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Abstract 
In dynamic biological processes such as development, spatial transcriptomics is 
revolutionizing the study of the mechanisms underlying spatial organization within tissues. 
Inferring cell fate trajectories from spatial transcriptomics profiled at several time points has 
thus emerged as a critical goal, requiring novel computational methods. Wasserstein gradient 
flow learning is a promising framework for analyzing sequencing data across time, built around 
a neural network representing the differentiation potential. However, existing gradient flow 
learning methods cannot analyze spatially resolved transcriptomic data. 
 
Here, we propose STORIES, a method that employs an extension of Optimal Transport to 
learn a spatially informed potential. We benchmark our approach using three large Stereo-seq 
spatiotemporal atlases and demonstrate superior spatial coherence compared to existing 
approaches. Finally, we provide an in-depth analysis of axolotl neural regeneration and mouse 
gliogenesis, recovering gene trends for known markers as Nptx1 in neuron regeneration and 
Aldh1l1 in gliogenesis and additional putative drivers. 

Introduction 
Spatial transcriptomics technologies are revolutionizing the study of how cells organize within 
tissues1. Techniques based on high-throughput sequencing have enabled the unbiased 
discovery of gene expression patterns within their spatial context. For instance, recent studies 
have revealed previously unknown spatial organization at the tumor-microenvironment 
interface in melanoma and Alzheimer's disease amyloid plaque microenvironment2,3. The 
most widely used spatially-resolved sequencing techniques (e.g. 10X Visium) measure spots 
larger than the typical cell size. However, recent technological developments based on 
barcoded arrays like Stereo-seq and HDST have reached single-cell resolution, effectively 
bridging functional and structural characterizations of the cell4,5. Recent works have leveraged 
Stereo-seq to produce large spatiotemporal atlases of various biological processes by profiling 
a system with spatial transcriptomics at several points in time4,6,7. These datasets are ideal for 
studying cellular dynamics within the tissue during processes such as development and the 
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onset of complex diseases, where cells undergo coordinated transcriptomic changes and 
spatial reorganization. 
 
Inferring the dynamics of biological processes from single-cell sequencing data requires 
tailored computational approaches known as trajectory inference methods8. Monocle initiated 
the field of trajectory inference by ordering cells along a pseudotime axis based on their 
transcriptomic similarities and analyzing gene expression trends along pseudotime9. While 
pseudotime represents the progression along a differentiation process, pseudotime-based 
methods do not provide a model for the underlying transcriptomic changes, and thus cannot 
predict a cell’s future transcriptomic state10. RNA velocity has thus been proposed to predict 
changes in gene expression based on splicing dynamics11. However, velocity-based methods 
rely on simple kinetic models that can misinterpret cell dynamics, for instance in the case of 
transient boosts in transcription12. 
 
Multiple methods based on Optimal Transport (OT) have been developed for cases when 
several time points are available along differentiation. Waddington OT infers trajectories by 
computing probabilistic cell-cell transitions between adjacent time points13. However, it 
delivers neither a notion of pseudotime nor a notion of velocity. Another class of OT-based 
methods proposes a continuous model of population dynamics by training neural networks 
representing a generalized notion of velocity14,15. However, these methods do not order cells 
along a pseudotime axis. A promising OT-based framework for trajectory inference consists 
of learning a potential function governing a causal model of differentiation16–18. Framing cellular 
differentiation as the minimization of a potential function is rooted in systems biology and 
formalizes Waddington's idea of epigenetic landscape19,20. Furthermore, the potential function 
is a natural alternative to pseudotime, and its gradient yields a rigorous notion of velocity. 
 
OT-based approaches for trajectory inference using spatial transcriptomics through time have 
recently been developed21–23. For instance, Moscot computes cell-cell transitions between 
adjacent time points using an extension of OT called Fused Gromov-Wasserstein (FGW), and 
stVCR learns a spatial velocity along with a gene expression velocity22–24. However, these 
methods do not provide an intuitive ordering of cells along differentiation, which limits their 
ability to discover the mechanisms driving dynamic biological processes. In addition, Moscot 
cannot predict the evolution of cells at future time points. 
 
Here, we propose STORIES, a novel trajectory inference method capable of learning a causal 
model of cellular differentiation from spatial transcriptomics through time using FGW. Unlike 
Moscot and stVCR, STORIES learns a potential function that defines each cell's stage of 
differentiation. In addition, unlike Moscot, STORIES allows one to predict the evolution of cells 
at future time points. Indeed, STORIES uses FGW as a machine learning loss to learn a 
continuous model of differentiation, while Moscot uses FGW to connect adjacent time points. 
 
We benchmarked our approach on three large-scale spatiotemporal Stereo-seq atlases, 
covering mouse development, zebrafish development, and axolotl regeneration6,6,7. 
Furthermore, we used STORIES for the in-depth analysis of cellular trajectories in axolotl 
neural regeneration and mouse gliogenesis. We recover gene trends for known markers, such 
as Nptx1 in Nptx+ excitatory neuron regeneration and Aldh1l1 in gliogenesis. In addition, 
STORIES uncovers other possible driver genes and transcriptional regulators of cellular 
differentiation in these contexts, which may be of interest for further biological investigation. 
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Finally, we provide STORIES as an open-source and user-friendly Python package 
(github.com/cantinilab/stories). It is based on the Scverse ecosystem, making it easy to 
interface STORIES with existing tools for single-cell analysis such as Scanpy and CellRank25–

27. In addition, STORIES benefits from the JAX ecosystem for deep learning and OT 
computation, enabling the fast handling of large datasets28,29. 

Results 

STORIES: a new single-cell trajectory inference method for 
spatial transcriptomics profiled through time 
 
We developed SpatioTemporal Omics eneRgIES (STORIES), a novel tool for single-cell 
trajectory inference using omics data profiled through spatial and temporal dimensions 
(github.com/cantinilab/stories). STORIES allows studying dynamic biological processes in 
their spatial context by identifying cell fates, gene trends, and candidate transcriptional 
regulators (see Fig. 1). 
 
