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Abstract 

Children often show cognitive and affective traits that are similar to their parents. Although 

this indicates a transmission of phenotypes from parents to children, little is known about the neural 

underpinnings of that transmission. Here, we provide a general overview of neuroimaging studies 

that explore the similarity between parents and children in terms of brain structure and function. We 

notably discuss the aims, designs, and methods of these so-called intergenerational neuroimaging 

studies, focusing on two main designs: the parent-child design and the multigenerational design. For 

each design, we also summarize the major findings, identify the sources of variability between 

studies, and highlight some limitations and future directions. We notably argue that the lack of 

consensus in defining the parent-child transmission of brain structure and function leads to 

measurement heterogeneity, which is a challenge for future studies. Additionally, multigenerational 

studies often use measures of family resemblance to estimate the proportion of variance attributed 

to genetic versus environmental factors, though this estimate is likely inflated given the frequent lack 

of control for shared environment. Nonetheless, intergenerational neuroimaging studies may still 

have both clinical and theoretical relevance, not because they currently inform about the etiology of 

neuromarkers, but rather because they may help identify neuromarkers and test hypotheses about 

neuromarkers coming from more standard neuroimaging designs. 

 

Keywords 

Intergenerational neuroimaging; Cerebral marker; Intergenerational transmission; Parent-child 
similarity; Multigenerational study; Heritability  
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Highlights  

• We review neuroimaging studies investigating neural markers of traits transmission 

• Studies have used both parent-child and multigenerational designs 

• Studies provide insights but suffer from lack of methodological standardization  

• Multigenerational studies should also account for shared environment 
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1. Introduction  

Children often show traits, both cognitive and affective, that are similar to their parents. For 

example, parents and children tend to be similar in terms of general intelligence (Bjorklund et al. 

2009; Black et al. 2009; Anger and Heineck 2010), executive control abilities (Goos et al. 2009; 

Pingault et al. 2021), and academic skills (Bernabini et al., 2021; Braham and Libertus, 2017; Navarro 

et al., 2018, Brown et al., 2011; van Bergen et al., 2015). Children’s emotional lability and 

dysregulation are also positively correlated with parental emotional dysregulation (Buckholdt et al. 

2014; Li et al. 2019), as are signs of depression (Gotlib and Hammen 2009). Therefore, it is largely 

undisputed that there is a significant phenotypic similarity between parents and children, which 

suggests an intergenerational transmission of traits within families.  

Over the past two decades, a growing number of studies have attempted to explore the 

neural mechanisms underlying this intergenerational transmission of traits.  Generally speaking, this 

literature follows at least three main goals. The first goal is to identify the specific measures of neural 

similarity that are associated with different types of phenotypic similarity between parents and 

children. Phenotypic similarity between parents and children certainly suggests that there is some 

neural similarity, both at the level of brain structure and brain function. However, because there is a 

large degree of modularity in aspects of brain organization (Bertolero et al. 2015), neural similarity 

over generations is likely to depend on both the trait and the brain regions investigated. For 

example, in task-based neuroimaging, the brain regions in which patterns of activity would be most 

similar between parents and children might be different in a language processing task compared to a 

visuo-spatial task. In other words, investigating intergenerational similarity of brain structure and 

function is often not so much a question of whether neural similarity exists between parents and 

children, but rather a question of where this similarity is the most consistently observed and how it 

may change with a given trait. In that sense, neuroimaging designs in which brain similarity is 

measured across generations are a specific instance of designs in which the focus is on assessing how 

specific brain regions similarly contribute to a given function across individuals (as compared to 
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traditional designs in which measures are typically averaged over a sample of participants) (Etzel et 

al. 2020).  

A second goal of intergenerational neuroimaging studies is to determine whether neural 

similarity between parents and children predicts the transmission of traits from the former to the 

latter. Although phenotypic similarity is often observed between parents and children, there is 

substantial variability between families. For example, the risk of developing a cognitive or affective 

disorder in children is often increased when the disorder is present in parents (Merikangas et al. 

1998; Chen et al. 2017). However, in many cases children may not develop the disorder expressed by 

their parents (Haft et al. 2016), which suggests a lesser neural similarity in those families than in 

families in which both children and parents express the disorder. Comparing neural similarity 

between families with different degrees of phenotypic similarity may thus provide a window into the 

brain mechanisms that support the intergenerational transmission of phenotypes. In some ways, this 

is a relatively stringent test of neuromarkers, as a neural mechanism that would characterize a trait 

should be absent (or reduced) when that trait is not transmitted from parents to children. 

Intergenerational neuroimaging studies may thus also provide complementary information to case-

control studies, in which neuromarkers are typically identified by comparing groups of individuals 

with and without the disorder.  

Finally, a third goal of some intergenerational neuroimaging studies is to estimate the 

familiality of brain structures or functions that are associated with a given trait, i.e., the extent to 

which the variation in structural or functional brain measures within a population can be attributed 

to familial differences among individuals; (Kendler and Neale 2009)). This becomes possible when 

studies no longer exclusively focus on two generations but collect brain measures of individuals 

across multiple generations, including siblings, cousins, grandparents, and more distant relatives 

(Roalf et al. 2015; Sudre et al. 2017; van der Lee et al. 2017; Bas-Hoogendam et al. 2018a). Familiality 

can then be estimated based on the varied degrees of relatedness within a family structure (Winkler 

et al. 2010; Tissier et al. 2017; Bas-Hoogendam et al. 2018b). Note that these studies typically do not 



 

7 
 

use the term familiality but rather heritability, which is typically defined as the extent to which the 

variation in a measure within a population can be attributed to genetic differences among 

individuals. However, because genetic and environmental variations remain correlated even in 

multigenerational designs (more related individuals tend to live in more similar environments), it is 

unclear whether multigenerational studies may disentangle between those influences. Therefore, we 

chose to use the more neutral term familiality in the present review. The relation between familiality 

and heritability will be discussed in section 5.3.  

