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3 Université de Lorraine, CNRS, LORIA, Nancy, France

Abstract

Sleep apnea syndrome (SAS) is a nocturnal respiratory
disorder that can be associated with long-term cardio-
vascular complications. Alternative screening solutions
are currently being developed to overcome the limitations
of reference in-lab polysomnography. As the respiratory
signal can be reconstructed from the electrocardiogram
(ECG), the latter is all the more interesting as its recording
is easy and non-invasive for the patient. The application
of deep learning algorithms using ECGs has proved ef-
fective in classifying sleep-related pathological events. In
this paper, we propose a novel hybrid architecture to detect
apneic episodes using single-lead ECGs. Following a pre-
processing step, morphological and temporal components
of interest are extracted through convolutional and recur-
rent blocks, respectively. Additional mechanisms are fur-
ther integrated to enhance the classification. Models were
trained and validated on a dataset derived from STAGES
and Apnea-ECG databases. Influence of patient pheno-
type on classification was estimated by comparing the per-
formance between several groups of patients with differ-
ent clinical information. Overall, a model we have devel-
oped performs competitively with the best current methods
by accurately classifying patients to different degrees of
severity with average sensitivity, specificity and accuracy
of 93.38%, 75.46% and 86.66%, respectively.

1. Introduction

Sleep apnea is a breathing disorder that goes undiag-
nosed in 80% of patients. Different types of apnea ex-
ist: Central Sleep Apnea and Obstructive Sleep Apnea
(OSA) [1]. The latter is defined in The International Clas-
sification of Sleep Disorders by the occurence of repeti-
tive episodes of upper airway obstruction during sleep [2].
Such episodes can be characterized by a partial reduction
(hypopnea) or a complete cessation (apnea) of airflow for
more than 10 seconds [3]. Because sleep apnea events are

usually ended by unconscious micro-arousals, the individ-
ual’s sleep is disturbed. As described by the American
Academy of Sleep Medicine, according to the severity of
the pathology, patients rapidly experience daytime symp-
toms such as excessive sleepiness and poor concentration
[4]. If not treated, the patient is also exposed to significant
cardiovascular risks on the long-term. Early detection of
this pathology is therefore essential.

The gold-standard diagnostic of sleep apnea is
polysomnography. The patient is required to spend one
or several nights in a medical facility during which mul-
tiple physiological signals are recorded, including among
others electroencephalogram (EEG), oronasal airflow and
electrocardiogram (ECG) [5]. Based on the nocturnal sig-
nals, abnormal respiratory events can be easily detected
by physicians who can then evaluate the severity of the
disease. Severity is commonly quantified by the Apnea-
Hyponea Index (AHI) which computes the number of
pathological events (hypopnea or apnea) per hour of sleep.
Based on this score, the syndrome can be classified as mild
(5 ≤ AHI < 15), moderate (15 ≤ AHI < 30) or severe
(AHI ≥ 30).

Unfortunately polysomnography is costly, troublesome
and with a long waiting time for the patient. That is why
new researches are focusing on new screening solutions,
like ECG-based diagnosis. The latter offers a non-invasive
diagnosis alternative, which is less restrictive for the pa-
tient who can carry out his examination at home. Combi-
nation of ECG and deep learning algorithms have already
shown promising results [6].

In this article, we propose a hybrid deep architecture,
combining convolutional and recurrent layers as well as at-
tention mechanisms in order to extract the morphological
and temporal patterns characteristic of sleep apnea from
a long-term single-lead ECG recording. Such solution
would be a faster and more comfortable mean of screen-
ing for the patient, which would also encourage the early
diagnosis of this often undiagnosed pathology.



