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1. INTRODUCTION

The past few decades have seen a rapid increase in our 
understanding of how the brain changes over develop-
ment and learning, leading a number of neuroscientists to 
consider implications of these findings for education. This 
has led to the emergence of the field of educational neu-
roscience ( Ansari  &  Coch,  2006;  Goswami,  2004,  2006), 
defined in a recent review ( Thomas  et  al.,  2019) as “an 
interdisciplinary research field that seeks to translate 
research findings on neural mechanisms of learning to 
educational practice and policy.” However, this general 
endeavor has not been unchallenged. Critics have notably 
claimed that neuroscience findings are too remote from 
the classroom to be informative and to have practical 

implications for children or educational systems ( Bruer, 
 1997). Others have argued that behavioral measures are 
more practical to characterize children’s cognitive capac-
ities than neuroimaging measures ( Bowers,  2016).

In an earlier review,  Gabrieli  et al.  (2015) argued other-
wise and suggested that brain measures obtained through 
neuroimaging techniques may be useful for predicting 
future academic outcomes and, therefore, help design 
interventions, as well as for evaluating the success of 
interventions. A relatively limited number of studies were 
available at the time of Gabrieli et al.’s review. However, 
significant progress has since been made in both neuro-
imaging and machine- learning techniques. The term 
“machine learning” refers here to a set of computational 
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methods that involve the development of algorithms and 
statistical models relying on patterns and inference 
derived from data. These computational methods typi-
cally use past information to improve their performance or 
to make accurate predictions over time ( Mohri  et  al., 
 2012). Because these technological advances are chang-
ing the landscape of what may be possible in terms of the 
prediction of outcomes from neural signals, we aimed 
here to provide an updated review of recent advances in 
neuroscience and machine learning that may have appli-
cation to both education and the treatment of neurodevel-
opmental disorders. Though the present review primarily 
focuses on the methodological framework, challenges, 
and main findings from these studies, we will also end by 
discussing the potential practical applications of this line 
of research.

The present review largely focuses on findings in the 
domains of literacy and numeracy skills (and associated 
disorders) for two reasons. First, literacy and numeracy 
skills are considered fundamental to modern science and 
technologies, and difficulties in acquiring these abilities 
may negatively impact academic attainment and financial 
well- being ( Estrada- Mejia  et al.,  2016). Predicting reading 
and mathematical difficulties in children has, therefore, 
critical societal relevance. Second, literacy and numer-
acy are probably the academic domains for which the 
most progress has been made in developmental cogni-
tive neuroscience over the past decades. We will, how-
ever, also include in our review several studies that have 
focused on other cognitive factors relevant to education. 
Finally, we will highlight future directions for studies aim-
ing to apply machine learning to neural data in order to 
predict and improve educational outcomes.

2. PREDICTING EDUCATIONAL OUTCOMES  
FROM BRAIN ACTIVITY: METHODOLOGICAL  
CONSIDERATIONS

 Gabrieli  et al.  (2015) pointed out that the term “prediction” 
can have at least three different meanings in studies. In its 
weakest form, the term might be used to describe a cor-
relation between two sets of variables obtained at the 
same time point. In a slightly stronger form, it can also be 
used to describe a correlation between two sets of vari-
ables obtained at different time points. In its strongest 
form, “prediction” may describe a model generalization  
to out- of- sample individuals, which typically relies on 
machine learning. This third meaning is arguably the clos-
est to the definition of a “prediction” in common language. 
Studies demonstrating an out- of- sample generalization 
have also the most practical relevance because they sug-
gest that a model would be applicable to novel data that 
are not specific to a given sample.

The present review exclusively focuses on the term 
“prediction” as describing generalization to out- of- 
sample individuals, and, therefore, only includes studies 
demonstrating such generalization. As a side note, not all 
neuroimaging studies using machine- learning techniques 
are relevant to the question of individual differences in 
academic performance, learning, or development. For 
instance, studies may use machine learning to test differ-
ences in spatial distributions of neural activity across 
tasks ( Nakai  et al.,  2023). These studies are not included 
in the present review either.

Broadly speaking, previous neuroimaging studies 
using machine learning to predict educational outcomes 
can be divided into two categories. The first category 
(Fig.  1, top row) encompasses studies using a cross- 
sectional design, such that different participants are eval-
uated at one (T1) or several time points (T1 and T2). The 
second category (Fig.  1, bottom row) includes studies 
using a longitudinal design, such that the same partici-
pants are evaluated at different time points (T1 and T2). 
These time points can be separated by days, weeks, or 
even years. Note that cross- sectional and longitudinal 
studies may use supervised learning to predict either a 
continuous distribution of achievement (e.g., reading, 
math) scores from brain activity or discrete categorical 
labels such as presence or absence of learning disability. 
While the former relies on regression analyses (Fig. 1, left 
column), the latter involves classification analyses (Fig. 1, 
right column) ( Bishop,  2006).

Note that the three typical meanings of “prediction” in 
 Gabrieli  et al.  (2015) can be categorized along the dimen-
sions of “in- sample correlation vs. out- of- sample predic-
tion” and “cross- sectional vs. longitudinal.” That is, the 
first two meanings are similar in that they both focus on 
in- sample correlation but are different because one uses 
a cross- sectional design and the other a longitudinal 
design. The third meaning (out- of- sample prediction) can 
also be applied to both cross- sectional and longitudinal 
data (Fig. 1). In both cases, machine- learning models are 
trained with a subset of samples, and their generalizabil-
ity is tested with left- out samples.