In sum, examining the brain mechanisms mediating the intergenerational transmission of 

behavioral phenotypes may have both clinical and theoretical relevance. As said above, this is not so 

much because these studies may inform about the etiology of neuromarkers (typically these studies 

cannot dissociate between genetic or environmental influences, see section 5.3). But 

intergenerational neuroimaging studies may be most useful because these could provide an 

interesting way to either identify neuromarkers or test hypotheses about neuromarkers coming from 

more standard neuroimaging designs and case-control studies. For example, intergenerational 

studies may investigate similarity in brain structure and function across two generations differently 

affected by a condition or explore the familiality of brain structure and function that are related to 

traits within expanded families. 

 

2. The present review 

The present paper is not the first review of the literature on intergenerational neuroimaging. 

Ho et al. (2016) were the first to focus on these studies and to conceptualize some critical aspects of 

the designs, methods, and key questions. However, as this narrative review will make clear, the field 

has expanded since that seminal review and a still-limited but growing number of studies have begun 

to examine the intergenerational transmission of a variety of traits, including those involved in 

cognitive and academic abilities (i.e., 22 studies reviewed here were not published at the time of Ho 
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et al.’s review, see Table 1 and Table 2). Since Ho et al. (2016), studies have notably also used a 

greater variety of techniques, such as diffusion tensor imaging (DTI), electroencephalography (EEG), 

as well as functional and structural magnetic resonance imaging (respectively, fMRI and sMRI).  

The goal of the present review is twofold. The primary aim is to discuss the experimental 

designs and measures that are used to assess neural similarity in intergenerational studies, as well as 

those that are not used yet but could be directions for future studies. In doing so, we will build on the 

early conceptualization put forward by Ho et al. (2016) and extend it to other dimensions, for 

example covering how neural similarity can be envisioned in terms of spatial and temporal measures 

and in terms of univariate and multivariate measures. A secondary aim is to provide an update of Ho 

et al. (2016) and critically evaluate the main findings obtained by intergenerational neuroimaging 

studies to date, especially as they relate to the three goals of intergenerational studies detailed 

above. Although the present study is not a systematic meta-analysis of the literature, we also aim to 

provide detailed information regarding each study discussed here so that readers may evaluate the 

findings. As mentioned above, intergenerational neuroimaging studies have focused on investigating 

similarity over two generations of individuals (i.e., parent-child design) or over multiple generations 

(i.e., multigenerational design). Therefore, the methods, measures, and findings from both types of 

studies are reviewed in two separate parts.  

 

3. Selection of studies reviewed 

The PRISMA flow diagram showing the selection of studies discussed in this review is shown 

in Fig. 1. All studies discussed in this review were identified from PubMed in May 2023 using the 

following search terms, which had to be in either the title or abstract of the results: “((mother 

daughter[Title/Abstract]) OR (parent child[Title/Abstract]) OR (multigenerational[Title/Abstract]) OR 

(family study[Title/Abstract]) OR (family-based study[Title/Abstract]) OR 

(intergenerational[Title/Abstract])) AND ((neuroimaging[Title/Abstract]) OR (mri[Title/Abstract]) OR 
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(EEG[Title/Abstract]) OR (FMRI[Title/Abstract]) OR (Voxel-Based Morphometry[Title/Abstract]) OR 

(MEG[Title/Abstract]) OR (DTI[Title/Abstract]) OR (brain similarity[Title/Abstract]) OR (brain 

concordance[Title/Abstract]))”. We only considered articles published between the years 2000 and 

2023. These were supplemented by 3 more papers found with additional searches on Google scholar, 

using similar search terms. Moreover, we also examined all references from the review by Ho et al. 

(2016). Finally, the study by Fehlbaum et al. (2022) is one of the most recent papers published on 

intergenerational neuroimaging, so we also examined references cited in this paper.  

All of these papers were screened with the following inclusion criteria: 

(1) Participants scanned had to be humans  

(2) Both related parents and their children (at least) had to be brain-scanned  

(3) Brain similarity between the related dyads had to be assessed OR heritability (i.e., 

familiality in the context of the present review) of brain measures from parent to child 

had to be assessed 

 

Exclusion criteria were:  

(1) Hyperscanning studies or studies looking at the brains during interaction between a 

parent and their child. We were interested in the downward transmission from parent to 

child, and not the bidirectional effects of parent-child interaction.  

(2) Studies considering children and parents as two different groups (e.g., one group of 

affected children compared to a group of first-degree relatives). In such cases, the focus 

of the study is not intergenerational transmission per se but rather dyad status (i.e., 

proband versus first-degree).  
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Following these criteria, we considered 31 studies: 16 studies on exclusively parent-child dyads (see 

Table 1) and 15 studies using a multigenerational design (see Table 2). We begin by discussing 

parent-child studies before turning to multigenerational studies. 

 

Figure 1. PRISMA flow diagram showing the selection of studies discussed in this review. 

4. Parent-child studies 

The overarching goal of parent-child studies is to measure brain similarity between a given 

sample of parents and their children, i.e., across two generations. Measures of brain similarity may 

be further associated with the transmission of a phenotype of interest. Below we detail the variety of 

measures, designs, and analyses that have been employed to assess brain similarity between parents 

and children. Table 1 lists the parent-child studies identified in this review, with their main topics of 

interest, measures, dependent variables, and findings, as well as a number of indicators that can be 

used to assess the confidence in their results (e.g., sample size, presence of preregistration, 

correction for multiple comparisons). 
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Table 1: Parent-child neuroimaging studies referred to in this review. 

