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ABSTRACT

The potential of using neural data to predict academic outcomes has always been at the heart of educational neuro-
science, an emerging field at the crossroad of psychology, neuroscience, and education sciences. Although this
prospect has long been elusive, the exponential use of advanced techniques in machine learning in neuroimaging
may change this state of affairs. Here we provide a review of neuroimaging studies that have used machine learning
to predict literacy and numeracy outcomes in adults and children, in both the context of learning disability and typical
performance. We notably review the cross-sectional and longitudinal designs used in such studies, and describe how
they can be coupled with regression and classification approaches. Our review highlights the promise of these meth-
ods for predicting literacy and numeracy outcomes, as well as their difficulties. However, we also found a large vari-
ability in terms of algorithms and underlying brain circuits across studies, and a relative lack of studies investigating
longitudinal prediction of outcomes in young children before the onset of formal education. We argue that the field
needs a standardization of methods, as well as a greater use of accessible and portable neuroimaging methods that
have more applicability potential than lab-based neuroimaging techniques.
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1. INTRODUCTION implications for children or educational systems (Bruer,
1997). Others have argued that behavioral measures are
more practical to characterize children’s cognitive capac-
ities than neuroimaging measures (Bowers, 2016).

In an earlier review, Gabrieli et al. (2015) argued other-
wise and suggested that brain measures obtained through

neuroimaging techniques may be useful for predicting

The past few decades have seen a rapid increase in our
understanding of how the brain changes over develop-
ment and learning, leading a number of neuroscientists to
consider implications of these findings for education. This
has led to the emergence of the field of educational neu-
roscience (Ansari & Coch, 2006; Goswami, 2004, 2006),

defined in a recent review (Thomas et al., 2019) as “an
interdisciplinary research field that seeks to translate
research findings on neural mechanisms of learning to
educational practice and policy.” However, this general
endeavor has not been unchallenged. Critics have notably
claimed that neuroscience findings are too remote from
the classroom to be informative and to have practical

future academic outcomes and, therefore, help design
interventions, as well as for evaluating the success of
interventions. A relatively limited number of studies were
available at the time of Gabrieli et al.’s review. However,
significant progress has since been made in both neuro-
imaging and machine-learning techniques. The term
“machine learning” refers here to a set of computational
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methods that involve the development of algorithms and
statistical models relying on patterns and inference
derived from data. These computational methods typi-
cally use past information to improve their performance or
to make accurate predictions over time (Mohri et al.,
2012). Because these technological advances are chang-
ing the landscape of what may be possible in terms of the
prediction of outcomes from neural signals, we aimed
here to provide an updated review of recent advances in
neuroscience and machine learning that may have appli-
cation to both education and the treatment of neurodevel-
opmental disorders. Though the present review primarily
focuses on the methodological framework, challenges,
and main findings from these studies, we will also end by
discussing the potential practical applications of this line
of research.

The present review largely focuses on findings in the
domains of literacy and numeracy skills (and associated
disorders) for two reasons. First, literacy and numeracy
skills are considered fundamental to modern science and
technologies, and difficulties in acquiring these abilities
may negatively impact academic attainment and financial
well-being (Estrada-Mejia et al., 2016). Predicting reading
and mathematical difficulties in children has, therefore,
critical societal relevance. Second, literacy and numer-
acy are probably the academic domains for which the
most progress has been made in developmental cogni-
tive neuroscience over the past decades. We will, how-
ever, also include in our review several studies that have
focused on other cognitive factors relevant to education.
Finally, we will highlight future directions for studies aim-
ing to apply machine learning to neural data in order to
predict and improve educational outcomes.

2. PREDICTING EDUCATIONAL OUTCOMES
FROM BRAIN ACTIVITY: METHODOLOGICAL
CONSIDERATIONS

Gabirieli et al. (2015) pointed out that the term “prediction”
can have at least three different meanings in studies. In its
weakest form, the term might be used to describe a cor-
relation between two sets of variables obtained at the
same time point. In a slightly stronger form, it can also be
used to describe a correlation between two sets of vari-
ables obtained at different time points. In its strongest
form, “prediction” may describe a model generalization
to out-of-sample individuals, which typically relies on
machine learning. This third meaning is arguably the clos-
est to the definition of a “prediction” in common language.
Studies demonstrating an out-of-sample generalization
have also the most practical relevance because they sug-
gest that a model would be applicable to novel data that
are not specific to a given sample.

The present review exclusively focuses on the term
“prediction” as describing generalization to out-of-
sample individuals, and, therefore, only includes studies
demonstrating such generalization. As a side note, not all
neuroimaging studies using machine-learning techniques
are relevant to the question of individual differences in
academic performance, learning, or development. For
instance, studies may use machine learning to test differ-
ences in spatial distributions of neural activity across
tasks (Nakai et al., 2023). These studies are not included
in the present review either.

Broadly speaking, previous neuroimaging studies
using machine learning to predict educational outcomes
can be divided into two categories. The first category
(Fig. 1, top row) encompasses studies using a cross-
sectional design, such that different participants are eval-
uated at one (T1) or several time points (T1 and T2). The
second category (Fig. 1, bottom row) includes studies
using a longitudinal design, such that the same partici-
pants are evaluated at different time points (T1 and T2).
These time points can be separated by days, weeks, or
even years. Note that cross-sectional and longitudinal
studies may use supervised learning to predict either a
continuous distribution of achievement (e.g., reading,
math) scores from brain activity or discrete categorical
labels such as presence or absence of learning disability.
While the former relies on regression analyses (Fig. 1, left
column), the latter involves classification analyses (Fig. 1,
right column) (Bishop, 2006).