Regression and classification analyses use different 
analytic strategies. For instance, regression analysis as it 
is applied to a cross- sectional design (Fig. 1, upper left 
cell) relies on the generation of a predictive model based 
on the relationship between brain and behavioral data 
across participants from the training set at T1. The trained 
model is then used to predict behavior from brain data in 
left- out participants, also at T1. Regression analysis as it 
is applied to a longitudinal design (Fig. 1, bottom left cell) 
relies on the generation of a predictive model based on 
the relationship between brain data at T1 and behavioral 
data at T2 across participants from the training set. The 
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trained model is then used to predict behavior at T2 from 
brain data at T1 in left- out participants. Classification 
analysis as it is applied to a cross- sectional design (Fig. 1, 
upper right cell) relies on an association between a dis-
crete categorization of participants from the training set 
according to behavioral labels defined at T1 and their 
brain data at T1. This trained model is then used to assign 
labels to left- out participants based on their specific brain 
data, also at T1. Classification analysis as it is applied to 
a longitudinal design (Fig. 1, bottom right cell) relies on an 
association between a discrete categorization of partici-
pants from the training set according to behavioral labels 
defined at T2 (e.g., typically developing or learning dis-
abled) and their brain data at T1. This trained model is 
then used to assign labels to left- out participants based 
on their specific brain data at T1. The specific methodol-
ogies underlying these analyses are discussed in a later 

section (see Studies Use a Range of Machine- Learning 
Methods). The present study does not include data from 
human or animal subjects and does not require approval 
from the ethics committee or informed consent.

3. CAN NEUROIMAGING STUDIES PREDICT 
LITERACY SKILLS?

A number of cross- sectional (Table  1) and longitudinal 
(Table  2) neuroimaging studies have attempted to use 
brain data to predict literacy skills (see Supplementary 
Information for the selection criteria of articles and the 
methodology used to generate the tables). For example, 
using regression in a cross- sectional design,  He  et  al. 
 (2013) showed that gray matter (GM) structural MRI 
(sMRI) data from adult participants could predict various 
language abilities (phonological decoding, form- sound 

Fig. 1. Schematic chart outlining the methodology used in neuroimaging studies reviewed here. Studies can be 
categorized into following a cross- sectional or a longitudinal design (rows), as well as a regression or a classification 
approach (columns). T1, time point 1; T2, time point 2. Note that although cross- sectional design can be applied to 
multiple time points, we only describe the case of T1 to avoid confusion with the longitudinal design. Furthermore, we  
also simplified the description of the longitudinal design by excluding cases of using differences of behavioral data  
(T2 -  T1) as explained variables. Labels #1 and #2 indicate discrete categorization of individuals (e.g., typically developing 
or learning disabled). ANN, artificial neural network; DA, discriminant analysis; kNN, k- nearest neighbors; NBC, naïve 
Bayes classifiers; RF, random forest; SVM, support vector machine; SVR, support vector regression.
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association, and naming speed) decomposed from a set 
of behavioral measures.  Xu  et  al.  (2015) further used 
fractional amplitude of low- frequency fluctuations (ALFF) 
in resting fMRI (rest- fMRI) data to predict reading test 
scores (efficiency of mapping orthography to semantic) 
of adult participants. Subsequent studies have focused 
on large datasets of adult participants provided by the 
Human- Connectome Project (HCP) ( Van  Essen  et  al., 
 2013). These studies used either the Oral Reading Rec-
ognition Test and/or Picture Vocabulary Test combined 
with different types of brain data: sMRI ( Cui  et al.,  2018; 
 Kristanto  et  al.,  2020), functional connectivity (FC) of 
rest- fMRI ( Kristanto  et al.,  2020;  Yuan  et al.,  2023), diffu-
sion MRI (dMRI) ( Kristanto  et al.,  2020), and task- fMRI 
(language, working memory, and motor tasks) ( Tomasi  & 
 Volkow,  2020). Together, these studies show that it is 
possible to predict individual differences in literacy skills 
with different sources of neuroimaging data, indicating 
that such skills are related to brain data over multiple 
dimensions.

Other studies have attempted to use neuroimaging 
data to classify between participants with and without 
dyslexia, a specific learning difficulty in word recogni-
tion, word decoding, and spelling abilities, with other-
wise normal intelligence ( American  Psychiatric 
 Association,  2013). For example,  Tamboer  et al.  (2016) 
classified adults with and without dyslexia using sMRI 
(GM) data.  Cui  et al.  (2016) and  Joshi  et al.  (2023) further 
showed that such classification was not limited to adults 
based on dMRI and sMRI data, respectively. Using sMRI 
(GM) data, but with a larger sample size including chil-
dren from three different countries (130 children with 
dyslexia and 106 typically developing children),  Płoński 
 et  al.  (2017) replicated successful dyslexia classifica-
tion. Finally, some studies have reported successful 
classification between children with and without dys-
lexia based on task- electroencephalography (EEG) with 
word comprehension ( Zainuddin  et al.,  2018) and audi-
tory stimuli listening ( Formoso  et al.,  2021), and resting 
magnetoencephalography (MEG) signals ( Dimitriadis 
 et al.,  2018). Although many of the studies above rely on 
rest- fMRI or sMRI data, more recent studies have also 
used task- fMRI data. For example,  Mascheretti  et  al. 
 (2021) classified dyslexic from nondyslexic children 
using a visual detection task, whereas Tomaz Da Silva 
et  al. (2021) used a word- reading task. Finally,  Zahia 
 et al.  (2020) used three different reading tasks to classify 
children with dyslexia, monocular vision (due to ocular 
motility disorders), and control groups.