Reference  Topic of 
interest  

Populati
on  

N of dyads; 
control (if 
applicable) 

Country Sex ratio 
(m/f) 
parents; 
controls (if 
applicable) 

Sex ratio 
(m/f) 
children; 
controls (if 
applicable) 

Age range 
parents; 
control (if 
applicable) 

Age range 
children; 
controls (if 
applicable) 

Measure  Main findings  Preregistration 
(y/n) 

Dependent 
variable  

Analysis 
(whole-brain 
or ROIs) 

Similarity 
corrected 
for multiple 
comparisons 
(y/n) 

Size of 
the 
largest 
effect 
reported 
for 
parent-
child 
similarit
y, 
Pearson 
correlati
on 
coefficie
nt (if 
ROI 
analysis) 

 A priori 
power 
analysis 
(y/n) 

Abraham 
et al., 2020 

Depression Depresse
d parents 
and at-
risk 
children, 
healthy 
control 
dyads  

24; 20 USA 12/12; 9/11 10/14; 11/9 46-51; 46-
50** (total 
range: 38-59) 

18-22; 19-
24** (total 
range: 10-
31) 

DTI Lower similarity in 
WM connections 
between basal 
ganglia and 
temporal cortical 
areas in dyads with 
a depressed parent  
Better parental 
care predicted 
greater similarity 
in WM connections  

n WM 
connectivity 

ROIs (n=48 
connections) 

y (FDR) r=0.57 n 

Ahtam et 
al., 2021 

Cortical 
sulcal 
patterns 

Healthy 
mother-
child  

16 USA 0/15 8/8 30-46 4-6 sMRI  Stronger sulcal 
pattern similarity 
for child-mother 
pairs than child-
unrelated pairs  
Higher mother-
child similarity in 
the right 
hemisphere  

n Cortical 
sulcal 
patterns 
(position, 
depth, area)  

ROIs (n=10 
sulci) 

y (FDR) 0.91* n 

Bilgi et al., 
2015 

Personality 
traits  

Healthy 
mother-
daughter  

22 Turkey 0/22 0/22 41-52** 19-24** sMRI Mother-daughter 
positive 
correlations in GM 
density related to 

n VBM Whole-brain  n N.A. n 
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personality traits in 
multiple brain 
regions 

Casey et 
al., 2007 

ADHD ADHD 
parent-
child, 
healthy 
control 
dyads  

20; 10 USA  5/15; 2/8 16/4; 8/2 34-61; 38-52 15-19;15-
18 

DTI Significant 
correlation 
between ADHD 
parent-child 
prefrontal fiber-
tract FA, but not in 
control parent-
child dyads 

n FA ROI (n=1) y 
(Bonferroni) 

r=0.61 n 

Colich et 
al., 2017 

Depression  Depresse
d 
mothers 
and at-
risk 
daughter
s, healthy 
control 
dyads  

15; 23 USA  0/15; 0/23 0/15; 0/23 37-51; 43-
51** 

11-14; 11-
14** 

fMRI 
(task) 

Within ROIs 
involved in the 
anticipation of 
reward and loss, 
only the bilateral 
putamen response 
to the anticipation 
of loss showed 
similarity between 
mothers and 
daughters, 
regardless of 
mother’s 
depression history 

n BOLD ROIs (n=11) n r=0.54 n 

Fehlbaum 
et al., 2022 

Reading 
network  

Healthy 
mother-
child  

69 Switzerla
nd, 
Canada 

0/69 41/28 26-55 7-14 sMRI Significant 
similarity for 
mother-child dyads 
in reading network 
for lG, SA and 
GMV, but not CT or 
sulcal morphology  
Similarity in lG, SA 
and GMV is 
specific to mother-
child pairs  

y CT, SA, GMV, 
lG, sulcal 
morphology  

ROI (n=1) y 
(Bonferroni) 

r=0.54 n 
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Foland-
Ross et al., 
2016† 

Depression  Remitted 
mothers 
and at-
risk 
daughter
s, healthy 
control 
dyads  

14; 23 USA  0/14; 0/23 0/14; 0/23 40-51; 43-51 11-16; 10-
15 

sMRI  Thinner CT in 
bilateral fusiform 
and inferior 
temporal and 
lateral occipital 
gyri for remitted 
mothers and at-
risk daughters than 
healthy control 
dyads 
Significant 
correlation of 
mother-daughter 
CT in these regions 
only for remitted 
mothers   

n CT ROIs (n=2) n r=0.63 n 

Hill et al., 
2020 

Frontal 
EEG 
asymmetry  

Healthy 
mother-
infant  

31 USA 0/32 18/15 26-36** 11-13 
months 

EEG Mother-infant FAA 
moderately 
correlated (when 
alpha ranges were 
optimized) 
Mother-infant FAA 
convergence was 
strongest in the 
high alpha range 
for mothers and 
broad alpha range 
for infants  

n FAA ROI (n=1) n r=0.41 n 

Kim et al., 
2021  

Earliness of 
similarity  

Healthy 
mother-
newborn  

30 USA 0/30 16/14 19-42 37.14–
41.57 
weeks  

fMRI (rs) Significant mother-
child FC similarity 
within the first few 
months after birth, 
and increases with 
age of the infant  
Higher FC similarity 
in brain networks 
that mature earlier 

n FC Whole-brain, 
ROIs (n=8 
seeds) 

y (FDR) N.A. n 
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Minami et 
al., 2022 

Depression Remitted 
parents 
and at-
risk 
children  

44 Japan 15/19 22/22 49-66** 19-35** sMRI Significant 
similarity for 
remitted mothers 
and their 
daughters’ GM 
structure in the 
default mode and 
central executive 
networks, not 
identified in any 
other parent-
offspring dyad  

n GM density, 
GMV, SA, CT 

Whole-brain, 
ROIs (n=68) 

y 
(Bonferroni) 

r=0.89 n 

Ozalay et 
al., 2016 

Depression  Depresse
d 
mothers 
and at-
risk 
daughter
s, healthy 
control 
dyads  

