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We present an analysis of the performance of the coupled-trajectory schemes for

nonadiabatic dynamics derived from the exact factorization of the electron-nuclear

wavefunction and implemented in the G-CTMQC code. These algorithms can be seen

as variations of the standard Ehrenfest method and Tully surface hopping, which are

based, however, on independent trajectories. The reported analysis aims to compare

the coupled-trajectory and the independent-trajectory schemes, and to benchmark

the numerical results against exact quantum waavepacket dynamics. To this end, we

employ an analyitical molecular model with two nuclear degrees of freedom and three

electronic states that allows us to describe the photo-induced hydrogen dissociation in

phenol. The analysis focuses on different electronic and nuclear properties calculated

along the nonadiabatic dynamics of phenol.
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I. INTRODUCTION

The exact factorization of the time-dependent electron-nuclear wavefunction is a formal-

ism introduced in 2010 by Gross and coworkers1,2 to express a molecular wavefunction as

the product of a marginal nuclear and a conditional electronic amplitude. This formalism

is a generalization to the time domain of the analogous static factorization developed by

Hunter3–6 and adopted later on in other groups7–10, and has found until today many different

applications for the interpretation11–29 and the simulation30–39 of electron-nuclear dynamics

beyond the Born-Oppenheimer approximation.

The exact factorization offers a way to decompose the dynamical problem represented

by the molecular time-dependent Schrödinger equation into coupled nuclear and electronic

equations for the marginal and for the conditional amplitudes, respectively. The electrons

effectively act on the nuclei as time-dependent scalar and vector potentials that completely

determine the evolution of the nuclear wavefunction via a nuclear Hamiltonian, thus in the

form of a (nuclear) time-dependent Schrödinger equation. These time-dependent potentials

incorporate nonadiabatic effects beyond the Born-Oppenheimer approximation40, and thus

involve the ground and excited electronic states which are coupled through the nuclear mo-

tion. While only few attempts have been made to solve exactly41,42 the coupled equations

for the marginal and for the conditional amplitudes, the presence of the time-dependent po-

tentials in the nuclear Hamiltonian allows one to easily introduce a picture of the nuclear

dynamics in terms of trajectories. Ciccotti and coworkers rigorously reformulated42,43 the

nuclear equation using the method of characteristics, that can be interpreted as quantum

trajectories in a Bohmian sense44, but the main computational advantage has been achieved

with a more classical-like treatment of the nuclear dynamics33,45–47. Algorithms such as the

coupled-trajectory mixed quantum-classical (CTMQC) scheme45,48–50, along with its energy-

conserving variation CTMQC-E51, and coupled-trajectory Tully surface hopping (CTTSH)47

allowed us to simulate nonadiabatic processes of various molecular models36,51,52 and molec-

ular systems using an on-the-fly approach30,38,53.

CTMQC(-E) and CTTSH describe the nuclear dynamics in terms of an ensemble of cou-

pled classical-like trajectories. These trajectories have to be propagated simultaneously since

they reproduce the evolution of an underlying time-dependent nuclear probability density. The

classical-like force that guides the trajectories is determined from the time-dependent scalar

and vector potentials. The potentials can be expressed in terms of adiabatic energies and

nonadiabatic couplings by expanding the time-dependent conditional electronic amplitude in

the adiabatic basis, as done in standard procedures for nonadiabatic excited-state dynamics

such as Ehrenfest 54 and Tully surface hopping (TSH)55. This allows to reconstruct the time-

dependent potantials on-the-fly during the dynamics using information provided by standard

quantum-chemistry packages. Indeed, the time-dependent state of the electrons is deter-

mined by solving the evolution equation for the conditional amplitude along the trajectories

ensemble.

We note here that additional simplifications have been introduced by Min and coworkers

to propose independent-trajectory algorithms derived from the exact factorization, i.e., the

methods surface hopping based on the exact factorization (SHXF) and Ehrenfest dynamics

based on the exact factorization (EhXF), allowing one to access complex molecular systems

2

https://doi.org/10.26434/chemrxiv-2024-v2g59 ORCID: https://orcid.org/0000-0003-2951-4964 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-v2g59
https://orcid.org/0000-0003-2951-4964
https://creativecommons.org/licenses/by/4.0/


and processes33,56–59. Also, Blumberger and coworkers recently developed CTMQC-(E)DI60,

where a double-intercept (DI) idea is introduced in CTMQC and in CTMQC-E to cure

numerical instabilities encountered in these methods when calculating the coupling among

the trajectories, thus, greatly improving energy and norm conservation.

Some of these independent and coupled-trajectory algorithms are currently implemented

in G-CTQMC package61. Therefore, we find interesting at this stage of the computational

and theoretical development of the exact factorization, to present an in-depth comparison of

the performance of the exact-factorization-based algorithms, namely, CTMQC, CTMQC-E

and CTTSH, with Ehrenfest and TSH, using the same molecular example. We choose for

this study a three-electronic-state two-nuclear-dimensional molecular model that mimics the

hydrogen dissociation in photo-excited phenol62. Even though the molecular Hamiltonian

is provided as analytical model potentials, the system presents some challenging features,

namely (i) the presence of a conical intersection between the bright S1 state and the dark S2
state whose access is limited by the initial energy of the photo-excitation, (ii) the presence

of two subsequent conical intersections, i.e., S1/S2 and S0/S1, that are encountered along

the ultrafast process that leads to hydrogen dissociation either in S0 or in S1, and (iii) the

activation of a periodic nuclear variable upon photo-excitation.

Before describing the photo-induced dynamics of phenol, we recall in Section II the exact

factorization of the electron-nuclear wavefunction and the coupled-trajectory algorithms that

will be used in the numerical analysis. Then, in Section III we describe the molecular model

used in the calculations and report our analysis of the dynamics of phenol upon photo-

excitation. To finalize, we state our conclusions in Section IV.