Studies have also attempted to distinguish between 
different subtypes of language- related disorders and lan-
guage proficiency levels.  Bailey  et al.  (2016) were able to 
distinguish children with dyslexia from those with specific 

reading comprehension deficits (SRCDs) based on their 
sMRI (GM) data. SRCD differs from dyslexia in that 
affected children have difficulty in reading comprehen-
sion despite adequate phonemic decoding ( Landi  & 
 Ryherd,  2017).  Cignetti  et  al.  (2020) and  Nemmi  et  al. 
 (2023) classified between children with dyslexia and with 
developmental coordination disorder (DCD) using rest- 
fMRI and sMRI (GM and white matter [WM]) data.  Zare 
 et al.  (2016) and  Yu  et al.  (2022) classified whether chil-
dren’s families had a history of dyslexia using rest- EEG 
and rest- fMRI data, respectively. One study has also 
used functional near- infrared spectroscopy (fNIRS) study 
to classify between higher and lower second language 
proficiency groups ( Lei  et al.,  2020).  Barranco- Gutiérrez 
 (2020) classified between adults who are native English 
speakers and those who learned English as a second lan-
guage.  Zhang  et  al.  (2023) classified second language 
(English) proficiency levels (high, moderate, low) of Chi-
nese speakers and further predicted listening compre-
hension scores using fMRI with a story listening task. 
 Mossbridge  et al.  (2013) found that good and poor read-
ers were separable using EEG data during a sentence 
comprehension task.

In comparison with the number of studies that have 
used cross- sectional designs to predict literacy out-
comes, a much smaller number of studies have used lon-
gitudinal designs to make out- of- sample predictions of 
literacy outcomes (Table 2). A pioneering study by  Hoeft 
 et al.  (2007) combined both task- fMRI (rhyme judgment) 
and sMRI (GM and WM) data as inputs of multiple linear 
regression models. The authors found that brain data 
could predict later reading scores at the end of the same 
year.  Bach  et  al.  (2013) combined task- EEG and task- 
fMRI data (word comprehension) to predict reading 
scores measured 2 years later. In  Feng  et al.  (2021), sub-
jects underwent grammar training of an artificial lan-
guage. Their final learning outcomes were predicted from 
task- fMRI data during training in earlier sessions.  Beyer 
 et al.  (2022) used sMRI data (GM, surface area, and local 
gyrification) in preschoolers to predict literacy ability 
2 years later. This study is particularly interesting because 
children were tested before they were exposed to formal 
education. This finding lends support to the argument 
that neuroimaging measures may be used as a way to 
improve the early detection of learning difficulty, in order 
to prevent difficulties later on ( Mascheretti  et al.,  2017).

Some longitudinal neuroimaging studies have also 
attempted to use neural data to classify between children 
with and without dyslexia. For example,  Hoeft  et al.  (2011) 
showed that a machine- learning classifier can distinguish 
whether certain dyslexic children will improve their read-
ing skills or not 2.5 years later using fractional anisotropy 
(FA) of dMRI and task- fMRI (rhyme judgment) data. 
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 Skeide  et al.  (2016) also reported successful classifica-
tion of future dyslexia based on sMRI (GM) data in chil-
dren before formal education. Finally,  Yu  et  al.  (2020) 
demonstrated classification of children with and without 
familial risk of dyslexia using task- fMRI data (phonologi-
cal processing) before formal education. These reports 
suggest that prediction of language ability before formal 
education may be applicable to the early detection of risk 
of language deficits. In sum, both cross- sectional and 
longitudinal designs suggest that neuroimaging data may 
have the potential to predict literacy skills and classify 
language disorders.

4. CAN NEUROIMAGING STUDIES PREDICT 
NUMERACY SKILLS?

As is the case for studies on literacy, neuroimaging stud-
ies that attempt to predict numeracy skills can be cate-
gorized as either cross- sectional (Table 3) or longitudinal 
(Table  4). Cross- sectional studies include, for example, 
 Ullman  and  Klingberg  (2017), who estimated math scores 
of 6-  to 7- year- old children through a prediction model of 
brain age using dMRI (FA).  Pina  et  al.  (2022) predicted 
four types of math scores (math fluency, calculation, 
applied problems, quantitative concepts) using 100 
radiomics features derived from sMRI data.

Other cross- sectional studies have attempted to clas-
sify groups of participants with respect to their numeracy 
skills, for example, those with and without dyscalculia. 
Dyscalculia is defined as a specific learning difficulty in 
processing numerical information, learning arithmetic 
facts, and performing calculations, with otherwise normal 
intelligence ( American  Psychiatric  Association,  2013). For 
example,  Rykhlevskaia  et al.  (2009),  Jolles  et al.  (2016), 
and  Dinkel  et  al.  (2013) showed that children with and 
without dyscalculia could be classified using dMRI (num-
ber of pathways), rest- fMRI (FC), and task- fMRI data 
(dots comparison and calculation), respectively. More-
over,  Mórocz  et al.  (2012) and  Peters  et al.  (2018) showed 
that arithmetic task- fMRI data can be used to classify 
both dyscalculic and dyslexic children.  Torres- Ramos 
 et al.  (2020) also showed that task- EEG data (digits com-
parison) could be used to classify children according to 
three different categorical levels of math achievement.

Several studies have focused on classifying other 
aspects of individual differences in numeracy skills. 
 Shim  et al.  (2021) and  Liu  et al.  (2022) reported classifi-
cation of individuals based on their expertise in mathe-
matics using rest- fMRI (FC) and sMRI data, respectively. 
 Ventura- Campos  et al.  (2022) classified individuals who 
make errors in variable selection (reversal error) when 
writing equations to given word problems using algebra 
task- fMRI data.