Note that the three typical meanings of “prediction” in
Gabrieli et al. (2015) can be categorized along the dimen-
sions of “in-sample correlation vs. out-of-sample predic-
tion” and “cross-sectional vs. longitudinal.” That is, the
first two meanings are similar in that they both focus on
in-sample correlation but are different because one uses
a cross-sectional design and the other a longitudinal
design. The third meaning (out-of-sample prediction) can
also be applied to both cross-sectional and longitudinal
data (Fig. 1). In both cases, machine-learning models are
trained with a subset of samples, and their generalizabil-
ity is tested with left-out samples.

Regression and classification analyses use different
analytic strategies. For instance, regression analysis as it
is applied to a cross-sectional design (Fig. 1, upper left
cell) relies on the generation of a predictive model based
on the relationship between brain and behavioral data
across participants from the training set at T1. The trained
model is then used to predict behavior from brain data in
left-out participants, also at T1. Regression analysis as it
is applied to a longitudinal design (Fig. 1, bottom left cell)
relies on the generation of a predictive model based on
the relationship between brain data at T1 and behavioral
data at T2 across participants from the training set. The



T. Nakai, C. Tirou and J. Prado

Imaging Neuroscience, Volume 2, 2024

Regression Classification
Linear regression  Ridge regression SVM NBC kNN RF DA
SVR Elastic net Logistic regression ANN
Cross-sectional design
Individuals Diagnosis
[} [
L. 14 ® Label #1
Training Test (Left-out) ° Behav data (T1) °
= = . o Label #2
< Prediction <
§ ; § Training Test (Left-out)
3 3 E E
s < ~ o0 Prediction « ®
@ @ [} (] [
m m Sle @ > & o0 ®
Brain data (T1) Brain data (T1) B[ o o 00 ® 3 PR
f=4 f=4
s s
m 1]
Brain data 1 (T1) Brain data 1 (T1)
Longitudinal design
Individuals Diagnosis
[} [
. (] ® Label #1
Training Test (Left-out) ° Behav data (T2) °
e S Label #2
S ] ° o -avE
< Prediction & p
[} g .
g ! g .° % _ Training __ Test (Left-out)
2 3 ¢ E o E
S S é ~ Prediction «
m m © ©
8 > &
Brain data (T1) Brain data (T1) 3 3
f= f=
s s
m [11]
Brain data 1 (T1) Brain data 1 (T1)

Fig. 1.

Schematic chart outlining the methodology used in neuroimaging studies reviewed here. Studies can be

categorized into following a cross-sectional or a longitudinal design (rows), as well as a regression or a classification
approach (columns). T1, time point 1; T2, time point 2. Note that although cross-sectional design can be applied to
multiple time points, we only describe the case of T1 to avoid confusion with the longitudinal design. Furthermore, we
also simplified the description of the longitudinal design by excluding cases of using differences of behavioral data

(T2 - T1) as explained variables. Labels #1 and #2 indicate discrete categorization of individuals (e.g., typically developing
or learning disabled). ANN, artificial neural network; DA, discriminant analysis; kNN, k-nearest neighbors; NBC, naive
Bayes classifiers; RF, random forest; SVM, support vector machine; SVR, support vector regression.

trained model is then used to predict behavior at T2 from
brain data at T1 in left-out participants. Classification
analysis as it is applied to a cross-sectional design (Fig. 1,
upper right cell) relies on an association between a dis-
crete categorization of participants from the training set
according to behavioral labels defined at T1 and their
brain data at T1. This trained model is then used to assign
labels to left-out participants based on their specific brain
data, also at T1. Classification analysis as it is applied to
a longitudinal design (Fig. 1, bottom right cell) relies on an
association between a discrete categorization of partici-
pants from the training set according to behavioral labels
defined at T2 (e.g., typically developing or learning dis-
abled) and their brain data at T1. This trained model is
then used to assign labels to left-out participants based
on their specific brain data at T1. The specific methodol-
ogies underlying these analyses are discussed in a later

section (see Studies Use a Range of Machine-Learning
Methods). The present study does not include data from
human or animal subjects and does not require approval
from the ethics committee or informed consent.

3. CAN NEUROIMAGING STUDIES PREDICT
LITERACY SKILLS?

A number of cross-sectional (Table 1) and longitudinal
(Table 2) neuroimaging studies have attempted to use
brain data to predict literacy skills (see Supplementary
Information for the selection criteria of articles and the
methodology used to generate the tables). For example,
using regression in a cross-sectional design, He et al.
(2013) showed that gray matter (GM) structural MRI
(sMRI) data from adult participants could predict various
language abilities (phonological decoding, form-sound
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association, and naming speed) decomposed from a set
of behavioral measures. Xu et al. (2015) further used
fractional amplitude of low-frequency fluctuations (ALFF)
in resting fMRI (rest-fMRI) data to predict reading test
scores (efficiency of mapping orthography to semantic)
of adult participants. Subsequent studies have focused
on large datasets of adult participants provided by the
Human-Connectome Project (HCP) (Van Essen et al.,
2013). These studies used either the Oral Reading Rec-
ognition Test and/or Picture Vocabulary Test combined
with different types of brain data: sMRI (Cui et al., 2018;
Kristanto et al., 2020), functional connectivity (FC) of
rest-fMRI (Kristanto et al., 2020; Yuan et al., 2023), diffu-
sion MRI (dMRI) (Kristanto et al., 2020), and task-fMRI
(language, working memory, and motor tasks) (Tomasi &
Volkow, 2020). Together, these studies show that it is
possible to predict individual differences in literacy skills
with different sources of neuroimaging data, indicating
that such skills are related to brain data over multiple
dimensions.