II. EXACT FACTORIZATION OF THE MOLECULAR WAVEFUNCTION

The non-relativistic molecular Hamiltonian

Ĥ(r,R) = T̂ (R) + ĤBO(r,R) (1)

defines a system of interacting electrons and nuclei, whose positions are collectively indicated

with the symbols r and R, respectively. We indicate with T̂ (R) the nuclear kinetic energy

and with ĤBO(r,R) the sum of remaining terms, i.e., the electronic kinetic energy and all

the interactions; ĤBO(r,R) is usually referred to as Born-Oppenheimer (BO) Hamiltonian.

The time-dependent Schrödinger equation (TDSE) with Ĥ(r,R) dictates the evolution of

the molecular wavefunction Ψ(r,R, t) as

i~
∂

∂t
Ψ(r,R, t) = Ĥ(r,R)Ψ(r,R, t) (2)

The exact factorization1,2 states that the total molecular wavefunction can be exactly fac-

torized as a single correlated product

Ψ(r,R, t) = χ(R, t)Φ(r, t;R) (3)

of a marginal wavefunction, i.e., χ(R, t), and a conditional amplitude, i.e., Φ(r, t;R), that

parametrically depends on the nuclear coordinates R. The interpretation of |Ψ(r,R, t)|2 as
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a joint probability density allows one to easily identify |χ(R, t)|2 as the marginal probability

density of R, with |Φ(r, t;R)|2 the conditional probability density, whose normalization over

r has to be imposed ∀ R, t. The TDSE combined with such a partial normalization condition

yields

i~
∂

∂t
χ(R, t) =

[∑
ν

[−i~∇ν + Aν(R, t)]2

2Mν

+ ε(R, t)

]
χ(R, t) (4)

i~
∂

∂t
Φ(r, t;R) =

[
ĤBO(r,R) + Ûen[Φ, χ]− ε(R, t)

]
Φ(r, t;R) (5)

which are the coupled evolution equations for χ(R, t) and Φ(r, t;R), respectively. The index

ν is used to label the nuclei and Mν their masses.

Equation (4) is itself a TDSE where the coupling to the dynamics of Φ(r, t;R) is expressed

in terms of a time-dependent vector potential (TDVP)

Aν(R, t) = 〈Φ(t;R)| −i~∇νΦ(t;R)〉r (6)

and a time-dependent potential energy surface (TDPES)

ε(R, t) = 〈Φ(t;R)| ĤBO(r,R) + Ûen[Φ, χ]− i~
∂

∂t
|Φ(t;R)〉r (7)

In the definitions of the TDVP and TDPES, we indicate with the symbol 〈 · 〉r an integration

over r, and we use the convention that such variable does not appear explicitly in the term

in the bra-ket as it is integrated over.

Note that the product form of the wavefunction Ψ(r,R, t) is invariant under the phase

transformations Φ̃(r, t;R) = exp [(i/~)θ(R, t)]Φ(r, t;R) and χ̃(R, t) = exp [(−i/~)θ(R, t)]χ(R, t).

Thus, under these transformations, the TDVP and TDPES transform as well, as standard

gauge potentials, namely Ãν(R, t) = Aν(R, t) +∇νθ(R, t) and ε̃(R, t) = ε(R, t) +∂tθ(R, t),

and Eqs. (4) and (5) are form-invariant.

Equation (5) yields the evolution of Φ(r, t;R), where the coupling to the dynamics of

Eq. (4) is provided by the electron-nuclear coupling operator

Ûen[Φ, χ] =
∑
ν

[−i~∇ν − Aν(R, t)]2

2Mν

+
∑
ν

1

Mν

(
−i~∇νχ(R, t)

χ(R, t)
+ Aν(R, t)

)
(−i~∇ν − Aν(R, t))

(8)

Due to the non-linearity of Eq. (5), the time-evolution of Φ(r, t;R) does not have a

Schrödinger form, unlike the time-evolution of χ(R, t). As discussed in the Introduction,

interesting applications of the exact factorization of the electron-nuclear wavefunction fo-

cused on introducing a trajectory-based perspective within this framework, such that the

nuclear dynamics is ultimately approximated using classical-like trajectories while the elec-

tronic dynamics is treated quantum mechanically. The trajectory-based solution of the

nuclear equation (4) is introduced naturally, since the classical-like limit simply requires to

interpret the TDVP and TDPES as standard (classical) electromagnetic potentials produc-

ing a classical force on the nuclei. Therefore, the main efforts in this context have been
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devoted to the calculation and approximation of the TDVP and of the TDPES from the

solution of the quantum-mechanical electronic equation (5). We describe in Section II A how

the concept of classical trajectories is introduced in the exact factorization and recall the

approximations leading to the derivation of CTMQC, CTMQC-E and CTTSH.

A. Exact-factorization-based coupled-trajectory algorithms

Accurately and efficiently calculating the electronic TDVP and TDPES in the course of

a simulation requires to develop algorithms and software exploiting the strengths of current

quantum-chemistry techniques for on-the-fly dynamics. With this idea in mind, let us present

and compare the various quantum-classical schemes that have been introduced in recent years

to simulate nonadiabatic processes using the exact factorization.

The trajectory-based perspective of the exact factorization requires to replace the concept

of a quantum nuclear wavefunction with an ensemble of trajectories. Formally, this is done

by replacing R, a 3Nn-dimensional vector, with Nn the number of nuclei of the system, with

the symbol Rα(t). Here, α = 1, . . . , Ntr labels the trajectories, that have to be many in order

to reproduce the delocalization of the nuclei in configuration space. The trajectory-based

nuclear dynamics can be simply summarized using Hamilton’s equations

Ṙαν (t) =
Pαν (t)

Mν

(9)

Ṗαν (t) = Fαν (t) (10)

where we introduced here, for every trajectory α and for every nucleus ν, the concepts of

velocity, i.e., Ṙαν (t), of (kinematic) momentum, i.e., Pαν (t), and of force, i.e., Fαν (t). In

particular, Pαν (t) and Fαν (t) will be expressed in terms of the TDVP and of the TDPES.