STORIES is based on the Optimal Transport (OT), a mathematical framework that enables 
the geometrically meaningful comparison of distributions, using various flavors of the 
Wasserstein distance30,31. OT also provides a valuable model for population dynamics: the so-
called Wasserstein gradient flows were popularized by Jordan, Kinderlehrer, and Otto for their 
connection with the Fokker-Planck equation and were recently used for trajectory inference in 
single-cell transcriptomics16–18,32. However, existing methods for trajectory inference based on 
Wasserstein gradient flows are not equipped to deal with spatially resolved omics data. 
STORIES introduces key methodological innovations that allow one to address the specific 
challenges of including spatial information. 
 
As an input, STORIES takes slices of spatial transcriptomics profiled at several time points. 
For instance, Fig. 1A displays sections of axolotl brains profiled at different stages during 
regeneration. STORIES then learns the parameters  of a neural network , which assigns a 
differentiation potential to each cell according to its gene expression profile  (see Fig. 1B). 
The function  formalizes the Waddington epigenetic landscape, where undifferentiated cells 
have a high potential and, as they differentiate, move towards low-potential transcriptomic 
states, which correspond to mature cell types20. The transition to these low-potential attractor 
states defines a causal model of cellular dynamics capable of predicting future gene 
expression patterns and suggesting potential driver genes and transcriptional regulators (see 
Fig. 1C). 
 
STORIES's potential-based approach provides two interpretable and biologically meaningful 
outputs: (i) the potential  naturally orders cells  along a differentiation process (ii) the 
vector  gives the direction of the evolution of gene expression. On the contrary, 
pseudotime-based methods9,33,34 focus on the first aspect, and velocity-based11,35 methods 
focus on the second. Crucially, STORIES also innovates compared to state-of-the-art 
potential-based methods16–18 by enabling the use of spatial coordinates. 
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Briefly, STORIES trains the neural network  by predicting a distribution  of gene 
expression profiles for each time point  where . These distributions are then 
compared to the ground-truth distributions , and the parameters  are updated to improve 
the predictions. Unlike existing potential-based methods, STORIES allows one to take into 
account the spatial coordinates of cells when comparing the distributions of gene expression. 
 
Formally, let  denote the empirical distribution of cells at time , characterized 
by their gene expression profile , spatial coordinates  and weight  
where . Similarly, let us denote  the predictions of STORIES at 
time . Unlike the gene expression profiles , the spatial coordinates  are not directly 
comparable because the slices are not necessarily aligned between time points. In other 
words, the spatial coordinates  are defined up to an isometry (e.g., a rotation or 
translation).  
 
Existing potential-based methods train the neural network using a linear OT objective, which 
is sensitive to isometries. Our approach instead uses a recently developed quadratic extension 
of OT called Fused Gromov-Wasserstein (FGW), which renders the model invariant to spatial 
isometries24. The FGW distance, defined below and explained more thoroughly in the Methods 
section, allows one to compare the distributions  and  directly on gene expression profiles, 
and up to an isometry on spatial coordinates. 
 

       (1) 
 
FGW seeks a matrix  mapping cells from  to  such that  minimizes the sum of three 
terms: (i) the linear term  compares the gene expression coordinates  (ii) the quadratic 
term  compares pairwise distances  and , which are not affected by 
translating or rotating the tissue (iii) an entropic regularization term . The parameter  
denotes the relative weight of spatial information. 
 
Our proposed objective function evaluates the predictions across all time points using a 
debiased version of the FGW distance denoted  (see Methods): 
 

     (2) 
 
For , Equation 2 corresponds to a model relying purely on linear OT and which does not 
leverage spatial information, as proposed in the state-of-the-art16–18. In the following, we refer 
to this as the linear method. Existing methods16–18 propose different strategies to make the 
predictions . They vary in terms of teacher-forcing, number of steps between  and 

, and whether steps are implicit or explicit (see "Discretization" in Methods). The linear 
method presented here ( ) incorporates the best-performing choices for our experiments 
(see "Discretization" in Methods and Supplementary Figure 1). The linear method thus offers 
an unbiased way to assess the performance of STORIES compared to the state-of-the-art, as 
explored in the next section. 
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STORIES is implemented as an open-source Python package seamlessly integrated into the 
classical Python single-cell analysis pipeline (github.com/cantinilab/stories). Users can thus 
take advantage of scverse tools like Scanpy, Squidpy, and CellRank for preprocessing and 
downstream analysis26,27,36. In addition, STORIES provides a user-friendly visualization of 
driver genes and enriched transcription factors, thus helping biological interpretability. 
 
In the following sections, we extensively benchmark STORIES against the state-of-the-art16–

18 using large-scale spatiotemporal atlases. To this end, we compare the linear method to our 
proposed model across different values of the parameter . 

STORIES’s predictions are more biologically relevant than the 
state-of-the-art 
We assessed the effectiveness of STORIES in predicting cell states over time across three 
Stereo-seq spatiotemporal atlases: a mouse development atlas, a zebrafish development 
atlas, and an axolotl brain regeneration atlas4,6,7. Details on data processing are provided in 
the Methods section. 
 
From each atlas, we created three sets: a training set, an early test set, and a late test set 
(see Fig. 2A). The test sets are composed of two time points, and the goal is to use the first 
time point to predict the second time point’s gene expression. The late test set is particularly 
challenging because its second slice comes from an entirely new time point, which may 
contain cell states not seen during training. For example, in the zebrafish atlas, fast muscle 
cells only appear at 24 hours post-fertilization (i.e. hpf), whereas the training set includes slices 
only up to 18 hpf. 
 