Other studies have attempted to use neuroimaging
data to classify between participants with and without
dyslexia, a specific learning difficulty in word recogni-
tion, word decoding, and spelling abilities, with other-
wise normal intelligence (American Psychiatric
Association, 2013). For example, Tamboer et al. (2016)
classified adults with and without dyslexia using sMRI
(GM) data. Cui et al. (2016) and Joshi et al. (2023) further
showed that such classification was not limited to adults
based on dMRI and sMRI data, respectively. Using sMRI
(GM) data, but with a larger sample size including chil-
dren from three different countries (130 children with
dyslexia and 106 typically developing children), Ptohski
et al. (2017) replicated successful dyslexia classifica-
tion. Finally, some studies have reported successful
classification between children with and without dys-
lexia based on task-electroencephalography (EEG) with
word comprehension (Zainuddin et al., 2018) and audi-
tory stimuli listening (Formoso et al., 2021), and resting
magnetoencephalography (MEG) signals (Dimitriadis
et al., 2018). Although many of the studies above rely on
rest-fMRI or sMRI data, more recent studies have also
used task-fMRI data. For example, Mascheretti et al.
(2021) classified dyslexic from nondyslexic children
using a visual detection task, whereas Tomaz Da Silva
et al. (2021) used a word-reading task. Finally, Zahia
et al. (2020) used three different reading tasks to classify
children with dyslexia, monocular vision (due to ocular
motility disorders), and control groups.

Studies have also attempted to distinguish between
different subtypes of language-related disorders and lan-
guage proficiency levels. Bailey et al. (2016) were able to
distinguish children with dyslexia from those with specific
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reading comprehension deficits (SRCDs) based on their
sMRI (GM) data. SRCD differs from dyslexia in that
affected children have difficulty in reading comprehen-
sion despite adequate phonemic decoding (Landi &
Ryherd, 2017). Cignetti et al. (2020) and Nemmi et al.
(2023) classified between children with dyslexia and with
developmental coordination disorder (DCD) using rest-
fMRI and sMRI (GM and white matter [WM]) data. Zare
et al. (2016) and Yu et al. (2022) classified whether chil-
dren’s families had a history of dyslexia using rest-EEG
and rest-fMRI data, respectively. One study has also
used functional near-infrared spectroscopy (fNIRS) study
to classify between higher and lower second language
proficiency groups (Lei et al., 2020). Barranco-Gutiérrez
(2020) classified between adults who are native English
speakers and those who learned English as a second lan-
guage. Zhang et al. (2023) classified second language
(English) proficiency levels (high, moderate, low) of Chi-
nese speakers and further predicted listening compre-
hension scores using fMRI with a story listening task.
Mossbridge et al. (2013) found that good and poor read-
ers were separable using EEG data during a sentence
comprehension task.

In comparison with the number of studies that have
used cross-sectional designs to predict literacy out-
comes, a much smaller number of studies have used lon-
gitudinal designs to make out-of-sample predictions of
literacy outcomes (Table 2). A pioneering study by Hoeft
et al. (2007) combined both task-fMRI (rhyme judgment)
and sMRI (GM and WM) data as inputs of multiple linear
regression models. The authors found that brain data
could predict later reading scores at the end of the same
year. Bach et al. (2013) combined task-EEG and task-
fMRI data (word comprehension) to predict reading
scores measured 2 years later. In Feng et al. (2021), sub-
jects underwent grammar training of an artificial lan-
guage. Their final learning outcomes were predicted from
task-fMRI data during training in earlier sessions. Beyer
et al. (2022) used sMRI data (GM, surface area, and local
gyrification) in preschoolers to predict literacy ability
2 years later. This study is particularly interesting because
children were tested before they were exposed to formal
education. This finding lends support to the argument
that neuroimaging measures may be used as a way to
improve the early detection of learning difficulty, in order
to prevent difficulties later on (Mascheretti et al., 2017).

Some longitudinal neuroimaging studies have also
attempted to use neural data to classify between children
with and without dyslexia. For example, Hoeft et al. (2011)
showed that a machine-learning classifier can distinguish
whether certain dyslexic children will improve their read-
ing skills or not 2.5 years later using fractional anisotropy
(FA) of dMRI and task-fMRI (rhyme judgment) data.
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Skeide et al. (2016) also reported successful classifica-
tion of future dyslexia based on sMRI (GM) data in chil-
dren before formal education. Finally, Yu et al. (2020)
demonstrated classification of children with and without
familial risk of dyslexia using task-fMRI data (phonologi-
cal processing) before formal education. These reports
suggest that prediction of language ability before formal
education may be applicable to the early detection of risk
of language deficits. In sum, both cross-sectional and
longitudinal designs suggest that neuroimaging data may
have the potential to predict literacy skills and classify
language disorders.

4. CAN NEUROIMAGING STUDIES PREDICT
NUMERACY SKILLS?

As is the case for studies on literacy, neuroimaging stud-
ies that attempt to predict numeracy skills can be cate-
gorized as either cross-sectional (Table 3) or longitudinal
(Table 4). Cross-sectional studies include, for example,
Ulliman and Klingberg (2017), who estimated math scores
of 6- to 7-year-old children through a prediction model of
brain age using dMRI (FA). Pina et al. (2022) predicted
four types of math scores (math fluency, calculation,
applied problems, quantitative concepts) using 100
radiomics features derived from sMRI data.

Other cross-sectional studies have attempted to clas-
sify groups of participants with respect to their numeracy
skills, for example, those with and without dyscalculia.
Dyscalculia is defined as a specific learning difficulty in
processing numerical information, learning arithmetic
facts, and performing calculations, with otherwise normal
intelligence (American Psychiatric Association, 2013). For
example, Rykhlevskaia et al. (2009), Jolles et al. (2016),
and Dinkel et al. (2013) showed that children with and
without dyscalculia could be classified using dMRI (num-
ber of pathways), rest-fMRI (FC), and task-fMRI data
(dots comparison and calculation), respectively. More-
over, Moérocz et al. (2012) and Peters et al. (2018) showed
that arithmetic task-fMRI data can be used to classify
both dyscalculic and dyslexic children. Torres-Ramos
et al. (2020) also showed that task-EEG data (digits com-
parison) could be used to classify children according to
three different categorical levels of math achievement.