The trajectories can be assimilated to a moving grid: while in the quantum treatment the

value of a function f (R, t) can be determined at time t at any point R, in the trajectory-

based treatment only the values f (Rα(t), t) are accessible. Clearly, for a very large number

of trajectories Ntr , information is not lost when going from the quantum to the trajectory-

based treatment. It is important to note that, in order to evaluate how functions of the

type f (Rα(t), t) evolve, only total time-derivatives can be computed instead of partial time-

derivatives.

Aiming to develop on-the-fly procedures to solve the exact-factorization equations, the

electronic wavefunction is expanded in the adiabatic basis, i.e., the basis formed by the eigen-

states of ĤBO(r,R). Therefore, the expression Φ(r, t;R) =
∑

j Cj(R, t)ϕj(r;R) is inserted in

Eq. (5) to derive a set of evolution equations for the expansion coefficients Cj(R, t). Follow-

ing from the above observations, when the idea of trajectories is introduced, the electronic

equation (5) is affected as well, and the evolution of the coefficients is ultimately expressed

as a total time-derivative Ċj(R
α(t), t) = Ċαj (t).

The key quantity arising in such a trajectory-based formulation of the electron-nuclear

dynamics is the so-called quantum momentum. In Eq. (5), the operator Ûen[Φ, χ] de-

pends on the nuclear wavefunction, and, when it is expressed in polar form, i.e., χ(R, t) =
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e iS(R,t)|χ(R, t)| using its modulus |χ(R, t)| and phase S(R, t), one gets

−i~∇νχ(R, t)

χ(R, t)
+ Aν(R, t) = [∇νS(R, t) + Aν(R, t)] + i

−~∇ν |χ(R, t)|2

2|χ(R, t)|2

= Pν(R, t) + iQν(R, t) (11)

where the term in square brackets is the classical momentum Pν, that depends on the

TDVP as anticipated above, and it is summed to the quantum momentum Qν, and encodes

information about the spatial (de)localization of the nuclear density. The non-local nature of

this quantity implies that the exact-factorization trajectory-based schemes require coupling

among the trajectories, something which is completely overlooked in independent-trajectory

schemes, such as TSH or Ehrenfest.

In deriving CTMQC, the polar form of the nuclear wavefunction is inserted in Eq. (4) and

after separating real and imaginary parts two coupled evolution equations result, one for the

phase and one for the modulus. As discussed in detail in Refs. [42,43], the equation for the

modulus can be completely discarded in the classical limit, i.e., when neglecting the quantum

Bohmian potential. The equation for the phase thus become

−
∂

∂t
S(R, t) =

∑
ν

Pν(R, t) 2

2Mν

+ ε(R, t) (12)

which is a Hamilton-Jacobi equation that can be solved with the method of characteristics,

meaning that this partial differential equation (PDE) is replaced by an infinite set of ordinary

differential equations (ODEs) for the characteristics, i.e., the trajectories, along which the

PDE is always satisfied. The ODEs have the form given in Eqs. (9) and (10), where, under

a specific gauge choice, the force becomes Fαν (t) = Ȧαν (t), which yields

Fαν (t) =−
∑
j

|Cαj (t)|2∇νEαj −
∑
j,i

C
α

j (t)Cαi (t)
(
Eαj − Eαi

)
dαν,j i

+
∑
j

|Cαj (t)|2
(∑

µ

2Qαµ(t)

~Mµ

· fαµ,j

)
(fαν,j − Aαν (t))

(13)

We recall that the symbol Cαj (t) stands for the j-th coefficient in the expansion of the

electronic conditional amplitude in the adiabatic basis along the trajectory Rα(t), and C
α

j (t)

is its complex conjugate. Furthermore, in the above expression, we introduced the adiabatic

energy Eαj , i.e., the j-th eigenvalue of ĤBO, and the nonadiabatic coupling vector dαν,j i =

〈ϕj(R)|∇νϕi(R)〉r|R=Rα, both evaluated at the position Rα(t). We will define the symbol fαν,j
below.

Determining Eq. (13) requires to calculate the total time-derivative of the TDVP, and,

consequently, to express it as in Eq. (6) in terms of the conditional amplitude along a

trajectory Rα(t). To this end, the evolution equations Ċαj (t) are needed, namely

Ċαj (t) =−
i

~
Eαj C

α
j (t)−

∑
i

∑
ν

Ṙαν (t) · dαν,j i(t)Cαi (t) +
∑
ν

Qαν (t)

~Mν

(fαν,j − Aαν (t))Cαj (t)

(14)
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The expressions (13) of the classical force and (14) of the evolution of the electronic co-

efficients define the CTMQC algorithm. The main approximations introduced to derive

them are: (i) in the definition of the electron-nuclear coupling operator, Eq. (8), the

first term is neglected63, as well as its contribution in the expression of the TDPES to

maintain the gauge invariance; (ii) the spatial variation of the coefficients is expressed in

the form ∇νCαj (t) = i
~ f
α
ν,jC

α
j (t), with the force for state j accumulated along the tra-

jectory fαν,j = −
∫ t
0
∇νEαj dτ ; (iii) the TDVP along a trajectory, using the expansion of

the electronic amplitude in the adiabatic basis in its definition (6), is approximated as

Aαν (t) =
∑

j |Cαj (t)|2fαν,j ; (iv) the quantum momentum is approximated by expressing the

nuclear density as a sum of frozen Gaussians centered at the positions of the trajectories30,47.