Two scores, defined in the Methods section, have been used for the benchmark. First, the 
gene expression prediction score evaluates how closely the prediction approaches the real 
gene expression at the next time point. Second, the spatial coherence score evaluates 
whether the predictions are consistent with space. For instance, predicting lung cells from liver 
cells would yield a bad spatial coherence score. 
 
We compared STORIES to the linear method described in the previous section, which 
incorporates the best-performing aspects of state-of-the-art methods16–18 for our experiments 
(see "Discretization" in Methods and Supplementary Fig. 1). Since the linear method is 
formally equivalent to STORIES with , it offers an unbiased way to assess the usefulness 
of spatial information compared to the state-of-the-art. 
 
To better evaluate the impact of spatial information, we reported results with a varying weight 
, representing the importance of the spatial term compared to the gene expression term (see 

Figure 2B). As expected, smaller values of  perform better in terms of gene expression 
prediction score, while larger values perform better in terms of spatial coherence score. A 
good compromise between gene expression and space is obtained for , which we 
set as a default value. 
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For this choice of , STORIES outperforms the linear method in terms of spatial coherence 
across all datasets for both early and late test sets (see Fig. 2B). In addition, STORIES 
outperforms the linear method in terms of gene expression prediction in the mouse atlas's 
early test set and the zebrafish atlas's early test set. This demonstrates that STORIES's 
predictions are biologically relevant on two levels: they are accurate in gene expression and 
coherent in space. 

The biological relevance of STORIES’s predictions is confirmed in Fig. 2C, which compares 
the training losses of STORIES and the linear method. Since both methods involve matching 
predictions with a reference population of cells, we compared their matchings for specific cell 
types (see Methods). 

First, in the axolotl atlas, STORIES correctly matches predictions from immature neurons 
(IMN) with Nptx+ excitatory neurons in the lateral pallium (NptxEX), and predictions from 
regeneration intermediate progenitor cells (rIPC2) with excitatory neurons in the dorsal pallium 
(dpEX)7. The linear method, on the contrary, incorrectly matches rIPC2 predictions with 
microglial cells (MCG) from a different anatomical region (see Fig. 2C). 

Second, in the zebrafish atlas, STORIES accurately matches predictions from the optic vesicle 
with cells located around the eye, and predictions from the polster with cells located within the 
head. In contrast, the linear method incorrectly matches optic vesicle predictions with a broad 
group of cells across different anatomical regions, and polster predictions with cells from the 
tail area (see Fig. 2C). 

Third, in the mouse atlas, STORIES correctly matches predictions from liver and lung cells 
with their respective organs. The linear method, instead, incorrectly matches lung cell 
predictions with a broad group of cells across organs (see Fig. 2C), suggesting poor biological 
coherence of the linear method. 

STORIES's superior performance in achieving biologically coherent and accurate gene 
expression predictions demonstrates the significant benefit of considering spatial information 
when learning a gradient flow model on spatial transcriptomics data. 

STORIES identifies trajectories and potential drivers of neuron 
regeneration in axolotls 
To further assess the potential of STORIES for trajectory inference in spatial transcriptomics 
through time, we first focused on axolotl brain regeneration. 
 
We trained STORIES as described in Methods on the subset of cells described in the original 
publication as involved in neuron regeneration: Wnt+ and reactive ependymoglial cells 
(wntEGC and reaEGC), regeneration intermediate progenitor cells (rIPC1 and rIPC2), 
immature neurons (IMN), Nptx+ lateral pallium excitatory neurons (nptxEX), dorsal pallium 
excitatory neurons (dpEX), and medial pallium excitatory neurons (mpEX)7. As shown in Fig. 
3A, STORIES learns an energy landscape consistent with the original publication. Indeed, the 
potential  assigns a high potential to progenitor states (wntEGC and reaEGC), a medium 
potential to intermediary states (rIPC1, rIPC2, and IMN), and a low potential to mature states 
(nptxEX, dpEX, and mpEX). 
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We computed cell-cell transitions by applying CellRank on the gradient of the trained potential 
(see Methods), as visualized in Fig. 3B. These transitions highlight that STORIES not only 
detects the correct stage of differentiation, but also recovers the three trajectories described 
in the original publication: wntEGC-mpEX, reaEGC-rIPC2-dpEX, and reaEGC-rIPC1-IMN-
nptxEX7. Importantly, the authors identified these three trajectories by applying Moncole 
separately on three spatial regions and specifying EGCs as the starting point in each case. In 
contrast, STORIES achieves the same results without the need to isolate specific spatial 
regions and specify the starting point of the trajectory. Indeed, STORIES leverages spatial 
information to process all regions simultaneously and leverages temporal information to infer 
progenitor states from the data. 
 
We then narrowed further into the reaEGC-rIPC1-IMN-nptxEX trajectory, which the original 
publication studies in most detail7. First, we sought to confirm expected gene trends along this 
trajectory. The original study suggests Vim, which encodes a critical cytoskeletal protein, as a 
marker of reaEGC cells and Nptx1, which is involved in synaptic plasticity, as a marker of 
NptxEX. Accordingly, STORIES recovered a clear decreasing trend for Vim expression along 
differentiation and a clear increasing trend for Nptx1 expression (see Fig. 3C). 
 
Next, we performed unsupervised discovery of gene trends by fitting a spline regression model 
along the previously mentioned trajectory (see Methods). Fig. 3D reports the best candidate 
driver genes across differentiation stages. Interestingly, the early stages of differentiation 
coincide with high expression of Hes5, which is known to maintain stemness in the context of 
neural differentiation37, and Cdc25b, a cell-cycle regulator key to neuron production38,39. 
Conversely, late stages of differentiation coincide with high expression of the microtubule-
associated protein gene Map1a, crucial to neural development and regeneration40, and 
L1cam, shown to promote axonal regeneration41. STORIES also outputs additional genes that 
represent possible drivers of neuron regeneration and would require further biological 
investigation. For instance, STORIES uncovered a trend for late expression of the scarcely 
studied Nsg2, which is thought to be involved in synaptic function and, like Nptx1, interacts 
with AMPA receptors42. 
 