24; 24 Turkey 0/24; 0/24 0/24; 0/24 42-50; 41-52 18-26; 18-
25 

sMRI Significant GM 
difference 
between 
depressed mothers 
and controls in 
right 
temporoparietal 
region and dmPFC 
Similar significant 
GM differences 
between at-risk 
daughters and 
control daughters 

n GMV, CT Whole-brain, 
ROIs (n=32) 

n N.A. n 

Su et al., 
2022 

Emotional 
response  

Healthy 
parent-
child  

41 China  10/31 19/22 29-49 7-12 fMRI 
(movie)  

Higher correlation 
in activity of the 
dmPFC and vmPFC 
and in parent-child 
than random dyads 
adult-child dyads 
Higher correlation 
in connectivity of 
the dmPFC with 
social and 
emotional systems 
in parent-child 
dyads 

n BOLD, FC Whole-brain, 
ROIs (n=2 
seeds) 

y (FDR) N.A. n 
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Takagi et 
al., 2021 

Identifying 
dyads  

Healthy 
parent-
child  

84 Japan  3/81 45/39 39-47** 11 and 13 
(longitudin
al) 

fMRI (rs) 
+ sMRI 

Parent-child brains 
are sufficiently 
similar structurally 
and functionally to 
identify dyads  
Structure and 
function provide 
complementary 
information  

n BOLD (FC), 
GMV 

Whole-brain, 
ROIs (n=10 
networks) 

n 
(permutatio
n testing) 

75.55%*
** 

n 

Vandermos
ten et al., 
2020  

Reading 
network 

Healthy 
parent-
child  

44 USA 21/23 21/12 38-50** 7-8** DTI Parent-child 
correlation for FA 
in right FA in 
bilateral IFOF but 
not in AF  

n FA 
  

ROIs (n=4) n (but 
combined 
with 
Bayesian 
approach) 

r=0.67 n 

Wang et 
al., 2018  

Frontal 
EEG 
asymmetry 

Healthy 
parent-
child  

39 China  9/30 20/19 36-43** 7-11** EEG Parent-child 
resting FAA not 
significantly 
correlated  
Relationship 
moderated by 
parental 
psychological 
control  

n FAA ROI (n=1) n r=-0.11  n 

Yamagata 
et al., 
2016†  

Depression Healthy 
parent-
child  

67 USA 29/30 20/19 33-48 5-13 sMRI Positive correlation 
in maternal 
corticolimbic GMV 
with daughters 
significantly 
greater than other 
parent-offspring 
dyads  

n GMV Voxelwise in 
ROI (n=1) 

n N.A. n 

Notes. ADHD, attention deficit hyperactivity disorder; AF, arcuate fasciculus; BOLD, blood-oxygen-level dependent; CT, cortical thickness; dmPFC, dorsal medial prefrontal cortex; DTI, diffusion tensor imaging; EEG, 
electroencephalography; FA, fractional anisotropy; FAA, frontal alpha asymmetry; FC, functional connectivity; FDR, false discovery rate; fMRI, functional magnetic resonance imaging; GM(V), grey matter (volume); IFOF, inferior 
fronto-occipital fasciculus; lG, local gyrification; ROI, region of interest; rs, resting-state; SA, surface area; sMRI, structural magnetic resonance imaging; VBM, voxel-based morphometry; vmPFC, ventral medial prefrontal cortex; 
WM, white matter. 
N.A.: not applicable 
*not a correlation but graph-based sulcal pattern similarity calculated using an exponential function 
**approximated range based on mean +/- SD 
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*** classification accuracy 
†studies included in the review of Ho et al. (2016) 
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4.1. Measures 

Broadly speaking, similarity between two brains can be characterized at the structural and 

functional levels. These two levels provide complementary information with regard to the question 

of whether two brains are similar or different (Takagi et al. 2021). Structural similarity concerns 

similarity in the anatomical properties of the brain, which is necessarily measured in the three-

dimensional space. A number of measures can be considered to investigate structural similarity, 

including grey matter density and volume, cortical thickness, cortical surface area, local gyrification, 

sulcal morphology, and organization of white matter tracts. The relation between these measures is 

not always clear (Winkler et al. 2010) and each may be differently affected by development 

(Fehlbaum et al. 2022). Thus, different structural measures may provide complementary information 

(Ozalay et al. 2016). To date, however, only three neuroimaging studies have combined two or more 

structural features to investigate structural similarity (Ozalay et al. 2016; Fehlbaum et al. 2022; 

Minami et al. 2022).  

In contrast to structural similarity, functional similarity concerns similarity in brain activity. 

These functional properties can be evaluated in the spatial as well as the temporal domains, and 

functional similarity may therefore concern both of these domains. For instance, while Colich et al. 

(2017) focused on similarity of spatial patterns of activity, Kim et al. (2021) and Su et al. (2022) 

studied voxel-wise similarity of brain activity across time. Finally, using electroencephalography 

(EEG), Hill et al. (2020) and Wang et al. (2018) calculated frontal alpha asymmetry score, which is the 

difference between frontal right and left alpha activity averaged across time (the focus being on a 

difference between hemispheres).  