Note that the CTMQC algorithm, expressed by the equations (13) and (14), can be

seen as an Ehrenfest scheme corrected by the coupled-trajectory terms where the quantum

momentum appears. Specifically, in both equations, the first two terms are identical to the

Ehrenfest scheme. The additional contributions allow one to describe decoherence effects,

as it has been extensively discussed in the literature37,48,64. Furthermore, the extra term

in the electronic evolution equation (14) provides a new mechanism for population transfer

mediated by the quantum momentum, that has been shown to be key in accurately capturing

multi-state processes such as dynamics through a three-state conical intersection35,53.

Villaseco Arribas and Maitra pointed out some issues related to the conservation of the

classical energy in CTMQC. Therefore, they proposed CTMQC-E51 by imposing that the

classical energy

〈E〉 =
1

Ntr

Ntr∑
α

(
Nn∑
ν

[Pαν (t)]2

2Mν

+
∑
j

|Cαj (t)|2Eαj

)
(15)

is conserved over the ensemble of coupled trajectories. Note that the second term in paren-

thesis is the CTMQC expression of the TDPES, following the approximations discussed

above. Imposing that the time-derivative of Eq. (15) is zero allows one to define a new

accumulated force f̃βν,j as

f̃βν,j =

(
−Eβj + 1

Ntr

∑
α

∑
ν f

α
ν,j · Ṙαν + Eαj

)
∑

µ n
β
µ · Ṙβµ

nβν (16)

where nβν is an arbitrary vector defining the direction of f̃βν,j . While any direction for nβν in

Eq. (16) guarantees energy conservation, we choose nβν as the instantaneous mechanical

momentum of the trajectory nβν = MνṘ
β
ν , with the reasoning that the accumulated force

represents a momentum along the trajectory

f̃βν,j =

(
−Eβj + 1

Ntr

∑
α

∑
ν f

α
ν,j · Ṙαν + Eαj

)
2Eβkin/Mν

Ṙβν (17)

with Eβkin the kinetic energy of the trajectory β. The choice of this direction results in

the exact-factorization-contribution to the nuclear force in Eq. (13) being parallel to the

momentum of the trajectory.
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The CTTSH algorithm was proposed with the aim to simultaneously tackle the issue of

conservation of the classical energy in CTMQC and simplify the expression of the classical

force (13) which requires the expensive calculation of the nonadiabatic coupling vectors. In

CTTSH, while the electronic evolution equation is the same as the one used in CTMQC,

namely Eq. (14), the trajectories are evolved using adiabatic forces, i.e.

Fαν (t) = −∇νEαactive (18)

where the active state is selected stochastically at every time step of dynamics according

to the fewest-switches procedure of standard TSH. If during the propagation the active

state changes between two time-steps, then the trajectory hops to the new active state,

experiencing a change in potential energy which is accompanied by a change in kinetic energy

to ensure the classical energy is conserved along the trajectory. Despite the coupled-trajectory

nature of CTTSH, energy conservation is imposed at the level of the single trajectory, as

done in standard TSH. In the case of a possible hop towards an electronic state higher in

(potential) energy, the kinetic energy is expected to decrease. However, if a trajectory does

not have sufficient kinetic energy to offset the extra potential energy gained during the hop,

the hop is frustrated and does not take place. Note that in TSH, the electronic evolution

equation is identical as the one in Ehrenfest, thus it is given by the first two terms of Eq. (14).

As observed for CTMQC, the additional coupled-trajectory contribution that depends on the

quantum momentum in Eq. (14) induces decoherence effects in CTTSH as well. Instead,

to achieve decoherence in a standard TSH procedure, the original algorithm needs to be

modified using decoherence corrections, as we will do in Section III employing the widely

used energy-based decoherence (ED) correction of Ref. [65].

All the algorithms illustrated so far are currently implemented in the G-CTMQC package61

and can be freely accessed on GitLab under GNU Lesser General Public License (LGPL).

III. TRAJECTORY-BASED STUDIES OF PHOTO-EXCITED PHENOL

In this section, we aim to discuss the strengths and weaknesses of the coupled-trajectory

algorithms derived from the exact factorization. We test these schemes against the

independent-trajectory methods Ehrenfest and TSH, using exact quantum-dynamics re-

sults to benchmark the trajectory simulations. All calculations are performed using the same

model Hamiltonian, and all trajectory-based simulations are carried out with G-CTMQC.

We simulated the photo-induced hydrogen dissociation reaction in phenol66–71 employing

the two-nuclear-dimensional model Hamiltonian including three electronic states proposed

in Ref. [62]. To the best of our knowledge, this particular model of phenol has not been

previously used in the literature to carry out an extensive comparison of trajectory-based

methodologies, as we will present here. Despite its simplicity, the model presents some

interesting features that makes it challenging for approximate methods, such as the use

of periodic boundary conditions or the presence of multiple conical intersections that are

encountered consecutively and give rise to recrossings.

We performed simulations using the G-CTMQC code61 which is interfaced with the model

potentials library QuantumModelLib72, where the used phenol model has been implemented.

8

https://doi.org/10.26434/chemrxiv-2024-v2g59 ORCID: https://orcid.org/0000-0003-2951-4964 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-v2g59
https://orcid.org/0000-0003-2951-4964
https://creativecommons.org/licenses/by/4.0/


Fig. 1. Ball-and-stick representation of the phenol molecule.
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Fig. 2. Adiabatic PESs for the ground state S0 (in blue), first excited state S1 (in orange) and second

excited state S2 (in red), as function of the active nuclear coordinates r and θ. Inset: Diabatic

potentials represented by the functions V11(r, θ = 0) (red-violet line), V22(r, θ = 0) (light-blue line)

and V33(r, θ = 0) (green line).