Several studies have focused on classifying other
aspects of individual differences in numeracy skills.
Shim et al. (2021) and Liu et al. (2022) reported classifi-
cation of individuals based on their expertise in mathe-
matics using rest-fMRI (FC) and sMRI data, respectively.
Ventura-Campos et al. (2022) classified individuals who
make errors in variable selection (reversal error) when
writing equations to given word problems using algebra
task-fMRI data.
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In contrast to what has been done in studies focusing
on literacy, a greater number of studies have used a longi-
tudinal design to predict numeracy skills (Table 4). In a
seminal study relying on multivariate regression, Supekar
et al. (2013) showed that sMRI (GM) and rest-fMRI (FC)
data could predict improvements in math performance of
8-year-old children after 8 weeks of tutoring program con-
sisting of conceptual instruction and speeded arithmetic
fact retrieval. Evans et al. (2015) further showed that pre-
diction of longitudinal math outcome is possible even
6 years later using sMRI (GM) and rest-fMRI data. Chang
et al. (2022) also reported similar prediction of change in
performance after 4 weeks of training using rest-fMRI (FC)
data. Schwartz et al. (2020) used fMRI data during a tran-
sitive reasoning task to predict math calculation skills
1.5 years later. Ullman et al. (2015) showed that math and
working memory scores could be predicted at ages 5 and
7 from neonatal dMRI (FA), but not from sMRI data. There-
fore, studies show that numeracy skills may be predicted
from brain activity associated with domain-general pro-
cessing, consistent with the role of these processes in
math learning (Raghubar et al., 2010).

We found only one longitudinal neuroimaging study
that focused on the classification of dyscalculia as is
depicted in Figure 1. Kuhl et al. (2021) classified future
dyscalculia at ages of 7-9 years and typically-developing
(TD) children based on dMRI and rest-fMRI data before
formal education (at ages of 3-6 years). Overall, similar to
language abilities, studies show that neuroimaging data
may have the potential to predict numeracy skills and
classify their disorders.

Note that some longitudinal studies do not neatly fall
into the categories described in Figure 1. For example,
Qin et al. (2014) used differences between addition task-
fMRI data from two time points (T1 and T2, 1.2 years
later) to predict improvements in the frequency of retrieval
strategy for addition problem solving. luculano et al.
(2015) showed that task-fMRI data (mental addition) can
discriminate between children with and without dyscal-
culia before (but not after) 8 weeks of a tutoring program
involving conceptual instruction and speeded arithmetic
fact retrieval training. Michels et al. (2018) also reported
similar results based on 5 weeks of mental number line
training. These studies represent different ways to com-
bine machine learning with neuroimaging data to explain
differences in numeracy skills.

5. CAN NEUROIMAGING STUDIES PREDICT
OTHER SKILLS RELEVANT TO ACADEMIC
ACHIEVEMENT?

In our review of studies above, we exclusively focused on
studies that have examined literacy and numeracy skills.
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(Continued)

Table 3

Selection
method of brain

Max
prediction

Cross-
validation

5-fold CV

Mean age/age

Target ability/

areas

Brain areas

L. MFG

accuracy

91.8%

Technique
ANN

Data type

sMRI

range

Sample size
123 (72 math, 51

groups

Study

Predetermined

ROL.

Unclear

Math and nonmath

students

Liu et al.
(2022)

(MLP and
ResNet)

RF

nonmathematicians)

Independent
Prediction

15 regions

Unclear

Repeated 5-
fold CV (20
times)

sMRI (100
radiomics
features)

9.7

Math scores 77

Pina et al.
(2022)

accuracy

across frontal
and parietal

cortices

regression

8 ROls across Predetermined

frontal and
parietal

80.0%

13 methods LOOCV

(DA, ANN,
SVM, RF,
KNN)

task-fMRI
(algebra)

Reversal error,

20 (10 reversal error,
10 without error)

Groups with

Ventura-

ROls.

(flexible DA)

21.3; without error,

21.7

reversal error or

Campos

Nonindependent

not using algebraic

problems

et al. (2022)

cortices

IPS, intraparietal sulcus.
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However, studies have also tested whether neuroimaging
may predict other skills that are relevant to academic
achievement. This is notably the case for vocal commu-
nication. For example, Abrams et al. (2016) used task-
fMRI data from 10-year-old children listening to their
mother’s voice to predict children’s communication
scores. This is also the case for affective traits related to
academic achievement, particularly numeracy skills.
Young et al. (2012), for example, classified children with
high and low math anxiety groups using task-fMRI (addi-
tion and subtraction). Chen et al. (2018) predicted individ-
ual differences in positive attitudes toward mathematics
using right hippocampal activity during an addition task.
Supekar et al. (2015) showed that activity changes in
task-fMRI during addition task can predict changes in
children’s math anxiety elicited by the same tutoring pro-
gram. Finally, studies have attempted to use brain infor-
mation to enhance the diagnosis of autism spectrum
disorder (ASD) and attention-deficit/hyperactivity disor-
der (Eslami et al., 2020; Nogay & Adeli, 2020), both of
which can have impact on academic achievement (Arnold
et al., 2020; Whitby & Mancil, 2009). luculano et al. (2014)
notably used task-fMRI data (mental addition) to classify
between ASD and TD children, suggesting a potential
relationship between the autistic trait and numeracy
skills. While these developmental disorders are beyond
the scope of this paper, they are important targets that
cannot be ignored when considering the overall applica-
tion of neuroimaging and machine learning to education.