Finally, our analysis revealed possible transcriptional regulators of the differentiation process 
(see Fig. 3F) by testing transcription factor (TF) enrichment using the curated literature-based 
TRRUST database (see Methods). The most significantly enriched TF, CTNNB1, encodes β-
catenin, which has been described as an essential regulator in neuron regeneration in mouse 
models and in limb regeneration in axolotl43–45. Other top TFs include SP1 and MYC, described 
in the context of neuron regeneration and computationally retrieved in axolotl limb 
regeneration46–49. Additionally, we identify SOX6, MYCN, and REST, which are not widely 
studied in the context of regeneration but are known regulators in development50–52. 
Interestingly, a recent study predicted REST as a regulator of neuron regeneration and 
validated this role in a mouse model53. 
 
STORIES thus learned a Waddington landscape that captures cell fate trajectories, continuous 
changes of gene expression, and the regulatory landscape underlying neuron regeneration in 
axolotls. Our model allowed for the unbiased discovery of potential drivers and mechanisms, 
possibly relevant for further biological investigations. 
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STORIES identifies trajectories and potential drivers of 
gliogenesis in the developing mouse dorsal midbrain 
We then sought to highlight STORIES's potential in trajectory inference by studying mouse 
dorsal midbrain development. 
 
We trained STORIES as described in Methods on the subset of cells described in the original 
article as exhibiting a branching trajectory: radial glial cells (RGC) differentiating into either 
neuroblasts (NeuB) or glioblasts (GlioB)4. As visualized in Fig. 4A, STORIES learns an energy 
landscape consistent with the original publication. Indeed, the potential  assigns a high 
potential to RGC and a low potential to the more differentiated NeuB and GlioB. 
 
We computed cell-cell transitions by applying CellRank on the gradient of the trained potential 
(see Methods), as visualized in Fig. 4B. These transitions highlight that STORIES not only 
detects the correct stage of differentiation but also recovers the expected branching from RGC 
to glial and neural cell fates4. Importantly, the original publication identified this branching using 
Monocle 3, which required manually setting RGC as the trajectories' starting point. On the 
contrary, STORIES achieves the same results without manual input by leveraging temporal 
information to infer the starting point from the data. 
 
Glial cells outnumber neurons in the brain, but their development has been studied less 
extensively54. Moreover, understanding gliogenesis is of critical therapeutic importance 
because of its parallels with glioma, the most common and deadliest form of brain cancer55. 
Thus, we focused further on the RGC-GlioB trajectory. We first sought to confirm expected 
gene trends along this trajectory. The original study identifies Mki67, a proliferation marker, as 
highly expressed in RGC, and Aldh1l1, an astrocyte marker, as highly expressed in GlioB4. 
Accordingly, STORIES recovered a decreasing trend for Mki67 expression along 
differentiation and an increasing trend for Aldh1l1 expression (see Fig. 4C). 
 
Next, we performed unsupervised discovery of gene trends by fitting a spline regression model 
along the previously mentioned trajectory (see Methods). Fig. 4D reports the best candidate 
driver genes across differentiation stages. The early stages of differentiation coincide with a 
high expression of cell cycle genes Gmnn, Rrm2, and Hmgb256. Additionally, we observed a 
high expression of the alpha-tubulin gene Tuba1b in the early stages of differentiation, as 
previously described in the developing brain57. Conversely, the late stages of differentiation 
coincide with the high expression of the glutamine synthetase gene Glul, a key astrocyte 
marker58,59. STORIES also outputs additional genes that represent possible drivers of 
gliogenesis and would require further biological investigation. For instance, Glis3 displays an 
increasing trend along gliogenesis (see Fig. 4E) but is little studied in this context. However, 
Glis3 was recently suggested as a therapeutic target to suppress proliferation in glioma60. 
 
Finally, our analysis revealed candidate transcriptional regulators of the differentiation process 
(see Fig. 4F) by testing transcription factor (TF) enrichment using the curated literature-based 
TRRUST database (see Methods). Among the most enriched TFs, SOX4 and NOTCH2 have 
been studied in gliogenesis61,62. Additionally, STORIES recovers MYC, MYCN, and MAX, 
which have been studied in the context of glioma63. 
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This second experiment in the context of gliogenesis confirms STORIES's ability to learn a 
Waddington landscape that captures cell fate trajectories, continuous gene expression 
changes, and regulatory processes. In doing so, we highlight known and potential 
mechanisms that motivate further biological investigations. 

Discussion 
Recent technological advances in spatial transcriptomics have enabled the tracking of gene 
expression at single-cell resolution in the spatial context of the tissue. Large datasets of spatial 
transcriptomics profiled through time give a unique opportunity to understand dynamic 
biological processes such as development and disease onset. However, their analysis 
requires trajectory inference tools tailored to the specific challenges of spatial data. 
 
In this article, we proposed SpatioTemporal Omics eneRgIES (STORIES), a novel 
computational framework for trajectory inference from spatial transcriptomics profiled at 
several time points. STORIES enables a rich and spatially informed analysis of differentiation 
trajectories. To evaluate STORIES’s performance, we benchmarked it against the state-of-
the-art in three large Stereo-seq datasets and highlighted the advantage of considering spatial 
information in trajectory inference from time-course single-cell data. We further showcased 
STORIES’s abilities in two concrete settings: axolotl neuron regeneration and mouse 
gliogenesis. 
 
STORIES offers a model of population dynamics tailored for single-cell resolution spatial 
transcriptomics technologies like Stereo-seq or Visium HD. Given the fast-paced 
developments in spatial transcriptomics1, the number of spatiotemporal atlases at single-cell 
resolution can be expected to increase steadily. At the same time, STORIES could be applied 
to low-resolution data (e.g. 10x Visium), which have a spot size larger than the typical cell, 
using deconvolution techniques64,65. In addition, STORIES could be adapted to imaging-based 
technologies like MERFISH which offer high resolution but can only detect a limited panel of 
genes66. 
 