In contrast to what has been done in studies focusing 
on literacy, a greater number of studies have used a longi-
tudinal design to predict numeracy skills (Table  4). In a 
seminal study relying on multivariate regression,  Supekar 
 et  al.  (2013) showed that sMRI (GM) and rest- fMRI (FC) 
data could predict improvements in math performance of 
8- year- old children after 8 weeks of tutoring program con-
sisting of conceptual instruction and speeded arithmetic 
fact retrieval.  Evans  et al.  (2015) further showed that pre-
diction of longitudinal math outcome is possible even 
6 years later using sMRI (GM) and rest- fMRI data.  Chang 
 et al.  (2022) also reported similar prediction of change in 
performance after 4 weeks of training using rest- fMRI (FC) 
data.  Schwartz  et al.  (2020) used fMRI data during a tran-
sitive reasoning task to predict math calculation skills 
1.5 years later.  Ullman  et al.  (2015) showed that math and 
working memory scores could be predicted at ages 5 and 
7 from neonatal dMRI (FA), but not from sMRI data. There-
fore, studies show that numeracy skills may be predicted 
from brain activity associated with domain- general pro-
cessing, consistent with the role of these processes in 
math learning ( Raghubar  et al.,  2010).

We found only one longitudinal neuroimaging study 
that focused on the classification of dyscalculia as is 
depicted in Figure 1.  Kuhl  et al.  (2021) classified future 
dyscalculia at ages of 7- 9 years and typically- developing 
(TD) children based on dMRI and rest- fMRI data before 
formal education (at ages of 3- 6 years). Overall, similar to 
language abilities, studies show that neuroimaging data 
may have the potential to predict numeracy skills and 
classify their disorders.

Note that some longitudinal studies do not neatly fall 
into the categories described in Figure 1. For example, 
 Qin  et al.  (2014) used differences between addition task- 
fMRI data from two time points (T1 and T2, 1.2  years 
later) to predict improvements in the frequency of retrieval 
strategy for addition problem solving.  Iuculano  et  al. 
 (2015) showed that task- fMRI data (mental addition) can 
discriminate between children with and without dyscal-
culia before (but not after) 8 weeks of a tutoring program 
involving conceptual instruction and speeded arithmetic 
fact retrieval training.  Michels  et al.  (2018) also reported 
similar results based on 5 weeks of mental number line 
training. These studies represent different ways to com-
bine machine learning with neuroimaging data to explain 
differences in numeracy skills.

5. CAN NEUROIMAGING STUDIES PREDICT 
OTHER SKILLS RELEVANT TO ACADEMIC  
ACHIEVEMENT?

In our review of studies above, we exclusively focused on 
studies that have examined literacy and numeracy skills. 
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However, studies have also tested whether neuroimaging 
may predict other skills that are relevant to academic 
achievement. This is notably the case for vocal commu-
nication. For example,  Abrams  et  al.  (2016) used task- 
fMRI data from 10- year- old children listening to their 
mother’s voice to predict children’s communication 
scores. This is also the case for affective traits related to 
academic achievement, particularly numeracy skills. 
 Young  et al.  (2012), for example, classified children with 
high and low math anxiety groups using task- fMRI (addi-
tion and subtraction).  Chen  et al.  (2018) predicted individ-
ual differences in positive attitudes toward mathematics 
using right hippocampal activity during an addition task. 
 Supekar  et  al.  (2015) showed that activity changes in 
task- fMRI during addition task can predict changes in 
children’s math anxiety elicited by the same tutoring pro-
gram. Finally, studies have attempted to use brain infor-
mation to enhance the diagnosis of autism spectrum 
disorder (ASD) and attention- deficit/hyperactivity disor-
der ( Eslami  et  al.,  2020;  Nogay  &  Adeli,  2020), both of 
which can have impact on academic achievement ( Arnold 
 et al.,  2020;  Whitby  &  Mancil,  2009).  Iuculano  et al.  (2014) 
notably used task- fMRI data (mental addition) to classify 
between ASD and TD children, suggesting a potential 
relationship between the autistic trait and numeracy 
skills. While these developmental disorders are beyond 
the scope of this paper, they are important targets that 
cannot be ignored when considering the overall applica-
tion of neuroimaging and machine learning to education.

In addition to predicting literacy and numeracy skills, 
studies have also used brain imaging data to predict aca-
demic achievement more generally. For example,   Wang 
 et al.  (2019) predicted students’ academic achievement 
at ages 17- 20 years using sMRI data.  Rasheed  et  al. 
 (2021) predicted academic achievement (math and lan-
guage test scores) of school children 4 years later using 
EEG data.  Maglanoc  et al.  (2020) used a large sample of 
rest- fMRI data from the UK Biobank to predict educa-
tional attainment (based on the qualification variables, 
e.g., university degree). Studies have also investigated to 
what extent domain- general skills contributing to aca-
demic achievement may be predicted using neuroimag-
ing, including working memory, attention, and intelligence. 
For example,  Ullman  et al.  (2014) used sMRI and task- 
fMRI during a visuospatial working memory task to pre-
dict children’s working memory capacity 2  years later. 
There are also a large number of studies on the prediction 
of intelligence quotient scores from brain data (see  Vieira 
 et al.  (2022) for a recent systematic review). For example, 
 Greene  et al.  (2018) used both rest-  and task- fMRI data 
with working memory and emotion identification tasks 
and found that task- fMRI models outperformed rest- fMRI 
model in predicting fluid intelligence scores. Therefore, a 
number of studies provide evidence that neuroimaging 
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may predict general cognitive functioning, though this 
may not be as relevant as the prediction of specific aca-
demic skills such as reading or math for the purpose of 
identifying children with specific learning difficulties.

6. ARE THERE ANY SPECIFIC BRAIN  
CIRCUITS SUPPORTING PREDICTION  
OF ACADEMIC OUTCOMES?

The studies reviewed here are important not only for prac-
tical reasons (i.e., to predict outcomes), but also for under-
standing the brain mechanisms supporting literacy and 
numeracy acquisition. Tables  1– 4 report the main brain 
regions that have been identified in the specific studies.

