10 differentially expressed ones some of them also 
associated with cancer and immune tissues. (c) Zooming in on another cluster, we see 
annotations of a “fibroblast of connective tissue of glandular part of prostate”, some labeled as 
"benign prostatic hyperplasia", and others "normal". We generate gene networks from each and 
highlight a sub-network of the PAGE4 differential hub gene in BPH, showing different connection 
strengths and patterns between normal and BPH-associated fibroblasts. (d) Left to right: gene-set 
enrichment analysis, using Enrichr, of the gene community 4 found by the Louvain algorithm in the 
BPH-associated fibroblast gene network, same but on the normal fibroblast gene network. 
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