We tested CTMQC, CTTSH and CTMQC-E, and we report on the comparison with Ehren-

fest dynamics and TSH using energy-based decoherence correction (TSHED). Benchmark

results are provided by the numerically exact solution of the TDSE by propagating vibronic

wavepackets using the ElVibRot code73.

Information about the model used in our simulations is given in Appendix A. The three

electronic states, the ground and the two excited singlet states will be indicated as S0, S1, and

S2 respectively. A ball-and-stick representation of phenol is shown in Fig. 1 and the adiabatic
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Fig. 3. Populations of the electronic states as functions of time calculated based on the quantum

dynamics simulation. In blue we show the population of the ground state S0, in orange that of the

first excited state S1 and in red that of the second excited state S2.

potential energy surfaces (PESs) are represented in Fig. 2 as functions of the OH bond length

r and of the angle θ formed by the OH bond with the plane of the cycle. The figure shows

that S0 and S1 have a dissociative character for large values of r , thus hydrogen dissociation

takes place either in the ground state or in the first excited state. The photochemistry of

phenol is activated by exciting the molecule from the ground state S0 (blue surface) to the

bright state S1 (orange surface), since in the Franck-Condon region, i.e., around the minimum

of S0 where the photo-excitation process starts, the S1 state has a ππ∗ character. The inset

in Fig. 2 shows, using a cut of the PESs at θ = 0, the diabatic potential curves (PECs) with

the states labelled as in Appendix A. The diabatic PECs clearly show that the minimum of

the bright ππ∗ state (green curve) almost coincides with the minimum of the ground state

(red-violet curve) and that the closest degeneracy point (conical intersection between S1
and S2) between the ππ∗ state and the πσ∗ state (dark state, turquoise curve) is higher in

energy than the value of the ππ∗ energy at the Franck-Condon point, i.e., the minimum of

the ground state. This means that upon photo-excitation of the vibrational ground state

from S0 to S1, the hydrogen dissociation cannot be activated (not even considering the

zero point energy): if the dark state πσ∗ is not populated, then the system cannot reach

the dissociative regions of the potentials and remains trapped in the minimum of the ππ∗

state. In Ref. [62], in fact, an excited vibrational state of S0 was promoted to S1 in order to

activate the photochemical reaction. Due to the difficulties in creating a vibrational excited

state using a classical distribution of trajectories, we opted in our simulations to provide the

necessary energy to reach the conical intersection by adding an additional momentum p0 in

the r direction. Indeed, the quantum dynamics results used as benchmark here are obtained

in the same conditions. Computational details are provided in Appendix B.

Figure 3 shows the electronic state populations as functions of time obtained with quantum

dynamics. As we can observe, after an initial wavepacket excitation from S0 to S1 with

sufficient kinetic energy to reach the S1/S2 conical intersection, the S2 state gets rapidly

populated within the first few femtoseconds. Some population remains in S1, either because

it does not have enough energy to reach S2 or because it is able to overcome the S1 energy
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barrier towards the dissociative path. In S2, one portion of the photo-excited wavepacket

goes back towards the S1 minimum and we observe a decrease in the S2 population (red

curve) which reaches a minimum at around 10 fs. At the same time, another portion of the

S2 wavepacket funnels down S1 and access the dissociative region. We observe a slow rise

of the ground state population (blue curve) from around 16 fs, which indicates that the S1
wavepacket reaches the second conical intersection S0/S1. As the dynamics proceeds, the

population of S1 stabilizes towards 0.6, suggesting that the corresponding wavepacket either

remains trapped at the minimum of S1 or is moving in the dissociative portion of the PES;

at the same time, the population of S0 increases and that of S2 decreases.

The left pannel of Figure 4 compares the trajectory-averaged electronic state populations

obtained with CTMQC, CTMQC-E, CTTSH, Ehrenfest and TSHED with the correspond-

ing quantum-dynamics benchmark. Let us first focus on the surface-hopping-based schemes,

TSHED and CTTSH. At short times, these methods do not correctly capture the oscillations

in the S1 and S2 populations, due to the well-known problem of frustrated hops. Essentially,

since this short-time dynamics implies electronic transitions from a low-lying state to a high-

lying state, some trajectories do not have enough kinetic energy to compensate for the in-

crease of potential energy, and conserve total energy. Conversely, Ehrenfest shows very good

agreement with the quantum dynamics results at short times but deviates from the reference

after 16 fs. On the other hand, CTMQC and CTMQC-E are able to capture the oscillations

in the electronic populations within the first 16 fs of the dynamics, with CTMQC-E in much

better agreement with the reference than CTMQC and Ehrenfest. At long times, CTMQC

predicts the populations of the electronic states in quite good agreement with the reference

and slightly better than CTMQC-E, even though it misses the oscillations in the populations

of S1 and S2. Interestingly, CTMQC-E predicts population transfer from the ground S0 state

to the S1 state at 48 fs. CTTSH slightly overestimates the population of the ground state

all along the dynamics, and in general it shows a behavior similar to TSHED. Note that

for CTTSH we show as continuous lines the trajectory-averaged electronic populations, i.e∑
α |Cαj (t)|2/Ntr (with j = S0, S1 or S2) and with dashed lines the fraction of trajectories

whose dynamics is driven by the corresponding (active) PES. The discrepancy between the

two estimates of the populations in CTTSH, could be likely attributed to the ocurrence of

frustrated hops. Therefore, current studies on CTTSH are directed towards curing the is-

sue of frustrated hops exploiting the coupled-trajectory nature of the algorithm. Note also

that the issue of frustrated hops has been recently addressed by Maitra and coworkers in

the independent-trajectory quantum trajectory surface hopping method based on the exact

factorization (QTSH-XF)74.