Some consistency can be seen across studies. For 
example, studies that have used MRI data to classify par-
ticipants with and without dyslexia have often identified 
the left fusiform gyrus (FG) ( Skeide  et al.,  2016;  Tamboer 
 et al.,  2016;  Yu  et al.,  2022;  Zahia  et al.,  2020), and the left 
superior temporal gyrus (STG) ( Joshi  et al.,  2023;  Płoński 
 et al.,  2017;  Usman  et al.,  2021;  Zahia  et al.,  2020) as a 
potential neuromarker of the condition (see Supplemen-
tary Table S1 for a list of studies only focusing on dys-
lexia). Studies that have used MRI data to classify 
participants with and without dyscalculia have instead 
often identified the right intraparietal sulcus (IPS) ( Dinkel 
 et al.,  2013;  Jolles  et al.,  2016;  Kuhl  et al.,  2021) (see Sup-
plementary Table S2 for a list of studies only focusing on 
dyscalculia). Although the number of studies remains too 
limited to quantify the consistency of these findings in a 
meta- analysis, these findings suggest that these specific 
brain circuits may be important for academic learning 
and be the target of future studies.

However, as can also be seen from the tables, the 
brain systems identified between studies are wide and 
span the frontal, temporal, parietal, and occipital corti-
ces, as well as subcortical areas. To some extent, this 
variability is expected given the different domains (e.g., 
literacy vs., numeracy), brain measures (e.g., EEG, fMRI, 
sMRI), and tasks (e.g., addition vs. reasoning) explored 
between studies. Another factor contributing to such 
variance may be the use of different tests to estimate 
math and reading scores, and inconsistent definitions of 
conditions such as dyscalculia and dyslexia. For exam-
ple, while some studies (e.g.,  Jolles  et al.,  2016) consid-
ered children with dyscalculia as having at or below the 
25th percentile using standardized math test scores, oth-
ers (e.g.,  Dinkel  et  al.,  2013) have used more stringent 
criteria and focused on children having at or below the 
10th percentile. In other words, variability in findings is 
expected given the wide variability in methods between 
studies. In what follows, we will argue that some critical 
differences in both machine- learning algorithms and 

cross- validation methods used between studies might 
also underlie some of this variability.

7. STUDIES USE A RANGE OF  
MACHINE- LEARNING METHODS

As shown in Figure  1, neuroimaging studies predicting 
academic outcomes can be classified as belonging to 
one of the four categories. However, studies largely differ 
with respect to the specific machine- learning algorithms 
they rely on to predict behavior, which is the first import-
ant source of variability in the literature. Many classifica-
tion studies have used linear support vector machine 
(SVM) (Tables 1– 4). Briefly, SVM is a supervised classifi-
cation algorithm that constructs a set of hyperplanes 
separating given classes in a high dimensional space, so 
as to maximize the distance between the nearest data 
points of any class ( Cortes  &  Vapnik,  1995). The SVM, 
which is implemented in several decoding toolboxes as a 
default method (e.g., The Decoding Toolbox;  Hebart 
 et  al.,  2014), is useful for classifying among different 
groups, such as children with learning disability versus 
controls. However, studies have also used other tech-
niques, such as logistic regressions ( Cui  et  al.,  2016), 
decision trees ( Torres- Ramos  et al.,  2020), random forest 
(RF) ( Nemmi  et al.,  2023), naïve Bayes classifiers (NBCs) 
( Formoso  et al.,  2021), discriminant analysis (DA) ( Bach 
 et al.,  2013), k- nearest neighbors (kNN) ( Ventura- Campos 
 et al.,  2022), and artificial neural networks (ANNs) (Tomaz 
Da Silva et al., 2021).

A number of different machine- learning methods have 
also been used in regression studies, though there is 
more homogeneity among these studies than among 
classification studies. For instance, some studies have 
used linear regression, while others have used support 
vector regression (SVR) ( He  et al.,  2013), relevance vector 
regression ( Yuan  et  al.,  2023), kernel ridge regression 
( Schwartz  et al.,  2020), and elastic net ( Beyer  et al.,  2022). 
Simple or multiple linear regression requires a reduction 
of input data into a limited number of variables, which 
has been achieved by focusing on predetermined regions 
of interest ( Hoeft  et  al.,  2007;  Supekar  et  al.,  2013) or 
connectivity among them ( Chang  et al.,  2022). However, 
inclusion of too many parameters can cause models to 
overfit the training data that contain non- negligible 
amount of noise, resulting in reduced generalizability to 
test data ( Bishop,  2006). Elastic net and other regularized 
regression methods implement constraints on the model 
weight values to minimize overfitting to the training data 
and are appropriate for high- dimensional brain data. 
More recently, connectome- based predictive modeling 
(CPM) based on linear regression has been adopted for 
the analysis of brain- behavior association ( Shen  et  al., 
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 2017). For example, researchers have used this tech-
nique to analyze the HCP dataset, which includes a large 
number of subjects ( Kristanto  et  al.,  2020;  Tomasi  & 
 Volkow,  2020).