Functional similarity may be measured at rest or during a task. As already pointed out by Ho 

et al. (2016) in their seminal review, an advantage of task-related measures is that they allow for the 

assessment of brain activity (or connectivity) that is associated with a behavior of interest. For 

instance, Colich et al. (2017) used a monetary incentive delay task to evaluate how neural similarity 
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relates to depression, while Su et al. (2022) asked participants to watch an emotionally negative 

movie in the scanner to study how neural similarity mediates the link between family environment 

and child psychological wellbeing. A drawback of task-related measures, however, is that the use of 

different tasks between studies may make it difficult to compare results associated with a phenotype 

of interest. Comparability between studies is an advantage of resting-state studies (Wang et al. 2018; 

Hill et al. 2020; Takagi et al. 2021; Kim et al. 2021), which measure brain activity of participants in the 

absence of a task (van Diessen et al. 2015; Lv et al. 2018). Resting-state studies may also be more 

adapted to pediatric neuroimaging, as task-based neuroimaging may be challenging with young 

children (Raschle et al. 2012). However, resting-state studies do not allow for the study of similarity 

in brain networks associated to a phenotype of interest. They also make it difficult to control for the 

behavior of subjects (van Diessen et al. 2015). That is, each subject may experience different mental 

states, which might influence activity of default mode networks (and thus intergenerational 

similarity).  

 

4.2. Experimental designs 

By definition, all parent-child neuroimaging studies share a common interest in measuring 

the neural similarity between a parent and their child (i.e., a related dyad). However, depending on 

their objectives, studies may vary with respect to the baseline against which that similarity is 

compared to (see Table 1). For example, a number of studies have explored whether differences in 

similarity between related dyads are linked to some phenotype of interest. Such studies have 

typically measured similarity in regions associated with a variety of traits (Bilgi et al. 2015; Wang et 

al. 2018; Hill et al. 2020; Vandermosten et al. 2020). Others have followed dyads longitudinally (Kim 

et al. 2021) or compared similarity between different combinations of related dyads (e.g., father-

child versus mother-child) (Yamagata et al. 2016; Minami et al. 2022). As stated earlier, a frequent 

goal of parent-child studies is to test whether neural similarity between parents and children is 
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associated with the transmission of a disorder. Several studies have therefore compared related 

dyads in which the parent is (or was) affected by a disorder to related dyads in which the parent is (or 

was) not affected (Casey et al. 2007; Foland-Ross et al. 2016; Ozalay et al. 2016; Colich et al. 2017; 

Abraham et al. 2020). Finally, studies may also investigate what is unique to the similarity between 

parents and children from related dyads. These studies have typically compared related dyads to 

dyads of parents and children that were unrelated (Ahtam et al. 2021; Takagi et al. 2021; Fehlbaum 

et al. 2022; Su et al. 2022). Overall, these different choices introduce some degree of variability 

between studies that need to be considered when examining the literature. For example, studies 

exclusively assessing brain similarity among related dyads do not provide any information regarding 

how specific that similarity is to related (versus unrelated) individuals. This specificity can only be 

assessed by using unrelated dyads as baseline. As another example, studies that examine the 

similarity of dyads over time or between different types of parent-child dyads are uniquely 

positioned to inform about factors moderating similarity, such as age, sex, or presence of a disorder. 

We discuss in greater detail the limitations of different types of design in a later section (see Section 

4.6). 

 

4.3. Statistical analyses 

Although brain similarity can be conceptualized at both the spatial and the temporal level 

(see above), a majority of studies have focused on spatial analyses. The most frequently encountered 

index of brain similarity across these studies is a correlation between a given brain measure in 

parents and in children (Casey et al. 2007; Foland-Ross et al. 2016; Yamagata et al. 2016; Ozalay et al. 

2016; Wang et al. 2018; Hill et al. 2020; Vandermosten et al. 2020; Takagi et al. 2021; Fehlbaum et al. 

2022; Minami et al. 2022). Brain measures often come from the average activity or structural index 

of several voxels within given regions of interest (ROIs) (Casey et al. 2007; Foland-Ross et al. 2016; 

Ozalay et al. 2016; Wang et al. 2018; Hill et al. 2020; Vandermosten et al. 2020; Takagi et al. 2021; 
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Fehlbaum et al. 2022; Minami et al. 2022), but they may also be computed voxel-by-voxel across 

ROIs (Yamagata et al. 2016) or across the whole brain (Bilgi et al. 2015). Each method has its 

advantages and disadvantages (Poldrack 2007; Kriegeskorte et al. 2009). While ROI analyses may 

limit the number of multiple comparisons, they are subject to biases depending on the way the ROIs 

were selected. In contrast, while whole-brain analyses allow researchers to explore relations across 

the entire brain without a priori constraints, they raise issues about multiple comparisons which 

need to be adequately controlled. 

 

 

Fig. 2. Statistical analyses in parent-child neuroimaging studies. (A) Univariate data analysis. The 
brain measure (mp for the parent, mc for the child) is considered at the voxel level or averaged at the 
ROI level. A correlation is calculated between measures of parents and children, either in the ROI or at 
the voxel-wise level. (B) Multivariate data analysis. For each parent-child dyad, a correlation is 
calculated between multivariate patterns of brain measures at the ROI or searchlight level, resulting 
in a correlation for the ROI or the voxel. The searchlight is a radius sphere that runs through the 
whole parent and child brains and centers on each voxel of the brain. (C) Temporal approach on 
functional data. For each voxel, a correlation is calculated between time series of the parent and the 
child. As an output, for each dyad, a map of voxel per voxel correlations is obtained. Abbreviations: 
ROI; region of interest.  

 

The studies described above all employ univariate methods. That is, they only consider a 

given voxel or a given ROI at a time when investigating the correlation between the parental 
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measure and the child measure (see Fig. 2A). Yet, the past two decades have seen the emergence of 

multivariate methods in the neuroimaging field, which may enhance power and reliability (Kragel et 

al. 2021). To our knowledge, only one study has taken advantage of such methods. Colich et al. 

(2017) evaluated similarity between parents and children by calculating the correlation between 

voxel-wise patterns of task-related activity in parents and children in given ROIs, thus obtaining a 

correlation for each dyad as an index of similarity (see Fig. 2B). In theory, this method could be 

extended to whole-brain analyses using a searchlight approach, i.e., by defining a local neighborhood 

of voxels centered around each voxel in the brain volume and running a correlation of multivariate 

pattern of activity between parents and children within each neighborhood.  