2. Materials and methods

The overall approach of the proposed method is com-
posed of 4 steps: (1) preprocessing of raw ECG signals;
(2) ECG-derived signals (EDRs) generation from cleaned
signals; (3) morphological and temporal features extrac-
tion; (4) classification. Framework described in this article
is presented in Figure 1.
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Figure 1: Flowchart of the proposed approach for classify-
ing apneic (A) and normal (N) ECG sequences

2.1. Database description

Data used in this work are ECGs extracted from the
Stanford Technology Analytics and Genomics in Sleep
(STAGES) study available on the National Sleep Research
Resource registry [7] and the Apnea-ECG Database from
PhysioNet [8, 9].

STAGES database gathers sleep data of more than 1,500
patients who visited 6 different sleep clinics across the
United States and Canada. Sleep was scored according
to the clinical protocol of each collection site. Provided
data comprise nocturnal sleep recordings, continuous acti-
graphs, scans, medical record data and questionnaires.

Apnea-ECG database is composed of 70 annotated
recordings of patients from two earlier studies. Sleep was
firstly scored according to standard criteria, and secondly
to indicate whether the ECG segment contains a disordered
breathing event or not.

2.2. Data preprocessing and datasets

Inputs to the algorithm were EDR signals from 1-min
segments, sampled at 4 Hz, and extracted according to the
method described in [10]. Among them were computed
R-peaks’ amplitudes and intervals.

Before extracting EDRs, ECGs were first preprocessed.
Indeed, it is quite common during the placing of electrodes
that the position of the latter is reversed, resulting in neg-
ative ECG signals. Several negated recordings have been
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Figure 2: Example of the preprocessing steps applied to
one ECG segment

found in STAGES datasets and have therefore been cor-
rected. Then, a notch and moving median filters have been
applied to remove the powerline interference and baseline
wander respectively. To finish, all data were scaled using
z-score normalization. An example of the preprocessing is
depicted in Figure 2.

Since the Apnea-ECG is a reference database in the lit-
erature, this work proposes to augment the original learn-
ing set composed of 35 patients by adding 20 more patients
from STAGES. 5-fold cross-validation was performed on
this new dataset (26,108 ECG segments in total). The best
model was finally tested on Apnea-ECG database origi-
nal test set comprising 35 additional patients (16,901 sam-
ples). Inter-patient paradigm, where each patient only be-
longs to one dataset and his signals are not shared between
datasets is used in this work [11]. Particular attention has
been paid to check that various clinical profile based on the
patients’ age, gender, BMI, and AHI are found in the three
datasets.

Annotation files originally include five classes in
STAGES: normal, hypopnea, central apnea, obstructive
apnea and mixed apnea. In order to match PhysioNet’s an-
notation system, classification has been reduced to a binary
problem: thus, all pathological classes have been consid-
ered as positive.



3. Model architecture

The proposed architecture is a modified version of Al-
mutairi et al. architecture [12] presented in Mukherjee et
al. paper [10], to which were added attention mechanisms
more suitable when dealing with long sequences. The
model is divided in two parts: feature extractor and classi-
fication. First part is composed of 3 convolutional blocks
ended by a fully connected layer, followed by a Long-Short
Term Memory (LSTM) to which was added an attention
layer. Convolutional Neural Network (CNN) are particu-
larly useful to extract spatial patterns while recurrent lay-
ers can highlight temporal dependencies between the data.
Together, these two form a powerful set of features, em-
phasized by dot-product attention mechanism which pri-
oritizes and adapts the extraction of relevant patterns in
the features. At the end-level of the architecture, features
are classified through a dense layer with softmax activation
function. The model outputs the probability of the sample
to belong to the normal or pathological class.

4. Results

4.1. Evaluation metrics

Evaluation was based on sensitivity (recall), specificity,
accuracy, precision and F1-score (harmonic mean of recall
and precision). All these measures are based on true, false
positive and negative rates:

Sensitivity =
TP

TP + FN
,

Specificity =
TN

TN + FP
,

Accuracy =
TP + TN

TP + TN + FN + FP
,

where TP, TN, FP and FN represent the true/false positive
and negative rates respectively. The pathological class is
the positive one here. While all metrics should be max-
imized, a special attention was given to the sensitivity as
the intended goal was to detect all positive patients and re-
duce false negatives.