Although the use of different algorithms is in itself not 
problematic, it may become so when no justification is 
given for using one method instead of another. This is 
unfortunately often the case in the literature. This meth-
odological flexibility increases the researcher degrees of 
freedom and makes it difficult to parse out exploratory 
from confirmatory findings, especially given an absence 
of preregistration across studies ( Poldrack  et al.,  2017). 
There is also a need for more direct comparison between 
methodologies. For instance,  Płoński  et al.  (2017) tested 
SVM, logistic regression, and RF for the same dataset, 
and reported that logistic regression showed the highest 
classification accuracy for dyslexia. Furthermore, 
 Ventura- Campos  et al.  (2022) compared 13 different clas-
sification methods and reported that flexible discriminant 
analysis outperformed other methods. This type of sys-
tematic approach can ensure the robustness of results 
independent of the analysis method. However, this also 
requires researchers to systematically adopt the most 
robust methods, which might not always be the case. For 
example, a meta- analysis on machine- learning applica-
tion for disease prediction reported that SVM is the most 
frequently used algorithm in the literature, while RF shows 
superior accuracy ( Uddin  et al.,  2019). By comparing six 
regression methods,  Cui  and  Gong  (2018) reported that 
least absolute shrinkage and selection operator (LASSO) 
regression were worse than the other algorithms when 
using FC of rest- fMRI data, while ordinary least- square 
regression was worse when using the sum of FC from 
each brain region, suggesting that performance of differ-
ent algorithms also depends on preprocessing methods 
of the same brain data. To our knowledge, it remains 
unclear which method is more effective for predicting 
academic achievement.

Another source of variability in machine- learning 
methods is the cross- validation (CV) method employed 
(e.g., split- half, 10- folds, leave- one- out). CV is a widely 
known method in machine learning to iteratively split 
some data into training and test samples, testing the 
model generalizability while minimizing selection bias. In 
the case of k- fold CV, 1/k of the original data are selected 
as test samples in each iteration and this procedure cov-
ers all original data with k iterations. In contrast, leave- 
one- out CV (LOOCV) uses each individual data (e.g., 
subject) as a test sample and iterates across all data. 
Among the studies included in the current review, LOOCV 
was the most widely adopted (23 studies), while other 
studies used various types of k- fold CV methods (10- fold 
CV, 8 studies; 4- fold CV, 6 studies). Recent studies sug-

gested that the repeated random splits method is more 
reliable than the leave- one- out method ( Valente  et  al., 
 2021;  Varoquaux  et al.,  2017). In this method, CV based 
on different random sample splitting is repeated for mul-
tiple times and averaged (e.g., 100 times); 10 studies 
adopted this technique ( Beyer  et al.,  2022;  Nemmi  et al., 
 2023). Overall, there is wide variability in the machine- 
learning techniques used in neuroimaging studies, in 
terms of both algorithm selection and CV method. Both 
of these may have substantial influence on the model 
performance. This calls for a standardization in the field 
and future research would require careful consideration 
of their methodological choices.

8. LIMITATIONS AND FUTURE DIRECTIONS

As reviewed here, an increasing number of neuroimaging 
studies suggest that brain data can be used to predict 
individual differences in both literacy and numeracy skills, 
as well as other skills relevant for academic achievement. 
However, several limitations are apparent in the literature.

First, the majority of articles reviewed here have used 
sMRI or resting fMRI data (Tables 1– 4). Although some 
studies have used task- fMRI data, their sample size was 
also generally smaller than sMRI and rest- fMRI studies. 
However, task- fMRI data can contribute to more accu-
rate prediction of individual differences in academic 
achievement. For example, a recent study has reported 
superiority of movie- watching task- fMRI data in predict-
ing various cognitive and emotional traits compared with 
rest- fMRI data ( Finn  &  Bandettini,  2021;  Greene  et  al., 
 2018). Combining multiple task- fMRI data may further 
increase prediction performance ( Hammer  et al.,  2015). 
Moreover, task- fMRI can shed light on the heterogeneous 
profiles of children with dyscalculia or dyslexia, who 
might have specific difficulties in some cognitive skills 
(such as phonological or visual attentional deficits in the 
case of dyslexia) by targeting appropriate ROIs ( Jednoróg 
 et al.,  2014;  van  Ermingen- Marbach  et al.,  2013).

Second, the literature is largely dominated by MRI 
data and relatively few studies have used EEG, MEG, or 
fNIRS in predictive studies. For instance, to the best of 
our knowledge,  Dimitriadis  et  al.  (2018) was the only 
example of using MEG data to predict language disor-
ders.  Lei  et al.  (2020) was also the only example of using 
fNIRS data to predict second language proficiency. The 
wide usage of MRI data might be due to its advantage in 
spatial resolution compared with the other methods. 
Considering their portability, however, EEG, fNIRS, and 
optically pumped magnetometers (OPM)- MEG ( Boto 
 et al.,  2018;  Brookes  et al.,  2022), as well as portable MRI 
(  Liu  et al.,  2021), are interesting because they are more 
accessible for experimentation in schools and clinical 
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practices than conventional MRI ( Stangl  et  al.,  2023). 
Given that early detection of potential learning disabilities 
is an important goal of several neuroimaging studies dis-
cussed here ( Hoeft  et al.,  2007), efforts should be made 
to evaluate the potential of task- related portable neuro-
imaging data for predicting outcomes in children.

Third, most previous studies recruited subjects who 
were already exposed to formal education. However, pre-
dicting outcomes from neuroimaging data may be most 
interesting before potential difficulties occur at the behav-
ioral level. That is, brain data might help detect a risk for 
learning disabilities before children begin formal educa-
tion, which may help ensure that children receive appro-
priate educational support at the earliest stage. To our 
knowledge, four studies in the literacy domain ( Beyer 
 et  al.,  2022;  Skeide  et  al.,  2016;  Yu  et  al.,  2020;  Zare 
 et  al.,  2016) and two studies in the numeracy domain 
( Kuhl  et  al.,  2021;  Ullman  et  al.,  2015) tested children 
before the onset of formal education. Most of these stud-
ies used either sMRI or rest- fMRI, and only one study 
used task- fMRI data ( Yu  et al.,  2020). The relative lack of 
studies might reflect the inherent difficulty of pediatric 
MRI with young children. Again, this calls for the use of 
more child- friendly portable measurement techniques to 
inform about the prediction of future academic outcomes.