STORIES provides an interpretable model of differentiation relying on a potential energy. 
Previous work shows that such potential landscapes arise naturally from simple gene 
regulatory networks (GRNs)19. However, potential energies cannot model complex GRNs, cell-
cell communication, or oscillations within a cell state67. Extensions to more complex energy 
functionals could thus lead to further insights into biological processes such as development, 
immune response, and the onset of complex disease. For instance, recent work in gradient 
flow learning explored interaction energies68, which could represent cell-cell communication in 
biology. 
 
The major novelty of STORIES is its ability to learn a spatially-informed potential. This 
methodological development is critical because dynamic processes such as development 
involve coordinated expression changes and tissue reorganization69. However, the learned 
potential operates only on gene expression, so it does not allow the prediction of future 
positions of cells. Including a spatial component in the energy function may provide a more 
comprehensive view of biological processes by predicting cell migration. Relating this to 
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existing models for morphogenesis, such as Alan Turing's reaction-diffusion model70–72, is an 
exciting avenue for further research. 

Methods 

Data collection 

Zebrafish 
For the training and validation sets, we used the five first time points showcased in Figure 2A 
of the original publication6: 3.3hpf slice 1, 5.25hpf slice 10, 10hpf slice 11, 12hpf slice 8, 
18hpf slice 8. 
 
For the test set, we used: 

● 10hpf slice 17 and 12hpf slice 5 to evaluate prediction within the time range seen 
during training. These two slices were studied together in Figure S4A of the original 
publication6. 

● 18hpf slice 11 and 24hpf slice 4 to evaluate prediction outside the time range seen 
during training. These two slices were studied together in Figure S4E of the original 
publication6. 

 
Altogether, this represented 17,920 cells after preprocessing. 

Mouse 
For the training and validation sets, we used the 7 first time points showcased in Figure 3A 
of the original publication4: E9.5 E1S1, E10.5 E1S1, E11.5 E1S1, E12.5 E1S1, E13.5 E1S1, 
E14.5 E1S1, E15.5 E1S1. 
 
For the test set, we used: 

● E13.5 E1S2 and E14.5 E1S2 to evaluate prediction within the time range seen during 
training. These two slices were studied in Figure S2C of the original publication4. 

● E15.5 E1S2 and E16.5 E1S1 to evaluate prediction outside of the time range seen 
during training. The first slice was studied in Figure S2C and the second in Figure 3A 
of the original publication4. 

Altogether, this represented 794,063 cells after preprocessing. 

Dorsal midbrain 
We retained one slice per time point. We used the 3 slices showcased in Figure S7A of the 
original publication4: E12.5 (E1S3), E14.5 (E1S3), E16.5 (E1S3). As in the original 
publication, we subset the analysis to the RGC, NeuB, and GlioB cell types. 
Altogether, this represented 4,581 cells after preprocessing. Note that the "Mouse" dataset 
and the "Dorsal midbrain" dataset originate from the same experiments but have different 
resolutions (bin 50 vs image-based segmentation), so the same neural network weights 
cannot be used in both cases. 
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Axolotl 
Benchmark. For the training and validation sets, we used the five first time points showcased 
in Figure 3B of the original publication7: 2DPI (rep1), 5DPI (rep1), 10DPI (rep1), 15DPI 
(rep4), 20DPI (rep2). We manually removed spatial outliers in 10DPI (rep1), 15DPI (rep4), 
and 20DPI (rep2). For the test set, we used: 

● 10DPI (rep2) and 15DPI (rep1) to evaluate prediction within the time range seen 
during training. These two slices were showcased in Figure S9 of the original 
publication7. 

● 20DPI (rep3) and 30DPI (rep2) to evaluate prediction outside of the time range seen 
during training. These two slices were showcased in Figure S9 of the original 
publication7. 

As in the original publication, we restricted the analysis to the dorsal part of the injured 
hemisphere. Altogether, this represented 22,083 cells. 
 
In-depth analysis. For the analysis in Section 3 of Results, we used slices 2DPI (rep1), 5DPI 
(rep1), 10DPI (rep1), 15DPI (rep4), 20DPI (rep2), and 30DPI (rep2). As before, we manually 
removed spatial outliers and restricted the analysis to the dorsal part of the injured 
hemisphere. As in the original publication, we subset the data to the following cell types: 
nptxEX, reaEGC, wntEGC, dpEX, mpEX, IMN, rIPC1, rIPC2. This represented 5,904 cells. 

Preprocessing 
For all datasets, we performed the following preprocessing steps. 
 
Cell and gene quality control. Using Scanpy's sc.pp.filter_cells, we removed cells with less 
than 200 expressed genes. Then, we removed the top 0.1% of cells with the most expressed 
genes. Finally, we removed genes expressed in less than 3 cells using Scanpy's 
sc.pp.filter_genes. 
 
Normalization and highly variable gene selection. We applied Scanpy's "Pearson residuals 
normalization" and selected 10,000 highly variable genes. Scanpy computed highly variable 
genes for each batch and merged them to avoid selecting batch-specific genes. 
 
Dimensionality reduction. Using Scanpy's sc.tl.pca, we applied Principal Component 
Analysis (PCA) to reduce the data to 50 dimensions. Section 3 and Section 4 of Results 
used a subset of relevant cell types. This was done after PCA but before batch correction. 
 
Batch correction. We applied Harmony on the PCA components to correct the batch effects, 
using Scanpy's sc.external.pp.harmony_integrate, a wrapper around harmonypy73. 
 