4.2. Overall results

Model performance was evaluated based on signal-
wise and subject-wise strategies. The model presented in
this paper was able to discriminate positive and negative
class samples with a sensitivity of 79.48%, a specificity
of 85.30% and an accuracy of 83.09% on the test dataset.
Subject-wise evaluation estimates the model’s ability to ac-
curately predict the severity of the patient’s pathology. The
best model, combining a CNN-LSTM and attention, was
able to accurately detect each patient syndrome’s severity

with average sensitivity of 93.38%, specificity of 75.46%
and accuracy of 86.66%. Table 1 gathers metrics’ values
according to the patient’s syndrome severity.

Table 1: Results (in %) for different scores of severity

Severity Sensitivity Specificity F1-score
Mild 100 58.33 90.20
Moderate 94.44 82.35 89.47
Severe 85.71 85.71 82.76

Results reported in [10] for Almutairi et al. architec-
ture that inspired the model proposed in this work show,
for a 5-fold cross-validation, a sensitivity, specificity and
F1-score of 83.7%, 88.1% and 83%. These results must
be compared with caution since learning and evaluation
strategies, including datasets and results computation, are
not exactly the same between the two studies.

4.3. Performance based on patients clinical
information

More and more studies are questioning the ability
of AHI to fully characterize OSA syndrome. In this
sense, many authors have been interested in finding addi-
tional parameters from the patient’s medical spectrum that
could improve the understanding, management and espe-
cially the diagnosis of this pathology. A phenotyping ap-
proach includes gathering risk factors and clinical, physio-
pathological, biological and genetic attributes to better de-
fine the risks and impacts of such disease [13]. While one
of the main risk factor remains the obesity, age and gen-
der were also found to be important attributes [1]. Con-
sequently, the model was tested on different subgroups of
patients, depending on the above-mentioned factors in or-
der to identify eventual disparities and biases that will need
further improvements in the model’s performance.

In view of Table 2, it appears that depending on the pa-
tient’s weight, the classification results can greatly change
as patients suffering from obesity or overweight are signif-
icantly better classified than those with a non-pathological
weight.

4.4. Discussion

Since apnea events often appear only briefly and very
sporadically, only a minority of ECG segments belong to
the positive class, making the datasets unbalanced. Mix-
ing databases helped reducing data imbalance particularly
important in STAGES while maintaining good results al-
though using different databases can badly impact the per-
formance. Limitations were also faced regarding comput-
ing resources. Deep architecture, especially when involv-



Table 2: Mean results (in %) over the different degrees of
severity for different clinical attributes

Clinical attribute Number Sensitivity F1-score
Age (18-45 yo) 20 100 84.63
Age (45-60 yo) 12 90.48 88.97
Age (≥ 60 yo) 3 88.89 93.33
Gender (female) 8 100 85.71
Gender (male) 27 92.36 87.90
BMI (normal) 12 66.67 42.86
BMI (overweight) 12 90.48 84.13
BMI (obesity) 11 95.83 97.78

ing recurrent layers, was found to be time-consuming dur-
ing the training. A trade-off had to be made by training on
less data while reducing the number of configuration tests.

5. Conclusion and future work

In this work, the proposed method introduces a deep
learning model combining the advantages of both convo-
lutional and recurrent architectures to predict sleep apnea
from a long-term Holter ECG. This new model also shows
the edges of using attention mechanisms. It has high per-
formance and detects mild and moderate cases particularly
well. With further improvements, this study could benefit
both doctors and patients by providing a reliable yet sim-
pler and faster alternative to traditional screening exami-
nations of sleep apnea. As only powerline interference and
baseline wander were removed from the signals although
other types of noises such as myoelectric interferences can
also alter the ECGs, some additional preprocessing steps
need to be done. In addition, future work will also extend
the binary classification to a multi-class problem in order
to detect precisely hypopnea, central apnea and obstructive
apnea episodes.
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