Figure 4 (right) shows the trajectory-based indicator of coherence between the states

S0/S1 (top panel), S1/S2 (middle panel) and S0/S2 (bottom panel) as function of time,

as well as the quantum-mechanical analogous quantity scaled down two and three times,

respectively, to superimpose the plots to the trajectory-based results. It is not surprising

that quantitative agreement with the reference is missing throughout the trajectory-based

results, which is probably consequence of the disagreement in the predictions of the electronic

populations (see Appendix B for the relation between the indicator of coherence and the

populations). The S0/S1 indicator represented in black in the top right panel of Fig. 4

increases without reaching a plateau within the simulated time, which is due to the fact that
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Fig. 4. Left: Populations of the electronic states as functions of time. In black (QD), results of the

quantum dynamics are shown, and in color the trajectory-based results: blue for the ground state,

orange for the first excited state and red for the second excited state. From top to bottom we show:

CTMQC, CTMQC-E, CTTSH, Ehrenfest, TSHED. Right: Indicator of coherence as function of time

between the states S0 and S1 (top panel), between the states S1 and S2 (middle panel) and between

the states S0 and S2 (bottom panel). In black (QD), the results of exact calculations are shown, in

magenta Ehrenfest, in cyan TSHED, in green CTTSH, in brown CTMQC and in orange CTMQC-E.

the ground state population keeps increasing in the region where the S0 and S1 wavepackets

overlap. Therefore, only Ehrenfest is able to capture qualitatively this coherent behavior,

where the other methodologies induce a fictitious decoherence behavior, which is the largest

in TSHED and CTMQC-E (at least towards the end of the simulation). We observe also that

the decrease of the ground state population observed in CTMQC-E at 48 fs is also reflected

in a decrease in the electronic coherences. The exact S1/S2 indicator (black curve in the

middle right panel of Fig. 4) is non-zero already at the initial time, proving that the state

S1 transfers population to S2 since the beginning of the simulated dynamics. The offset for
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Fig. 5. Left: Nuclear kinetic energy as function of time along the nuclear coordinate r (upper panel)

and θ (lower panel). Right: Dissociation probabilities as functions of time. The color code is the

same as in Fig. 4 (right).

the transfer is delayed in the trajectory-based calculations, but the increase of the indicator

(colored curves in the middle right panel of Fig. 4) takes place in the first few femtoseconds

of dynamics. Even though quantitative agreement is missing, the S1/S2 indicator remains

more or less constant during the dynamics with large oscillations at the beginning. This

behavior is qualitatively captured only by the coupled-trajectory methods. In the case of the

S0/S2 indicator shown in the bottom panel on the right of Fig. 4, quantitative agreement

between CTMQC(-E) and exact results is achieved at long times, with Ehrenfest remaining

overcoherent all along the dynamics (as for S1/S2).

Figure 5 (left) reports the nuclear kinetic energy along the two nuclear directions r (upper

panel) and θ (lower panel) as function of time. We observe that the nuclear kinetic energy in

Ehrenfest is too small compared to the reference along both coordinates, which is probably

due to the fact that the potential energy is overestimated already after about 35 fs. Specif-

ically, in Ehrenfest the potential energy is the average of the electronic adiabatic energies

weighted by the populations. Then, since in particular the population of S1 is overestimated

at the expenses of S0, it is not surprising that the kinetic energy is small (in Ehrenfest the

classical total energy is conserved along each trajectory). TSHED does indeed a good job in

reproducing the exact kinetic energy, while CTTSH overestimates the kinetic energy along
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both directions. In CTTSH, this happens for the opposite reason if compared to Ehrenfest,

as in CTTSH the ground state population is overestimated at the expenses of S1. Instabili-

ties in the nuclear kinetic energy can be observed in CTMQC, which are slightly kept under

control in CTMQC-E.

Figure 5 (right) shows the dissociation probability as function of time, namely the amount

of density/trajectories that reach and evolve beyond the cutoff distance chosen as rcutoff =

2.6 Å. In general, all trajectory-based methods overestimate the dissociation probability since

the initial times. The strong oscillations predicted by Ehrenfest at the beginning of the

simulation do not appear in the reference results. Specifically, the black curve in the right

panel of Fig. 5 shows clear steps up to about 32 fs, which are quite well reproduced, at least

qualitatively, by the other trajectory-based methods. At long times the coupled trajectory

methods agree among themselves, but yield higher probability than TSHED and quantum

results.

IV. CONCLUSIONS

In this work, we reported on a comparison between the coupled-trajectory schemes for

nonadiabatic dynamics derived from the exact factorization and implemented in G-CTMQC,

namely CTMQC, CTMQC-E and CTTSH, and the corresponding independent-trajectory

methods Ehrenfest and surface hopping. We chose to perform the calculations on a molecular

model for the photo-induced hydrogen dissociation process in phenol that despite its simplicity

(analytical model with three electronic states and two nuclear coordinates) presents some

fundamental challenges for the methods above, as we illustrated in the numerical studies

reported here. The trajectory-based results have been benchmarked against exact results

obtained based on the propagation of quantum vibronic wavepackets.

Based on the analysis of various properties, namely electronic populations and coherences,

nuclear kinetic energy and dissociation probability, we conclude that there is not a unique

coupled-trajectory method that stands out for its agreement with the reference results. CT-

MQC and CTMQC-E perform well in general, but the kinetic energy in CTMQC shows some

instabilities that are somehow reduced by the energy-conserving correction of CTMQC-E.

The hydrogen dissociation probability at long times is overestimated by all coupled-trajectory

methods, but this is not surprising since the populations of the electronic states with disso-

ciative character, namely S0 and S1, is not in perfect agreement with exact calculations.