A few studies have investigated parent-child similarity in brain function by focusing on 

similarity in the temporal rather than the spatial domain (see Fig. 2C). This notably allows one to use 

temporal data from resting-state (Kim et al. 2021) or task-related design without the need to 

compare different conditions (Su et al. 2022). These studies typically measure the correlation 

between the time course of activity in parents and children for each voxel in the brain. This leads to a 

map of voxel-wise correlations for each dyad, which can be statistically compared between groups. 

Note that this approach can also be combined with a ROI approach to limit the multiple comparison 

problem (Kim et al., 2021, see below).  

Finally, some studies have examined parent-child similarity in brain connectivity rather than 

localized activity or structure. Often, connectivity analyses consist in building a connectivity matrix 

between several ROIs (Abraham et al. 2020; Takagi et al. 2021), or between ROIs and voxels across 

the whole brain (Kim et al. 2021). Such connectivity can be structural, for example involving white 

matter fiber connections (Abraham et al. 2020), or functional, for example involving functional 

coupling of activity between regions (Takagi et al. 2021; Kim et al. 2021; Su et al. 2022). Parent-child 

similarity is then typically assessed by calculating correlations between the whole matrices of parents 

and children (Takagi et al. 2021; Kim et al. 2021) or for each single fiber connection (Abraham et al. 

2020). Su et al. (2022) used another strategy and directly calculated the correlation between the time 
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series of a seed from one participant and the time series of voxels across the whole brain from 

another participant. Matrices of correlations were then averaged across participants. Finally, in their 

temporal voxel-wise analysis (see above), Kim et al. (2021) synchronized the time series within 

parent and child dyads for each voxel, such that time series should be similar when connectivity 

patterns are similar. Voxel-wise correlation of time series was then used as an estimate of parent-

child similarity in functional connectivity.  

Thus, parent-child neuroimaging studies have employed diverse methods and statistical 

analyses, which have an impact on the very definition of brain similarity across studies. Studies have 

also focused on brain similarity in the context of a variety of traits, which we review below.  

 

4.4. Main findings  

As can be seen from Table 1, most studies have investigated the transmission of traits such 

as mood and depression while a smaller number of studies have focused on reading and attention. 

Table 1 lists the main conclusions from each study, along with a number of indicators that can be 

used to assess the confidence in the results, such as sample size, presence of preregistration, or 

correction for multiple comparisons. Clearly, studies have employed a variety of techniques and 

analytic strategies, which make it relatively difficult to compare their findings with each other. It is 

nonetheless interesting to examine how the body of literature relates to the main objectives that are 

spelled out at the outset of this review.    

 We argued that a first goal of intergenerational studies is to identify the measures of neural 

similarity that are associated with different types of phenotypic similarity between parents and 

children, with the idea that neural similarity may depend on both the trait and the brain regions 

investigated. Overall, studies have indeed found structural and functional similarity between parents 

and children in a number of brain regions that they have associated with specific traits. For example, 

Yamagata et al. (2016) linked parent-daughter similarity within the corticolimbic circuitry to 
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intergenerational effects on mood regulation, Fehlbaum et al. (2022) and Vandermosten et al. (2020) 

associated parent-child similarity in left-hemispheric regions and pathways to the transmission of 

reading skills, and Hill et al. (2020) argued that similarity in EEG frontal alpha asymmetry may reflect 

similarity in emotion regulation. Yet, it is difficult to assess the specificity of these measures of 

similarity for the given trait, as most studies have focused on specific ROIs and often rely on reverse 

inferences to speculate on what the similarity might mean. Investigating trait-specific neural 

similarity would require either functional studies comparing how similarity differ in different tasks or 

studies more generally linking similarity to individual differences in behavioral measures of traits, 

though those studies would undoubtedly require a significant increase in sample size compared to 

current studies (Marek et al. 2022). 

We also argued that a second goal of parent-child studies is to determine whether neural 

similarity between parents and children predicts the transmission of traits from parents to children. 

As shown in Table 1, a few studies have started to explore this question, mainly by comparing dyads 

in which a condition is transmitted from parents to children (or has a greater risk of being 

transmitted) to healthy dyads. For example, several studies have compared dyads in which mothers 

have a history of depression to dyads with no such history (Foland-Ross et al. 2016; Ozalay et al. 

2016; Colich et al. 2017; Abraham et al. 2020), showing differences in brain similarity between those 

cases (with the exception of Colich et al. 2017).  Casey et al. (2007) also used a design in which 

parents and children both affected by ADHD were compared to healthy controls, also suggesting 

differences in prefrontal similarity as a function of the dyad status. Though these studies are 

interesting proofs of concept for the use of parent-child designs to explore neuromarkers, studies 

remain scarce and likely underpowered given that most of them rely on univariate correlations 

between parents and children (see section 4.3) in relatively small sample sizes. Studies also currently 

lack designs comparing dyads in which a condition is transmitted versus is not transmitted from 

parents to children, which is a more stringent test of neuromarkers than comparing affected versus 

unaffected dyads. 
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 Finally, parent-child designs allow researchers to examine whether neural similarity is 

moderated by other variables. For instance, Abraham et al. (2020) found that parent-child neural 

similarity in WM tracts increased with a measure of parental care. Although this might suggest an 

effect of caregiving on parent-child similarity (as the authors suggest), it is important to keep in mind 

that such designs are not genetically-sensitive. Therefore, it is unclear whether such moderating 

effects result from an environmental influence (e.g., caregiving itself) or from a genetic influence 

(e.g., parents who report more parental care might differ genetically from parents who report less 

parental care). This issue is also present in studies that investigate whether similarity is related to 

parental education (Kim et al. 2021) or other parental characteristics (Wang et al. 2018). More 

generally, the issue of whether intergenerational designs might be able to dissociate genetic from 

environmental effects is discussed later (see section 5.3). 