In addition to predicting literacy and numeracy skills,
studies have also used brain imaging data to predict aca-
demic achievement more generally. For example, Wang
et al. (2019) predicted students’ academic achievement
at ages 17-20 years using sMRI data. Rasheed et al.
(2021) predicted academic achievement (math and lan-
guage test scores) of school children 4 years later using
EEG data. Maglanoc et al. (2020) used a large sample of
rest-fMRI data from the UK Biobank to predict educa-
tional attainment (based on the qualification variables,
e.g., university degree). Studies have also investigated to
what extent domain-general skills contributing to aca-
demic achievement may be predicted using neuroimag-
ing, including working memory, attention, and intelligence.
For example, Ullman et al. (2014) used sMRI and task-
fMRI during a visuospatial working memory task to pre-
dict children’s working memory capacity 2 years later.
There are also a large number of studies on the prediction
of intelligence quotient scores from brain data (see Vieira
et al. (2022) for a recent systematic review). For example,
Greene et al. (2018) used both rest- and task-fMRI data
with working memory and emotion identification tasks
and found that task-fMRI models outperformed rest-fMRI
model in predicting fluid intelligence scores. Therefore, a
number of studies provide evidence that neuroimaging
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may predict general cognitive functioning, though this
may not be as relevant as the prediction of specific aca-
demic skills such as reading or math for the purpose of
identifying children with specific learning difficulties.

6. ARE THERE ANY SPECIFIC BRAIN
CIRCUITS SUPPORTING PREDICTION
OF ACADEMIC OUTCOMES?

The studies reviewed here are important not only for prac-
tical reasons (i.e., to predict outcomes), but also for under-
standing the brain mechanisms supporting literacy and
numeracy acquisition. Tables 1-4 report the main brain
regions that have been identified in the specific studies.

Some consistency can be seen across studies. For
example, studies that have used MRI data to classify par-
ticipants with and without dyslexia have often identified
the left fusiform gyrus (FG) (Skeide et al., 2016; Tamboer
etal., 2016; Yu et al., 2022; Zahia et al., 2020), and the left
superior temporal gyrus (STG) (Joshi et al., 2023; Ptonski
et al., 2017; Usman et al., 2021; Zahia et al., 2020) as a
potential neuromarker of the condition (see Supplemen-
tary Table S1 for a list of studies only focusing on dys-
lexia). Studies that have used MRI data to classify
participants with and without dyscalculia have instead
often identified the right intraparietal sulcus (IPS) (Dinkel
et al., 2013; Jolles et al., 2016; Kuhl et al., 2021) (see Sup-
plementary Table S2 for a list of studies only focusing on
dyscalculia). Although the number of studies remains too
limited to quantify the consistency of these findings in a
meta-analysis, these findings suggest that these specific
brain circuits may be important for academic learning
and be the target of future studies.

However, as can also be seen from the tables, the
brain systems identified between studies are wide and
span the frontal, temporal, parietal, and occipital corti-
ces, as well as subcortical areas. To some extent, this
variability is expected given the different domains (e.g.,
literacy vs., numeracy), brain measures (e.g., EEG, fMRI,
sMRI), and tasks (e.g., addition vs. reasoning) explored
between studies. Another factor contributing to such
variance may be the use of different tests to estimate
math and reading scores, and inconsistent definitions of
conditions such as dyscalculia and dyslexia. For exam-
ple, while some studies (e.g., Jolles et al., 2016) consid-
ered children with dyscalculia as having at or below the
25" percentile using standardized math test scores, oth-
ers (e.g., Dinkel et al., 2013) have used more stringent
criteria and focused on children having at or below the
10" percentile. In other words, variability in findings is
expected given the wide variability in methods between
studies. In what follows, we will argue that some critical
differences in both machine-learning algorithms and
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cross-validation methods used between studies might
also underlie some of this variability.

7. STUDIES USE A RANGE OF
MACHINE-LEARNING METHODS

As shown in Figure 1, neuroimaging studies predicting
academic outcomes can be classified as belonging to
one of the four categories. However, studies largely differ
with respect to the specific machine-learning algorithms
they rely on to predict behavior, which is the first import-
ant source of variability in the literature. Many classifica-
tion studies have used linear support vector machine
(SVM) (Tables 1-4). Briefly, SVM is a supervised classifi-
cation algorithm that constructs a set of hyperplanes
separating given classes in a high dimensional space, so
as to maximize the distance between the nearest data
points of any class (Cortes & Vapnik, 1995). The SVM,
which is implemented in several decoding toolboxes as a
default method (e.g., The Decoding Toolbox; Hebart
et al., 2014), is useful for classifying among different
groups, such as children with learning disability versus
controls. However, studies have also used other tech-
niques, such as logistic regressions (Cui et al., 2016),
decision trees (Torres-Ramos et al., 2020), random forest
(RF) (Nemmi et al., 2023), naive Bayes classifiers (NBCs)
(Formoso et al., 2021), discriminant analysis (DA) (Bach
et al., 2013), k-nearest neighbors (kNN) (Ventura-Campos
et al., 2022), and artificial neural networks (ANNs) (Tomaz
Da Silva et al., 2021).