Fourth, there is still room for the integration of sophis-
ticated machine- learning methods. Although linear 
regression and SVM are the two most widely used tech-
niques in previous studies, some recent studies have 
adopted ANNs ( Joshi  et al.,  2023; Tomaz Da Silva et al., 
2021;  Zahia  et al.,  2020). ANN is a computational model 
inspired by biological neural networks (BNNs). It consists 
of multiple layers of neuronal units, where the weighted 
sum of units in one layer is used as input for the next layer 
after a nonlinear transformation. One advantage of using 
ANNs is that one can compare commonality between 
ANNs and BNNs in terms of their representations across 
different layers/regions ( Goldstein  et  al.,  2022;  Nakai  & 
 Nishimoto,  2023;  Schrimpf  et  al.,  2021). However, it 
remains unclear which ANN model is the more appropri-
ate to explain developmental changes in brain represen-
tations and differences between those with and those 
without learning disabilities. Cross- validation techniques 
might also be improved. Although the large majority of 
studies use left- out sample predictions, this method is 
not the only method for brain- based classification or 
regression.  Siegelman  et al.  (2021), for example, recently 
proposed a Bayesian latent- mixture model framework to 
classify between children with and without dyslexia. This 
framework does not need left- out samples because it 
constructs classification models by only using neuroim-
aging data without any categorical labels. In other words, 
it interprets the fit between the models’ classification and 

categorical labels as an estimate of its explanatory power. 
On the other hand,  Astle  et al.  (2019) used unsupervised 
self- organization map to classify children into four groups 
(typically developing, broad cognitive deficits in both lan-
guage and mathematics, working memory problems, and 
phonological difficulties). These alternative approaches 
can shed light on the search for more effective methods 
for predicting academic achievement.

Fifth, a critical step for any neuroimaging studies using 
machine learning is feature selection. As is clear from our 
survey of the literature, many studies have relied on the 
selection of specific regions- of- interest (ROIs) as features 
to construct machine- learning models (see Tables 1– 4). A 
well- known issue with ROI analyses in neuroimaging 
studies is that the way they are selected might bias the 
outcome of the analyses. For instance, selecting ROIs 
based on data that are nonindependent from the effect 
tested might lead to effect sizes that are inflated, an issue 
known as circular analyses ( Kriegeskorte  et  al.,  2009). 
Several neuroimaging studies (i.e., 15 out of 30 ROI- 
based studies) reviewed here have selected ROIs based 
on the same dataset that was used for their machine- 
learning analyses. This may cause inflation of decoding 
accuracy and result in a lack of generalizability of decod-
ing models, even if ROIs are selected using univariate 
analyses and subsequently tested with multivariate anal-
yses. The use of nonindependent ROIs may further be 
inconsistent with the assumption of the left- out sample 
prediction because the test samples are already used for 
the feature selection during model training. Therefore, 
studies using nonindependent ROIs could be considered 
as confirmatory, much like those that use in- sample cor-
relations between two datasets ( Dumontheil  &  Klingberg, 
 2012). Other feature selection methods may be used to 
circumvent this circularity issue. For example, some have 
interpreted contributing voxels based on nonzero decod-
ing model weight values ( Cui  et  al.,  2018;  Hoeft  et  al., 
 2011) or based on the nested cross- validation ( Cui  et al., 
 2016). Although caution is needed in interpreting weight 
values ( Haufe  et  al.,  2014), both approaches can mini-
mize bias of contributing brain regions. We believe that 
an interesting approach to avoid circularity issues in fea-
ture selection is searchlight decoding analysis ( He  et al., 
 2013;  Kuhl  et al.,  2021). This whole- brain analysis con-
structs decoding model using voxels included in spheres 
centered around each cortical voxel. This makes it possi-
ble to identify brain regions in which multivoxel patterns 
are sensitive to the difference between conditions or sub-
ject groups ( Kriegeskorte  et al.,  2006).

Sixth, because we attempted to provide a comprehen-
sive review of the literature, several studies discussed 
here rely on relatively small sample sizes (see Tables 1– 4). 
It is now acknowledged that small sample sizes can lead 
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to a significant lack of reliability in neuroimaging data 
( Button  et  al.,  2013). Therefore, conclusions from these 
studies must be considered with caution. Indeed, predic-
tion accuracy can largely vary based on sample size. For 
example,  Tamboer  et  al.  (2016) classified dyslexia with 
80.0% accuracy in a relatively small group of participants 
(N = 49), while they obtained 59.0% accuracy in a second 
group with a much larger sample size (N = 876). In the 
case of classification between learning disability (dyslexia 
or dyscalculia) and typically developing participants, no 
study with a large sample size (N > 100) achieved more 
than 80% accuracy (Supplementary Tables S1 and S2). 
 Usman  et  al.  (2021) did report 94.7% accuracy with 
N = 148, but this study classified MRI image patches and 
did not directly classify original brain data. Overall, this 
suggests that a machine- learning model with a classifica-
tion accuracy of 80%, even if the accuracy is significantly 
higher than the chance level, would lead to misdiagnosis 
in one subject out of five. This is relatively low for real- 
world applications, which should aim for highly accurate 
predictions more than statistical significance.