Visualization. Using Scanpy's sc.tl.umap, we applied UMAP to project the batch-corrected 
data into two dimensions. In Section 3 and Section 4 of Results we applied Isomap instead 
of UMAP. Indeed, we found that visually, Isomap respected cell type transitions better than 
UMAP. We used scikit-learn's sklearn.manifold.Isomap. 
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Wasserstein gradient flow learning with a quadratic objective 

Notations 
Let us consider a time point  and  a discrete distribution of  cells. 
We denote  where the vector  represents the gene expression of the 
-th cell, and the weights  are such that . In the following, for a function 

, we define the pushforward measure as . 

Wasserstein gradient flow 
Similarly to previous works16–18, we model the evolution of  as a Wasserstein gradient flow 
for a potential energy. For one single cell , the Euclidean gradient flow is a  that verifies 

, the continuous counterpart of gradient descent. Wasserstein gradient flows 
extend this to the space of measures74,75. 
We say that  is a Wasserstein gradient flow for the energy  if 
its density verifies the continuity equation 

 
As in previous works16–18, we do not know the potential  a priori and aim instead 
to learn a neural network  from snapshots  for . See 
"neural network architecture" for details about . 

Discretization 
Our approach boils down to learning  such that for given parameters  and an initial 
population , the predicted populations  are close to the observed snapshots . 
To make these predictions, existing potential-based methods16–18 differ in three main 
aspects: number of steps, teacher-forcing, and discretization scheme. As detailed below, we 
select the best-performing choices for these three aspects, as measured by validation loss in 
the Zebrafish atlas. The linear method ( ) thus differs from existing works by combining 
their best-performing aspects. 
 
Number of steps. Hashimoto et al. and Yeo et al.16,17 make intermediary predictions between 

 and , i.e. . Bunne et al. perform a single step instead, i.e. 
18. In our experiments, multiple steps did not improve results (see 

Supplementary Figure 1A) so we chose the computationally less expensive single-step 
method. 
 
Teacher-forcing. Hashimoto et al. and Yeo et al.16,17 predict  from . Bunne et al. 
introduce teacher-forcing, i.e. predicting  from 18. In our experiments, teacher-forcing 
improved results (see Supplementary Figure 1B), so we used it throughout this work. 
 
Discretization scheme. To predict  from an earlier population , we used the forward 
Euler discretization scheme  as Hashimoto et al. and Yeo et al.16,17. 
In our discrete setting, this corresponds to  for each cell . Bunne et 
al. propose using a backward Euler scheme to improve stability for large 18. However we 
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did not find this to improve results in our experiments (see Supplementary Figure 1C), so we 
used the computationally less expensive forward method. 

Pairwise information 
Our setting differs from previous works16–18 in that for each cell  we have access to 
spatial coordinates . Spatial coordinates are defined up to an isometry. For instance, 
a slice of an embryo may be rotated without changing the problem. Consequently, one 
cannot simply concatenate  and  to leverage the spatial coordinates. The next paragraph 
details how we used the coordinates  to inform the problem, while still defining 

 only on gene expression. 

Learning the potential 
For each , we compared the prediction  to the reference snapshot . 
 
Linear model. Let us consider two discrete probability distributions  and 

. To compare  and , previous works16–18 use the Sinkhorn 
divergence76, defined as  

 
where  is the entropy-regularized Optimal Transport77 (entropy-regularized OT), defined 
as 

 
Here,  and 

 is the Shannon entropy.  is a debiased version of , 
such that . 
 
Quadratic model. The Sinkhorn divergence between  and  only compares distributions of 
gene expression. Instead, we propose a debiased Fused Gromov-Wasserstein (debiased 
FGW) loss to enforce the spatial coherence of the predictions. Let us consider 

 and . Gromov-Wasserstein (GW) is a 
quadratic extension of OT well suited to compare measures defined up to an isometry78. A 
debiased version of GW has been used to learn a Generative Adversarial Network (GAN)79. 
Fused Gromov-Wassertein (FGW) combines a linear and a quadratic OT term80. In our 
setting, it is natural to use the linear term for gene expression and the quadratic term for 
spatial coordinates: 

    

 

 
Analogously to Bunne et al., we introduce a debiased FGW to ensure the loss vanishes for 
an exact match79. 
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A weight  corresponds to the debiased entropy-regularized GW81. As , we 
recover the Sinkhorn divergence . 
 
Final loss function. For , the full objective reads 

 
where  with . In other words, gene 
expression is predicted with teacher-forcing and a single forward step (see "Discretization"), 
and the spatial coordinates remain unchanged. This loss is optimized using minibatches, as 
done by Yeo et al. and Bunne et al.17,18 A theoretical study of minibatch Optimal Transport 
for debiased linear and quadratic OT is provided by Fatras et al.82 
 

Choice of the quadratic weight 
To investigate the effect of the relative weight of the linear term in FGW, we reported results 
for . Choosing  
would not allow learning the potential  because it would ignore gene expression. As 
expected, with a low weight ( ), STORIES behaves as the linear method (see 
Section 2 of Results). 
 
To compare our approach with the linear model proposed in previous works16–18, we also 
trained the model with a Sinkhorn divergence, i.e.  . 
 
The benchmark in Section 2 of Results suggests good performances for values of  of the 
order of , with  performing best. The value of  can be adjusted by the user 
depending on the dataset. In Section 3 and Section 4 of Results we set a value of . 

Computational Optimal Transport 

OTT solvers 
We use the OTT package to solve OT problems in a fast, GPU-enabled, and differentiable 
manner29. In particular, we rely on the Sinkhorn and GromovWasserstein solvers. We set the 
entropic regularization . 

Linear term: gene expression 
The linear OT terms are defined on gene expression space, for which we chose the  first 
components of the Harmony-aligned Principal Component Analysis. We chose  
components as Bunne et al.18 Before training the neural network, we normalized the points 

as  to make the linear and quadratic terms comparable. 
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Quadratic term: Spatial coordinates 
Before training the neural network and for each slice separately, we centered the spatial 
coordinates and scaled them to unit variance to make linear and quadratic terms 
comparable. 