A number of different machine-learning methods have
also been used in regression studies, though there is
more homogeneity among these studies than among
classification studies. For instance, some studies have
used linear regression, while others have used support
vector regression (SVR) (He et al., 2013), relevance vector
regression (Yuan et al., 2023), kernel ridge regression
(Schwartz et al., 2020), and elastic net (Beyer et al., 2022).
Simple or multiple linear regression requires a reduction
of input data into a limited number of variables, which
has been achieved by focusing on predetermined regions
of interest (Hoeft et al., 2007; Supekar et al., 2013) or
connectivity among them (Chang et al., 2022). However,
inclusion of too many parameters can cause models to
overfit the training data that contain non-negligible
amount of noise, resulting in reduced generalizability to
test data (Bishop, 2006). Elastic net and other regularized
regression methods implement constraints on the model
weight values to minimize overfitting to the training data
and are appropriate for high-dimensional brain data.
More recently, connectome-based predictive modeling
(CPM) based on linear regression has been adopted for
the analysis of brain-behavior association (Shen et al.,
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2017). For example, researchers have used this tech-
nique to analyze the HCP dataset, which includes a large
number of subjects (Kristanto et al., 2020; Tomasi &
Volkow, 2020).

Although the use of different algorithms is in itself not
problematic, it may become so when no justification is
given for using one method instead of another. This is
unfortunately often the case in the literature. This meth-
odological flexibility increases the researcher degrees of
freedom and makes it difficult to parse out exploratory
from confirmatory findings, especially given an absence
of preregistration across studies (Poldrack et al., 2017).
There is also a need for more direct comparison between
methodologies. For instance, Ptonski et al. (2017) tested
SVM, logistic regression, and RF for the same dataset,
and reported that logistic regression showed the highest
classification accuracy for dyslexia. Furthermore,
Ventura-Campos et al. (2022) compared 13 different clas-
sification methods and reported that flexible discriminant
analysis outperformed other methods. This type of sys-
tematic approach can ensure the robustness of results
independent of the analysis method. However, this also
requires researchers to systematically adopt the most
robust methods, which might not always be the case. For
example, a meta-analysis on machine-learning applica-
tion for disease prediction reported that SVM is the most
frequently used algorithm in the literature, while RF shows
superior accuracy (Uddin et al., 2019). By comparing six
regression methods, Cui and Gong (2018) reported that
least absolute shrinkage and selection operator (LASSO)
regression were worse than the other algorithms when
using FC of rest-fMRI data, while ordinary least-square
regression was worse when using the sum of FC from
each brain region, suggesting that performance of differ-
ent algorithms also depends on preprocessing methods
of the same brain data. To our knowledge, it remains
unclear which method is more effective for predicting
academic achievement.

Another source of variability in machine-learning
methods is the cross-validation (CV) method employed
(e.g., split-half, 10-folds, leave-one-out). CV is a widely
known method in machine learning to iteratively split
some data into training and test samples, testing the
model generalizability while minimizing selection bias. In
the case of k-fold CV, 1/k of the original data are selected
as test samples in each iteration and this procedure cov-
ers all original data with k iterations. In contrast, leave-
one-out CV (LOOCV) uses each individual data (e.g.,
subject) as a test sample and iterates across all data.
Among the studies included in the current review, LOOCV
was the most widely adopted (23 studies), while other
studies used various types of k-fold CV methods (10-fold
CV, 8 studies; 4-fold CV, 6 studies). Recent studies sug-
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gested that the repeated random splits method is more
reliable than the leave-one-out method (Valente et al.,
2021; Varoquaux et al., 2017). In this method, CV based
on different random sample splitting is repeated for mul-
tiple times and averaged (e.g., 100 times); 10 studies
adopted this technique (Beyer et al., 2022; Nemmi et al.,
2023). Overall, there is wide variability in the machine-
learning techniques used in neuroimaging studies, in
terms of both algorithm selection and CV method. Both
of these may have substantial influence on the model
performance. This calls for a standardization in the field
and future research would require careful consideration
of their methodological choices.

8. LIMITATIONS AND FUTURE DIRECTIONS

As reviewed here, an increasing number of neuroimaging
studies suggest that brain data can be used to predict
individual differences in both literacy and numeracy skills,
as well as other skills relevant for academic achievement.
However, several limitations are apparent in the literature.
First, the majority of articles reviewed here have used
sMRI or resting fMRI data (Tables 1-4). Although some
studies have used task-fMRI data, their sample size was
also generally smaller than sMRI and rest-fMRI studies.
However, task-fMRI data can contribute to more accu-
rate prediction of individual differences in academic
achievement. For example, a recent study has reported
superiority of movie-watching task-fMRI data in predict-
ing various cognitive and emotional traits compared with
rest-fMRI data (Finn & Bandettini, 2021; Greene et al.,
2018). Combining multiple task-fMRI data may further
increase prediction performance (Hammer et al., 2015).
Moreover, task-fMRI can shed light on the heterogeneous
profiles of children with dyscalculia or dyslexia, who
might have specific difficulties in some cognitive skills
(such as phonological or visual attentional deficits in the
case of dyslexia) by targeting appropriate ROIs (Jednorég
et al., 2014; van Ermingen-Marbach et al., 2013).
Second, the literature is largely dominated by MRI
data and relatively few studies have used EEG, MEG, or
fNIRS in predictive studies. For instance, to the best of
our knowledge, Dimitriadis et al. (2018) was the only
example of using MEG data to predict language disor-
ders. Lei et al. (2020) was also the only example of using
fNIRS data to predict second language proficiency. The
wide usage of MRI data might be due to its advantage in
spatial resolution compared with the other methods.
Considering their portability, however, EEG, fNIRS, and
optically pumped magnetometers (OPM)-MEG (Boto
et al., 2018; Brookes et al., 2022), as well as portable MRI
(Liu et al., 2021), are interesting because they are more
accessible for experimentation in schools and clinical
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practices than conventional MRI (Stangl et al., 2023).
Given that early detection of potential learning disabilities
is an important goal of several neuroimaging studies dis-
cussed here (Hoeft et al., 2007), efforts should be made
to evaluate the potential of task-related portable neuro-
imaging data for predicting outcomes in children.