 

4.5. Factors influencing parent-child brain similarity 

Parent-child studies have suggested that several factors may influence neural transmission 

from parents to children. First, parent-child neural similarity may depend on the age of children 

(Takagi et al. 2021; Kim et al. 2021) or their pubertal status (Colich et al. 2017). Specifically, studies 

suggest that similarity tends to increase as children get older, which is likely to reflect 

neurodevelopmental changes. Indeed, human brain development is protracted, changing in structure 

during adolescence and into early adulthood (Paus 2005; Stiles and Jernigan 2010; Houston et al. 

2014). To some extent, it is not surprising that as children’s brain slowly matures, it becomes more 

alike the parental brain, which has already reached maturity. It is also likely that genetic effects on 

brain function may increase over development (Lenroot and Giedd 2008). Indeed, as children get 

older, they have more opportunities to seek an environment and experiences in line with their 

genetic predispositions. Environmental feedback might in turn reinforce this tendency, thereby 

contributing to an increase in intergenerational similarity with age. In any case, more developmental 
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studies are needed to investigate how the intergenerational transmission of brain structure and 

function is affected by developmental trajectories. Not only would longitudinal studies allow for 

following at-risk participants as they develop or not the disorder, but these studies could also help 

determine whether neural phenotypes of transmission are vulnerability factors and not simply 

epiphenomena. As highlighted by Ho et al. (2016), such studies might also investigate whether 

developmental trajectories of cerebral markers of interest are linear or nonlinear. 

Second, similarity may depend on the sex of both parent and child, with several studies 

showing female-specific similarity in brain regions associated with emotion regulation (Yamagata et 

al. 2016; Minami et al. 2022). It has been argued that this female-specific transmission of 

neuromarkers may parallel the female-specific transmission of depressive phenotypes, maternal 

depressive symptoms being correlated with symptoms in daughters but not in sons (Yamagata et al. 

2016). Note that this might come from the influence of both environmental and genetic factors. For 

example, a mother might be more similar to her child than a father because she provides the 

prenatal environment to their child (Minami et al., 2022). Moreover, a mother might be more similar 

to her daughter because  parents spend more time with same-sex children (Endendijk et al. 2018), 

which could ultimately lead to same-sex modeling and higher same-sex similarity between parents 

and children (Lewis et al. 2011). It is also possible that this sex-specific transmission may have a 

genetic origin, known as the parent-of-origin effect. Specifically, the impact of an allele on phenotype 

depends on whether the allele is inherited from the mother or the father (Ho et al. 2016). This 

parent-of origin effect can be sex-specific, with a differential gene expression depending on the sex 

of the child (Gregg et al. 2010), suggesting that for daughters but not sons, genes linked to 

depression may have more impact on the child phenotype when inherited from the mother than the 

father. Clearly, intergenerational studies cannot disentangle between these possibilities. 

Nonetheless, the influence of sex on the intergenerational transmission of brain circuits suggests that 

studies should systematically control for the sex of the parent and the child in the analyses (as well as 

the age, see above).  
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Finally, some other factors may influence parent-child similarity, such as parental education  

(Kim et al., 2021), parental care (Abraham et al., 2020), and parental psychological dispositions 

(Wang et al., 2018). As stated earlier, however, it remains unclear to what extent these factors 

explain neural similarity over and above genetic measures (which are not collected in the parent-

child studies reviewed here).  

 

4.6. Limitations 

 We highlight here a few limitations of current studies that investigate the parent-child 

transmission of brain structure and function. First, parent-child neuroimaging studies are 

characterized by a wide diversity of techniques, measures, and ways to assess neural similarity. Such 

a heterogeneity raises concerns regarding the replicability of findings. It might be beneficial to find 

some consensus regarding methodological practices. The use of standardized pre-processing 

protocols and standardized tasks in fMRI studies is necessary for mega-analyses (Ho et al. 2016). In 

sMRI studies, the same structural features should systematically be used from one study to the next 

to enhance comparability. For instance, Winkler et al. (2010) suggested that for genetic 

neuroimaging studies, cortical thickness and surface area should be preferred over grey matter 

volume. Indeed, the authors showed that surface area and cortical thickness are independent from 

one another and have distinct genetic origins, and thus provide complementary information. In 

contrast, grey matter volume is genetically and environmentally correlated to surface area and 

cortical thickness, which makes this measure relatively unspecific compared to others. Another issue 

with many studies is that the hypotheses, design, and analysis strategy are often not preregistered 

(see Table 1). Neuroimaging studies are often characterized by a large number of researcher degrees 

of freedom and preregistration would be beneficial to limit analytic flexibility and increase 

confidence in the results (Poldrack et al. 2017).  Finally, sample sizes of parent-child studies tend to 

be relatively small, ranging from 16 to 84 participants in the studies included in Table 1. Though the 
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power of a given study to detect similarity will depend on a number of factors, including 

experimental design and how similarity is defined, there is a growing awareness that neuroimaging 

studies focusing on univariate brain-behavior associations are often underpowered and require much 

larger sample sizes (Marek et al. 2022). Although parent-child studies do not necessarily involve 

univariate brain-behavior associations, they often define similarity using univariate correlations of 

brain structure and function between parents and children (see Fig. 1A). It is therefore likely that 

these studies are underpowered, which question the replicability of their findings. Future studies 

might either need to significantly increase sample sizes when relying on parent-child correlations, or 

turn to other measures of similarity that might be more sensitive, such as multivariate pattern 

similarity (see Fig. 1B) (Spisak et al. 2023). 