Neural network architecture 
We implemented a Multi-Layer Perceptron (MLP) with two hidden layers of dimension 128 
and GeLU activations using Flax83. This is a similar architecture to previous works16–18. The 
linear output layer has no bias since it would not influence the values of . Likewise, a soft 
activation like GeLU is preferable to the classical ReLU because we manipulate . 
Indeed, the derivative of ReLU is simply a unit step function, which is discontinuous and not 
very expressive. 

Neural network training 

Data loading 
For each time point described in “Data Collection", 75% of the cells were used as training 
samples and 25% as validation. At each training or validation iteration, a batch containing 
1,000 cells per time point was sampled uniformly without replacement. In development, the 
early time points contain fewer cells than the later time points. If less than 1,000 cells were 
available for a time point, we used all available cells. To reflect the train/validation split, one 
in four iterations performs a validation step. 

Optimizer 
We used Optax's implementation of the AdamW optimizer, with parameters b1=0.9, 
b2=0.999, eps=1e-8, and weight_decay=1e-428,84. We set the learning rate using 
Optax's cosine scheduler, with an initial value of 1e-2 and 10000 decay steps. To ensure 
convergence, when performing 10 steps, we set the learning rate to 1e-3. Similarly, when 
performing an implicit step, we set the learning rate to 1e-4. 

Early stopping 
We set the maximum number of iterations to 15,000 but stopped the training when the 
validation loss had not improved in 150 iterations. We kept the weights associated with the 
lowest validation loss. 

Seeds 
We ran every experiment with 10 random seeds: 17158, 20181, 12409, 5360, 21712, 
21781, 24802, 13630, 9668, and 651. The random seed reproducibly determines the 
train/validation split and weight initialization. For the plots in Figure 2C, and the analysis in 
Section 3 and Section 4 of Results, the experiments correspond to the randomly chosen 
seed 20181. 
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Computational growth rate 

Weight of marginals 
When comparing a prediction  to the reference snapshot , Yeo et al. proposes setting 
the weights  of the prediction  proportionally to a computationally derived 
growth rate17. The motivation is that cells with a larger growth rate should be matched to 
more descendants. This idea was introduced in Waddington OT and recently reimplemented 
in MOSCOT13,22. In the next paragraphs, we follow MOSCOT's implementation. 

Proliferation and apoptosis 
Computing the growth rate relies on cell-wise proliferation and apoptosis scores. We used 
Scanpy's sc.tl.score_genes with lists of genes collected from the literature. The gene 
lists are described in more detail at the end of the section. We calculated gene scores on 
raw counts, after quality filtering of cells and genes. 

Calculating the growth rate 
For a given cell , let us call  the proliferation score and  the apoptosis 
score. We then define the birth rate  and the death rate  as 

 
We used MOSCOT's default parameters , , 

, , , . Finally, we defined the cell's growth 
rate as 

 
where  is the time difference between populations. We obtained  by normalizing the 
growth rate 

 
In this equation,  plays the role of the softmax's inverse temperature. The histogram  will 
thus be sharper for large values of . Most slices in our experiments were evenly sampled, 
so we set a fixed , which yielded sharp enough weight differences between cell types. 

In the benchmark 
Previous works tested gene sets to compute the growth rate in the case of mice and 
humans, but not of zebrafish and axolotl13,17,22. We thus kept uniform marginals for the 
benchmark in Section 2 of Results. In Section 3 and Section 4 of Results, we analyzed a 
restricted number of cell types, where we could validate the biological coherence of the 
computed growth rate and of the learned potential (see details in paragraphs below). 

Dorsal midbrain 
For Section 3 of Results, we used murine proliferation and apoptosis gene sets from 
MOSCOT. Proliferation genes come from https://doi.org/10.1038/nature20123 and apoptosis 
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genes from https://www.gsea-msigdb.org/gsea/msigdb/cards/HALLMARK_P53_PATHWAY. 
See Supplementary Text 1 and Supplementary Text 2 for the gene names. 

Axolotl neuron regeneration 
For Section 4 of Results, we used an NSC axolotl gene set described in the original 
publication https://www.science.org/doi/10.1126/science.abp9444 to represent proliferation 
and a human apoptosis gene set from MOSCOT, originally from gsea-msigdb's 
HALLMARK_APOPTOSIS. See Supplementary Text 3 and Supplementary Text 4 for the 
gene names. 

Evaluation 
We solve the FGW problem with  and  and report the terms  and 

 separately. Since  quantifies the error in terms of gene expression, we call this 
quantity the gene expression prediction score. Similarly, since  quantifies the error in 
terms of spatial coordinates, we call this quantity the spatial coherence score. 
 
Figure 3C compares the transport plans involved in the linear method and STORIES with 

. Formally, let us consider the indicator vector  where  if the -th 
cell corresponds to a given cell type, and  otherwise. The transport plan  between the 
prediction  and the ground truth  is applied to the indicator, yielding a vector  
representing the mass transported from  towards each cell in the second time point. 

Trajectory inference 

Gene imputation 
In our analysis, the gene expression trends (Figure 3 and Figure 4) would be negatively 
affected by the sparsity of gene expression. Cellrank demonstrated good performances in 
identifying gene expression trends with MAGIC27,85. We thus applied MAGIC gene 
imputation after all other preprocessing steps. We computed the exponentiated Markov 
transition matrix on the Harmony-aligned PCA space instead of the original PCA. We did not 
use the imputed signal for tasks other than gene expression trends. 

Potential visualization 
The neural potential  is a functional defined on the 20-dimensional space of Harmony-
aligned principal components. To visualize the potential as a Waddington-like landscape 
defined on 2 dimensions, we proceed similarly to Qin et al.86. 