It is interesting to note that the energy-conserving correction in CTMQC-E improves on

the performance of CTMQC. In addition, the poor performance of CTTSH is probably due

to the incorrect prediction at very short times of the population exchange between S1 and

S2. This disagreement of CTTSH with the reference has been ascribed to the problem of

frustrated hops, affecting equally CTTSH and surface hopping. Therefore, further studies

will be focused on treating the problem of frustrated hops in CTTSH reformulating energy

conservation and the hopping probability in a way that is more adequate to the coupled-

trajectory nature of CTTSH than the current implementation.
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Appendix A: Phenol model

The electronic Hamiltonian in the diabatic basis is62

ĤBO(r, θ) =

 V11 V12 V13
V12 V22 V23
V13 V23 V33

 (A1)

with the state 1 being the ground state in the Franck Condon region, the state 2 having a

πσ∗ character and state 3 having a ππ∗ character. The electronic Hamiltonian depends on

the nuclear coordinates r and θ, which are the only two “active” modes used in the model,

and stand for the OH distance and the CCOH dihedral angle, respectively.

The diagonal elements of the electronic Hamiltonian are the diabatic potentials, shown in

the inset of Fig. 2 as functions of r for θ = 0. The diagonal elements depend on r and θ as

follows

V11(r, θ) =v10(r) + v11(r) [1− cos(2θ)] (A2)

V22(r, θ) =v20(r) + v21(r) [1− cos(2θ)]

+ v22(r) [1− cos(2θ)]2 (A3)

V33(r, θ) =v30(r) + v31(r) [1− cos(2θ)] (A4)
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The functions of r in these expressions are

v10(r) =D1e [1− exp (−a1(r − r1))]2 (A5)

v11(r) =
1

2
A1

[
1− tanh

(
r − A2
A3

)]
(A6)

v20(r) =
1

2
[v201(r) + v202(r)]

−
1

2

√
(v201(r)− v202(r))2 + χ20 (A7)

v21(r) =
1

2
[v211(r) + v212(r)]

+
1

2

√
(v211(r)− v212(r))2 + χ21 (A8)

v22(r) =
1

2
[v221(r) + v222(r)]

−
1

2

√
(v221(r)− v222(r))2 + χ22 (A9)

v30(r) =D3e [1− exp (−a3(r − r3))]2 + a30 (A10)

v31(r) =
1

2
C1

[
1− tanh

(
r − C2
C3

)]
(A11)

(A12)

with

v201(r) =B201 [1− exp (−B202(r − B203))]2 + B204 (A13)

v202(r) =B205 exp (−B206(r − B207)) + B208 (A14)

v211(r) =
1

2
B211

[
1− tanh

(
r − B212
B213

)]
(A15)

v212(r) =
1

2
B214

[
1− tanh

(
r − B215
B216

)]
+ B217 (A16)

v221(r) =
1

2
B221

[
1 + tanh

(
r − B222
B223

)]
(A17)

v222(r) =
1

2
B224

[
1− tanh

(
r − B225
B226

)]
(A18)

The off-diagonal elements of the electronic Hamiltonian are

V12(r, θ) =λ12(r) sin(θ) (A19)

V23(r, θ) =λ23(r) sin(θ) (A20)

V13(r, θ) =0 (A21)

with

λ12(r) =
1

2
λ12,max

[
1− tanh

(
r − d12
β12

)]
(A22)

λ23(r) =
1

2
λ23,max

[
1− tanh

(
r − d23
β23

)]
(A23)
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The nuclear kinetic energy is given as62

T̂n = T̂n,r + T̂n,θ (A24)

= −
~2

2µOH

∂2

∂r 2
−
~2

2I

∂2

∂θ2
(A25)

where µOH is the OH reduced mass and I is the moment of inertia

1

I
=

1

I1
+

1

I2
(A26)

with

I1 =µOH (r1 sinα)2 (A27)

I2 =4mC

(
rCC sin

π

3

)2
+ 4mH

(
(rCH + rCC) sin

π

3

)2
(A28)

Note that in the original model of Ref. [ 62], I1 was a function of r . However, in our

calculations, we used the constant value of I1 at r1, i.e., at the equilibrium OH distance

of the electronic ground state. In the above expressions, α is the COH angle, rCC is the

CC distance and rCH is the CH distance at the equilibrium ground state geometry. All the

parameters of the model are listed in Table 1; the reported values of α, rCC and rCH have

been determined by optimizing the phenol molecule using density functional theory at the

B3LYP/6-311G(d,p) level of theory with Gaussian1675.

Diagonalization of the electronic Hamiltonian (A1) yields the adiabatic PESs, shown in

Fig. 2. The PESs and corresponding adiabatic states are labelled S0 (blue surface), S1
(orange surface) and S2 (red surface), and present two conical intersections that are clearly

identified in Fig. 2.

Appendix B: Computational details

Using the model Hamiltonian just documented, we studied the coupled electron-nuclear

dynamics initiated upon a ππ∗ excitation. A vibrational wavepacket of the form

χ(r, θ, 0) = 4

√
1

πσ2r
e
− (r−r0)

2

2σ2r
4

√
1

πσ2θ
e
− θ2

2σ2
θ e

i
~ p0r (B1)

is prepared at time t = 0 in S0, with r0 = r1, p0 = 28 ~ Å−1 (15 a.u.), σr = 0.092 Å and

σθ = 0.55 rad. The wavepacket is then excited instantaneously to S1.

We performed calculations with non-zero initial momentum in the r -direction such that the

initial nuclear wavepacket has enough energy to access the first conical intersection between

S1 and S2. In Ref. [62], the system was initially excited electronically in S1 and vibrationally,

in order to provide the necessary energy to achieve hydrogen dissociation; in our work, we

provide such energy by “kicking” the initial wavepacket centered at r1.