Third, most previous studies recruited subjects who
were already exposed to formal education. However, pre-
dicting outcomes from neuroimaging data may be most
interesting before potential difficulties occur at the behav-
ioral level. That is, brain data might help detect a risk for
learning disabilities before children begin formal educa-
tion, which may help ensure that children receive appro-
priate educational support at the earliest stage. To our
knowledge, four studies in the literacy domain (Beyer
et al., 2022; Skeide et al., 2016; Yu et al., 2020; Zare
et al.,, 2016) and two studies in the numeracy domain
(Kuhl et al., 2021; Ullman et al., 2015) tested children
before the onset of formal education. Most of these stud-
ies used either sMRI or rest-fMRI, and only one study
used task-fMRI data (Yu et al., 2020). The relative lack of
studies might reflect the inherent difficulty of pediatric
MRI with young children. Again, this calls for the use of
more child-friendly portable measurement techniques to
inform about the prediction of future academic outcomes.

Fourth, there is still room for the integration of sophis-
ticated machine-learning methods. Although linear
regression and SVM are the two most widely used tech-
niques in previous studies, some recent studies have
adopted ANNs (Joshi et al., 2023; Tomaz Da Silva et al.,
2021; Zahia et al., 2020). ANN is a computational model
inspired by biological neural networks (BNNs). It consists
of multiple layers of neuronal units, where the weighted
sum of units in one layer is used as input for the next layer
after a nonlinear transformation. One advantage of using
ANNs is that one can compare commonality between
ANNs and BNNs in terms of their representations across
different layers/regions (Goldstein et al., 2022; Nakai &
Nishimoto, 2023; Schrimpf et al., 2021). However, it
remains unclear which ANN model is the more appropri-
ate to explain developmental changes in brain represen-
tations and differences between those with and those
without learning disabilities. Cross-validation techniques
might also be improved. Although the large majority of
studies use left-out sample predictions, this method is
not the only method for brain-based classification or
regression. Siegelman et al. (2021), for example, recently
proposed a Bayesian latent-mixture model framework to
classify between children with and without dyslexia. This
framework does not need left-out samples because it
constructs classification models by only using neuroim-
aging data without any categorical labels. In other words,
it interprets the fit between the models’ classification and
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categorical labels as an estimate of its explanatory power.
On the other hand, Astle et al. (2019) used unsupervised
self-organization map to classify children into four groups
(typically developing, broad cognitive deficits in both lan-
guage and mathematics, working memory problems, and
phonological difficulties). These alternative approaches
can shed light on the search for more effective methods
for predicting academic achievement.

Fifth, a critical step for any neuroimaging studies using
machine learning is feature selection. As is clear from our
survey of the literature, many studies have relied on the
selection of specific regions-of-interest (ROIs) as features
to construct machine-learning models (see Tables 1-4). A
well-known issue with ROl analyses in neuroimaging
studies is that the way they are selected might bias the
outcome of the analyses. For instance, selecting ROls
based on data that are nonindependent from the effect
tested might lead to effect sizes that are inflated, an issue
known as circular analyses (Kriegeskorte et al., 2009).
Several neuroimaging studies (i.e., 15 out of 30 ROI-
based studies) reviewed here have selected ROIs based
on the same dataset that was used for their machine-
learning analyses. This may cause inflation of decoding
accuracy and result in a lack of generalizability of decod-
ing models, even if ROIs are selected using univariate
analyses and subsequently tested with multivariate anal-
yses. The use of nonindependent ROIs may further be
inconsistent with the assumption of the left-out sample
prediction because the test samples are already used for
the feature selection during model training. Therefore,
studies using nonindependent ROIs could be considered
as confirmatory, much like those that use in-sample cor-
relations between two datasets (Dumontheil & Klingberg,
2012). Other feature selection methods may be used to
circumvent this circularity issue. For example, some have
interpreted contributing voxels based on nonzero decod-
ing model weight values (Cui et al., 2018; Hoeft et al.,
2011) or based on the nested cross-validation (Cui et al.,
2016). Although caution is needed in interpreting weight
values (Haufe et al., 2014), both approaches can mini-
mize bias of contributing brain regions. We believe that
an interesting approach to avoid circularity issues in fea-
ture selection is searchlight decoding analysis (He et al.,
2013; Kuhl et al., 2021). This whole-brain analysis con-
structs decoding model using voxels included in spheres
centered around each cortical voxel. This makes it possi-
ble to identify brain regions in which multivoxel patterns
are sensitive to the difference between conditions or sub-
ject groups (Kriegeskorte et al., 2006).

Sixth, because we attempted to provide a comprehen-
sive review of the literature, several studies discussed
here rely on relatively small sample sizes (see Tables 1-4).
It is now acknowledged that small sample sizes can lead
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to a significant lack of reliability in neuroimaging data
(Button et al., 2013). Therefore, conclusions from these
studies must be considered with caution. Indeed, predic-
tion accuracy can largely vary based on sample size. For
example, Tamboer et al. (2016) classified dyslexia with
80.0% accuracy in a relatively small group of participants
(N = 49), while they obtained 59.0% accuracy in a second
group with a much larger sample size (N = 876). In the
case of classification between learning disability (dyslexia
or dyscalculia) and typically developing participants, no
study with a large sample size (N > 100) achieved more
than 80% accuracy (Supplementary Tables S1 and S2).
Usman et al. (2021) did report 94.7% accuracy with
N = 148, but this study classified MRI image patches and
did not directly classify original brain data. Overall, this
suggests that a machine-learning model with a classifica-
tion accuracy of 80%, even if the accuracy is significantly
higher than the chance level, would lead to misdiagnosis
in one subject out of five. This is relatively low for real-
world applications, which should aim for highly accurate
predictions more than statistical significance.