● First, we compute the potential  associated with each cell . 
● Then, we use Scipy's RBF interpolation and the 2-dimensional Isomap coordinates of 

the cells to define a potential on a 2-dimensional grid87. 
● The cells are projected on the surface using the interpolator. 
● Finally, the maximum value is thresholded. 

We rendered the resulting surface and point cloud using Blender's Python API. 
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Cell-cell transition matrix 
We used CellRank's VelocityKernel with a velocity  for a trained . Based 
on this kernel, we computed a cell-cell transition matrix, and the trajectory plots Figure 3B, 
Figure 4B. 

Gene expression trends 
We fit the MAGIC-imputed gene expression as a function of the learned potential, using 
Scipy's Spline Regression87. To plot the gene expression cascades in Figure 3D, Figure 4D, 
we order genes by the value of potential for which the maximum regressed expression value 
is achieved. Genes are then split into equally sized groups illustrating different stages of 
differentiation (10 groups for Figure 3D and 2 groups for Figure 4D). Finally, regressed 
values for the genes with the best regression scores in each group are displayed (3 per 
group in Figure 3D and 15 per group in Figure 4D). 

Transcription factor enrichment 
We perform TF-target enrichment based on the TRRUST dataset, which contains 
“Activation", "Repression", and "Unknown" links based on a curated literature search88. For 
each TF in the database, we perform a Wilcoxon rank-sum test comparing the list of 
regression scores of its target genes, and the list of regression scores of the other genes. 
Figure 3B and Figure 4B display the TFs ranked by -value. 

Data availability 
● We retrieved the mouse Stereo-seq atlas from Chen et al.4, available at 

https://db.cngb.org/stomics/mosta/. 
● We retrieved the zebrafish Stereo-seq atlas from Liu et al.6, available at 

https://db.cngb.org/stomics/zesta/. 
● We retrieved the axolotl Stereo-seq atlas from Wei et al.7, available at 

https://db.cngb.org/stomics/artista/. 
● We retrieved mouse proliferation genes from Tirosh et al.89 (see Supplementary Text 

1) and apoptosis genes from gsea-msigdb's HALLMARK_P53_PATHWAY (see 
Supplementary Text 2). 

● We retrieved an NSC axolotl gene set from Wei et al.7 (see Supplementary Text 3) 
and a human apoptosis gene set from gsea-msigdb's HALLMARK_APOPTOSIS  
(see Supplementary Text 4). 

Code availability 
The Python package for STORIES is hosted at https://github.com/cantinilab/stories. It can be 
installed easily by running “pip install stories-jax”. Code to reproduce the experiments and 
figures is available at https://github.com/cantinilab/stories_reproducibility/. 
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Figure captions 
Figure 1. Overview of STORIES. (A) STORIES takes as an input spatial transcriptomics 
through time. (B) STORIES learns the parameters  of a neural network  representing the 
differentiation potential of a cell based on its transcriptomic profile. The objective function is 
based on Fused Gromov-Wasserstein, which leverages both the transcriptomic profile and the 
spatial coordinates. (C) The gradient of the function  delivers a velocity that can be used to 
perform trajectory inference. The potential itself is a natural alternative to pseudotime and 
allows the study of gene trends along differentiation. Finally, STORIES can highlight possible 
transcription factors regulating differentiation. 
 
Figure 2. Benchmark of STORIES on three large datasets. (A) Visual representation of the 
three datasets in our benchmark. From left to right, an axolotl brain regeneration dataset, 
zebrafish development, and mouse development. Slices in each dataset are split into a train 
set (blue), an early test set (orange), and a late test set (green). (B) Gene expression 
prediction score (top) and spatial coherence score (bottom) in early test sets (orange) and late 
test sets (green) across the three datasets. Scores are reported for ten seeds, across seven 
values of quadratic weight parameter , including the linear method ( , light orange/green). 
(C) Visual representation of the optimal transport matching involved in the loss of the linear 
method (top) and STORIES for  (bottom), for the three datasets. In each dataset, 
the left slice displays two cell types and the right slice displays the cells they are matched with 
at the following time point. 
 
Figure 3. Trajectory inference with STORIES in axolotl neuron regeneration. (A) 3-D 
representation of the potential landscape learned with STORIES. The x and y axes are Isomap 
coordinates, and the z-axis is an interpolation of the potential. Colors represent cell types 
involved in the regeneration process. (B) Visual representation of cell-cell transitions 
computed using CellRank from STORIES’s velocity vectors. (C) Smoothed gene expression 
for Vim and Nptx1 along the potential computed by STORIES. The blue line is a spline 
regression of expression from potential. (D) Normalized gene expression regressed using a 
spline model along the potential computed by STORIES. Genes are ordered by the potential 
for which they achieve maximum expression (E) Smoothed gene expression for Hes5 and 
Nsg2 along the potential computed by STORIES. The blue line is a spline regression of 
expression from potential. (F) Enrichment scores of Transcription Factors targeting candidate 
driver genes. 
 
Figure 4. Trajectory inference with STORIES in mouse gliogenesis. (A) 3-D 
representation of the potential landscape learned with STORIES. The x and y axes are Isomap 
coordinates, and the z-axis is an interpolation of the potential. Colors represent radial glial 
cells which differentiate into either neuroblasts or glioblasts. (B) Visual representation of cell-
cell transitions computed using CellRank from STORIES’s velocity vectors. (C) Smoothed 
gene expression for Mki67 and Aldh1l1 along the potential computed by STORIES. The blue 
line is a spline regression of expression from potential. (D) Normalized gene expression 
regressed using a spline model along the potential computed by STORIES. Genes are ordered 
by the potential for which they achieve maximum expression (E) Smoothed gene expression 
for Tuba1b and Glis3 along the potential computed by STORIES. The blue line is a spline 
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regression of expression from potential. (F) Enrichment scores of transcription factors 
targeting candidate driver genes. 
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