Finally, as is the case generally in neuroimaging 
research, openly sharing data will be fundamental to 
improve models predicting academic outcomes from brain 
data. Building reliable predictive models requires a large 
amount of data ( Varoquaux,  2018). Eight studies con-
structed predictive models of literacy skills (Table 1) using 
such open datasets. In addition to the neuroimaging data 
published in the Adolescent Brain Cognitive Development 
(ABCD) study ( Casey  et  al.,  2018) or in UK Biobank 
( Littlejohns  et  al.,  2020), researchers have published a 
series of open task- fMRI datasets of school children ( Lytle 
 et  al.,  2019,  2020;  Suárez- Pellicioni  et  al.,  2019;   Wang 
 et  al.,  2022). Such large neuroimaging datasets will be 
beneficial for future developments in predicting academic 
performance using machine learning. In addition, acceler-
ation of open data and codes would enable comparison of 
prediction accuracy across different studies and may 
reduce inconsistencies between studies.

9. ARE WE GETTING CLOSER TO REAL- WORLD 
APPLICABILITY?

In their review,  Gabrieli  et al.  (2015) highlighted a number 
of challenges that would have to be met by neuroimag-
ing studies predicting skills to have some real- world 
applicability, either in the classroom or in a clinical con-
text. These notably included the reliability and represen-
tativeness of the findings, the added value compared 
with behavioral indicators, the economic cost, as well as 
the ethical and societal issues these methods may raise. 
We revisit here these challenges 9  years after  Gabrieli 
 et al.  (2015).

The section above already fleshes out the critical lim-
itations and challenges in the body of literature. On the 
one hand, the relative lack of consistency in methodol-
ogy, experimental designs, and findings shows that 
there is much room for improvement for studies aiming 
to translate their findings to the real world. On the other 
hand, the literature has significantly expanded over the 
past 10 years. Although initial studies largely focused on 
literacy skills, investigation of academic skills has now 
largely expanded to numeracy. In comparison with ear-
lier ones, studies have also now started to focus on 
long- term outcomes, sometimes over the course of sev-
eral years (e.g., see  Kuhl  et al.  (2021) for long- term pre-
diction of dyscalculia). This is critical if neuroimaging is 
to be thought about as a tool for enhancing the detec-
tion of future learning difficulties before they occur 
( Raschle  et al.,  2012). Finally, recent technical advances 
in machine learning, as well as the availability of large- 
scale neuroimaging data, might accelerate practical 
applications. For example, ANNs with a large number of 
layers were not available 25 years ago ( Liu  et al.,  2022). 
The development of machine- learning toolboxes such 
as scikit- learn ( Abraham  et al.,  2014) has also reduced 
the barriers to attempting prediction analyses using 
neuroimaging data.

For neuroimaging measures to be useful indicators for 
clinical practice or in the classroom, they would of course 
need to add some explanatory power to the prediction of 
future academic skills that can already be gathered from 
behavioral assessments alone. Some studies suggest 
that a combination of behavioral and brain- based mea-
sures may outperform either behavioral or neuroimaging 
measures alone when predicting academic skills ( Beyer 
 et al.,  2022;  Hoeft  et al.,  2007), though most studies still 
lack a systematic comparison of prediction based on 
neuroimaging and behavior.

Most studies reviewed here have used MRI to predict 
academic achievement. Some common criticisms of MRI 
include its cost and accessibility, as well as the fact that 
pediatric MRI is relatively challenging. As also pointed 
out by  Gabrieli  et al.  (2015), it would be important for any 
financial analysis to account for current practices, which 
may be costly and less effective as they are often tar-
geted at children who are already failing school. Even 
though MRI may not be used in the population at large, 
some studies do suggest that early MRI measures may 
be useful for some targeted population, for example, for 
children of parents with learning disabilities. Indeed, a 
large body of evidence indicates that such children are at 
greater risk of developing the disability than their peers. 
Brain- based measures, together with behavioral assess-
ments, may thus enhance the early detection of at- risk 
children ( Beyer  et  al.,  2022;  Kuhl  et  al.,  2021). Another 
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path for reducing the economic cost associated with col-
lecting brain- based measures is a greater reliance on 
portable and wearable neuroimaging devices, such as 
wireless EEG or fNIRS. Critically, these methods have 
been increasingly used over the past 10 years, with sev-
eral studies showing their applicability for collecting brain 
data in uncontrolled environments such as classrooms 
( Davidesco  et al.,  2021). The field is now ripe for testing 
how these techniques may be combined with machine 
learning to predict academic outcomes and how they 
compare with MRI measures.

Finally, any use of neuroimaging measures to predict 
aspects of academic achievement would have to take 
into consideration ethical and societal issues. Though 
behavioral measures such as intelligence quotient (IQ) 
have long been used to predict academic achievement 
( Chamorro- Premuzic  &  Furnham,  2008), studies have 
shown that brain- based measures may have a special 
status in the public eye and be easily misinterpreted 
( Racine  et al.,  2005). For example, there is evidence sug-
gesting that people often perceive scientific claims as 
more credible when they include references to the brain 
or neuroscientific information ( Weisberg  et  al.,  2008), 
which suggests that people might give more weight to 
brain- based than behavioral indicators. Another critical 
aspect of the findings reviewed here is that they may 
raise ethical questions about whether they could be used 
to merely identify those with the highest likelihood of suc-
cess instead of identifying individuals who are at risk and 
would need help. Although a discussion of these ethical 
and societal issues is beyond the scope of the present 
review, it is clear that they need to be considered by 
researchers, clinicians, educators, parents, students, and 
policy makers.

10. CONCLUSION

Nine years after the review of  Gabrieli  et al.  (2015), stud-
ies using machine learning to predict educational 
achievement and learning disabilities from brain activity 
have grown exponentially, particularly in the domains of 
literacy and numeracy. However, we found in this updated 
review a considerable variation in algorithms and under-
lying brain circuits between studies. Studies also largely 
rely on relatively small samples and suboptimal models. 
We argue that the field needs a standardization of meth-
ods, as well as a greater use of accessible and portable 
neuroimaging methods that have more applicability 
potential than lab- based neuroimaging techniques.
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