Finally, as is the case generally in neuroimaging
research, openly sharing data will be fundamental to
improve models predicting academic outcomes from brain
data. Building reliable predictive models requires a large
amount of data (Varoquaux, 2018). Eight studies con-
structed predictive models of literacy skills (Table 1) using
such open datasets. In addition to the neuroimaging data
published in the Adolescent Brain Cognitive Development
(ABCD) study (Casey et al., 2018) or in UK Biobank
(Littlejohns et al., 2020), researchers have published a
series of open task-fMRI datasets of school children (Lytle
et al.,, 2019, 2020; Suarez-Pellicioni et al., 2019; Wang
et al., 2022). Such large neuroimaging datasets will be
beneficial for future developments in predicting academic
performance using machine learning. In addition, acceler-
ation of open data and codes would enable comparison of
prediction accuracy across different studies and may
reduce inconsistencies between studies.

9. ARE WE GETTING CLOSER TO REAL-WORLD
APPLICABILITY?

In their review, Gabrieli et al. (2015) highlighted a number
of challenges that would have to be met by neuroimag-
ing studies predicting skills to have some real-world
applicability, either in the classroom or in a clinical con-
text. These notably included the reliability and represen-
tativeness of the findings, the added value compared
with behavioral indicators, the economic cost, as well as
the ethical and societal issues these methods may raise.
We revisit here these challenges 9 years after Gabrieli
et al. (2015).
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The section above already fleshes out the critical lim-
itations and challenges in the body of literature. On the
one hand, the relative lack of consistency in methodol-
ogy, experimental designs, and findings shows that
there is much room for improvement for studies aiming
to translate their findings to the real world. On the other
hand, the literature has significantly expanded over the
past 10 years. Although initial studies largely focused on
literacy skills, investigation of academic skills has now
largely expanded to numeracy. In comparison with ear-
lier ones, studies have also now started to focus on
long-term outcomes, sometimes over the course of sev-
eral years (e.g., see Kuhl et al. (2021) for long-term pre-
diction of dyscalculia). This is critical if neuroimaging is
to be thought about as a tool for enhancing the detec-
tion of future learning difficulties before they occur
(Raschle et al., 2012). Finally, recent technical advances
in machine learning, as well as the availability of large-
scale neuroimaging data, might accelerate practical
applications. For example, ANNs with a large number of
layers were not available 25 years ago (Liu et al., 2022).
The development of machine-learning toolboxes such
as scikit-learn (Abraham et al., 2014) has also reduced
the barriers to attempting prediction analyses using
neuroimaging data.

For neuroimaging measures to be useful indicators for
clinical practice or in the classroom, they would of course
need to add some explanatory power to the prediction of
future academic skills that can already be gathered from
behavioral assessments alone. Some studies suggest
that a combination of behavioral and brain-based mea-
sures may outperform either behavioral or neuroimaging
measures alone when predicting academic skills (Beyer
et al., 2022; Hoeft et al., 2007), though most studies still
lack a systematic comparison of prediction based on
neuroimaging and behavior.

Most studies reviewed here have used MRI to predict
academic achievement. Some common criticisms of MRI
include its cost and accessibility, as well as the fact that
pediatric MRI is relatively challenging. As also pointed
out by Gabrieli et al. (2015), it would be important for any
financial analysis to account for current practices, which
may be costly and less effective as they are often tar-
geted at children who are already failing school. Even
though MRI may not be used in the population at large,
some studies do suggest that early MRI measures may
be useful for some targeted population, for example, for
children of parents with learning disabilities. Indeed, a
large body of evidence indicates that such children are at
greater risk of developing the disability than their peers.
Brain-based measures, together with behavioral assess-
ments, may thus enhance the early detection of at-risk
children (Beyer et al., 2022; Kuhl et al., 2021). Another
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path for reducing the economic cost associated with col-
lecting brain-based measures is a greater reliance on
portable and wearable neuroimaging devices, such as
wireless EEG or fNIRS. Critically, these methods have
been increasingly used over the past 10 years, with sev-
eral studies showing their applicability for collecting brain
data in uncontrolled environments such as classrooms
(Davidesco et al., 2021). The field is now ripe for testing
how these techniques may be combined with machine
learning to predict academic outcomes and how they
compare with MRI measures.

Finally, any use of neuroimaging measures to predict
aspects of academic achievement would have to take
into consideration ethical and societal issues. Though
behavioral measures such as intelligence quotient (IQ)
have long been used to predict academic achievement
(Chamorro-Premuzic & Furnham, 2008), studies have
shown that brain-based measures may have a special
status in the public eye and be easily misinterpreted
(Racine et al., 2005). For example, there is evidence sug-
gesting that people often perceive scientific claims as
more credible when they include references to the brain
or neuroscientific information (Weisberg et al., 2008),
which suggests that people might give more weight to
brain-based than behavioral indicators. Another critical
aspect of the findings reviewed here is that they may
raise ethical questions about whether they could be used
to merely identify those with the highest likelihood of suc-
cess instead of identifying individuals who are at risk and
would need help. Although a discussion of these ethical
and societal issues is beyond the scope of the present
review, it is clear that they need to be considered by
researchers, clinicians, educators, parents, students, and
policy makers.

10. CONCLUSION

Nine years after the review of Gabrieli et al. (2015), stud-
ies using machine learning to predict educational
achievement and learning disabilities from brain activity
have grown exponentially, particularly in the domains of
literacy and numeracy. However, we found in this updated
review a considerable variation in algorithms and under-
lying brain circuits between studies. Studies also largely
rely on relatively small samples and suboptimal models.
We argue that the field needs a standardization of meth-
ods, as well as a greater use of accessible and portable
neuroimaging methods that have more applicability
potential than lab-based neuroimaging techniques.
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