The quantum dynamics calculations were performed using the short iterative Lanczos

scheme76,77 for a propagation time of 4000 a.t.u. (about 96 fs) with a time step of 50
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Parameter Value Parameter Value

D1e 4.26302 eV D3e 4.47382 eV

a1 2.66021 Å−1 a3 2.38671 Å−1

r1 0.96944 Å r3 0.96304 Å

a30 4.85842 eV

A1 0.27037 eV C1 0.110336 eV

A2 1.96606 Å C2 1.21724 Å

A3 0.685264 Å C3 0.06778 Å

B201 0.192205 eV λ12,max 1.47613 eV

B202 5.67356 Å−1 d12 1.96984 Å

B203 1.03171 Å β12 0.494373 Å

B204 5.50696 eV λ23,max 0.327204 eV

B205 4.70601 eV d23 1.22594 Å

B206 2.49826 Å−1 β23 0.0700604 Å

B207 0.988188 Å

B208 3.3257 eV rCC 1.39403 Å

χ20 0.326432 eV2 rCH 1.08441 Å

B211 -0.2902 eV α 109.1333◦

B212 2.05715 Å

B213 1.01574 Å µOH 1.57456·10−27 kg

B214 -73.329 eV

B215 1.48285 Å

B216 -0.1111 Å

B217 -0.00055 eV

χ21 0.021105 eV2

B221 27.3756 eV

B222 1.66881 Å

B223 0.20557 Å

B224 0.35567 eV

B225 1.43492 Å

B226 0.56968 Å

χ22 0.00 eV2

Table 1. List of the parameters of the model Hamiltonian.

a.t.u. (about 1.2 fs). In this Lanczos procedure, the Krylov space is expanded until the

norm of a new vector is less than 10−10. The wavepacket is represented in the diabatic

representation, and in each electronic state the wavepacket is expanded in a two-dimensional

direct product grid or basis set. The primitive basis sets associated with the angle θ and with

the r distance are a real Fourier series (64 basis functions) and a particle-in-a-box in the range

[0.5, 60] bohr with 2048 basis functions, respectively. This very large range along r is needed

to avoid reflection before the end of the propagation time. Since the quantum dynamics

is performed in the diabatic representation, the corresponding initial wavepacket is slightly

different from the adiabatic one used for the trajectories. In the diabatic representation, the

initial wavepacket is given by Eq. (B1) in the third diabatic state, which corresponds to a

population in S1 of more than 97% instead of the 100% for the trajectories.
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The calculations were performed with the ELVIBROT Fortran code73.

Trajectory-based calculations were performed using the G-CTMQC code.61 For Ehrenfest,

CTMQC and CTMQC-E, we run Ntraj = 1000 trajectories, whereas for TSHED and CTTSH,

we repeated n = 5 times the calculations with Ntraj = 1000 trajectories to sample over

various hopping histories. The same initial conditions, i.e., positions and momenta, were

used in all calculations, by sampling them from the harmonic Wigner distribution obtained

from |χ(r, θ, 0)|2 of Eq. (B1). G-CTMQC uses the velocity-Verlet algorithm and the Runge-

Kutta-Gill scheme to integrate the nuclear and electronic evolution equations, respectively.

The trajectories were propagated for 96 fs (4000 a.t.u.) using a time step of dtn = dte =

0.0012 fs (0.05 a.t.u.) for both nuclear dtn and electronic dte dynamics; however, tests were

performed by changing the nuclear and the electronic time steps, to dtn = dte = 0.0024 fs

and to dtn = 0.0024 fs, dte = 0.0012 fs, to assess the stability of the results.

In Section III, we discuss the performance of the trajectory-based methods in comparison

to quantum – exact – results, based on various electronic and nuclear observables. We will

show the electronic populations,

ρSl (t) =

∫
dr

∫
dθ |χSl (r, θ, t)|

2 with l = 0, 1, 2 (B2)

the nuclear kinetic energy along the two active coordinates,

Tn,r/θ(t) =

∫
dr

∫
dθ 〈Ψ(r, θ, t)| T̂n,r/θ |Ψ(r, θ, t)〉 (B3)

and the dissociation probability,

P diss(t) =

∫ +∞
rcutoff

dr

∫
dθ |χ(r, θ, t)|2 (B4)

with rcutoff = 2.6 Å, as functions of time. Here, we indicate the total nuclear probability

density as |χ(r, θ, t)|2, that can be obtained as a sum over the three electronic contributions

|χ(r, θ, t)|2 =
∑
l=0,1,2

|χSl (r, θ, t)|
2 (B5)

which are, in turn, related to the time-dependent vibronic state of the system written in

vector notation as

|Ψ(r, θ, t)〉 =

 χS0(r, θ, t)

χS1(r, θ, t)

χS2(r, θ, t)

 (B6)

The trajectory-based (classical) electronic populations and nuclear kinetic energies are esti-

mated as averages over the trajectories, namely as

Ocl(t) =
1

Ntraj

Ntraj∑
α=1

Oα(t) (B7)
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where Oα(t) = |CαSl (t)|
2,
[Pαr (t)]

2

2µOH
,
[Pαθ (t)]

2

2I
. In TSHED and in CTTSH, the electronic popula-

tions are estimated using the fraction of trajectories

ρ̃clSl
(t) =

NSl (t)

Ntraj
(B8)

to distinguish it from Eq. (B7), where NSl (t) is the number of trajectories in state Sl at time

t. In a surface-hopping scheme, internal consistency holds if ρ̃clSl
(t) ' ρclSl

(t) (with ρclSl
(t) the

trajectory-averaged value of |CαSl (t)|
2), and in general the “proper” quantities that should be

compared to exact results is ρ̃clSl
(t) from Eq. (B8). The dissociation probability is, instead,

estimated by simply counting the number of trajectories that, at any time, are located at

rα(t) > rcutoff independently of the value θα(t).
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