 Second, parent-child studies have largely focused on intergenerational transmission based on 

a small number of hypothesis-driven ROIs. Although ROI-based analyses might enhance power by 

limiting the number of multiple comparisons (Saxe et al. 2006), a drawback of this approach is that it 

limits the discovery of similarity in other regions of the brain. For example, it is possible that brain 

similarity might be observed in regions that are not necessarily part of the canonical brain circuit 

involved in a given function. Studies using whole-brain voxel-wise analyses allow for such 

exploration, which has already been used successfully in some structural studies (Bilgi et al. 2015; 

Yamagata et al. 2016), but also in functional studies using voxel-wise correlation of time series (Kim 

et al. 2021; Su et al. 2022). Another possibility for a voxel-wise analysis of functional data is the use 

of a whole-brain multivariate analysis using a searchlight approach (Etzel et al. 2013). Such 

multivariate analyses have the advantage of being sensitive to multidimensional processes (Davis et 

al. 2014) as well as to subtle changes in multivariate patterns (Yang et al. 2012), therefore capturing 

more information than univariate analyses. In other words, whole-brain multivariate analyses might 

be informative in parent-child neuroimaging studies. 

 Third, an important limitation of several studies (Bilgi et al. 2015; Yamagata et al. 2016; Wang 

et al. 2018; Hill et al. 2020; Vandermosten et al. 2020; Kim et al. 2021) is that sometimes parent-child 
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similarity is only investigated in related dyads and not compared to unrelated dyads. However, even 

two unrelated brains may show some degree of similarity in either structure or function. For 

example, typical reading development is associated with functional and structural changes in a left-

hemispheric network of regions, including the occipitotemporal, temporoparietal and inferior frontal 

areas (Schlaggar and McCandliss 2007). Thus, similarity in this network is expected in the population 

and only a comparison between related and unrelated pairs would allow one to conclude on 

intergenerational transmission. This is particularly true if similarity is measured from task-related 

activity, as even unrelated participants may show similar activity in a number of brain regions 

associated with the task. In other words, measuring parent-child similarity by only focusing on 

related dyads may raise the risk of overestimating what is transmitted from parents to children.  

 

5. Multigenerational studies  

Parent-child studies only focus on two generations of individuals, rather than on a broader 

family system. However, this broader family system is also known to influence child development 

(Rogers et al. 2022). Another type of intergenerational studies—multigenerational studies—

specifically focuses on expanded families and investigates several generations of related individuals 

at the same time (Almasy and Blangero 1998). Table 2 lists the multigenerational studies identified in 

this review, with their main topics of interest, measures, dependent variables, and findings, as well as 

a number of indicators that can be used to assess the confidence in their results (e.g., sample size, 

presence of preregistration, correction for multiple comparisons). 

 

5.1. Measures, designs, and analyses 

Multigenerational studies (see Table 2) recruit individuals from multiple generations within 

either healthy or multiplex families (i.e., families with several members affected by a disorder of 

interest). Although the composition of the sample may vary between studies, participants typically 
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include parents and offsprings as well as siblings and extended family members (e.g., grandparents, 

aunts, uncles, cousins). A critical feature of multigenerational neuroimaging studies is that neural 

measures are collected for each participant in addition to behavioral phenotype. Much like parent-

child studies, several neural measures may be considered (see section 4.1.). Although most studies 

have focused on structural measures (Winkler et al. 2010; Fears et al. 2014; McKay et al. 2014; Roalf 

et al. 2015; Sudre et al. 2017; van der Lee et al. 2017; Bas-Hoogendam et al. 2018b; Prasad et al. 

2022; Hofer et al. 2022), others have investigated functional measures, either at rest (Sudre et al. 

2017; Bas-Hoogendam et al. 2021) or during a task (Harrewijn et al. 2018a, b; Bas‐Hoogendam et al. 

2019; Bas-Hoogendam et al. 2020b, a). The typical analysis strategy involves three main steps. First, 

the degree of relatedness between family members is represented using a kinship matrix, which 

includes the theoretical coefficients of familial relatedness between all pairs of individuals (e.g., 1 for 

the similarity with oneself, ½ for parents and full siblings; ¼ for grandparents or half-siblings; 1/8 for 

cousins; and 0 for unrelated individuals). Second, brain measures (collected either at the voxel or ROI 

level) are considered dependent variables in linear mixed models that often include as fixed effects 

covariates such as sex and age and as random effects the familial relatedness between individuals, 

represented by the kinship matrix (see Fig. 3) (Almasy and Blangero 1998; Tissier et al. 2017). Third, 

in this design, familiality can be estimated for each voxel or for each ROI as the ratio of the additive 

familial variance (estimated from the kinship matrix) to the total phenotypic variance. It should be 

noted that most studies discussed here do not refer to familiality but rather to heritability (the 

proportion of phenotypic variance that is due to genetic factors versus environmental factors). 

However, as we will see later, whether an estimate of familiality can be interpreted as an estimate of 

heritability depends on a number of factors that are not always well controlled in studies. For that 

reason, we chose to use the more neutral term familiality when reporting the results of these 

studies.
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Table 2: Multigenerational neuroimaging studies referred to in this review 

Reference  Topic of 
interest  

Population  N of family 
members 
scanned 

N of 
families 

N of 
cases 

Country Sex ratio  
m/f  

Age 
range   

Imaging 
technique  

Main findings (related to 
familiality)  

Environ
mental 
covariate
s 
calculati
on of 
familialit
y 

Study 
preregi
stratio
n (y/n) 

Dependent 
variable(s)  

Analysis 
(whole-
brain or 
ROI) 

Correctio
ns for 
multiple 
comparis
ons for 
familialit
y (y/n) 

Size of 
the 
largest 
familial
ity 
effect 
reporte
d (if 
ROI 
analysi
s) 

 A 
priori 
power 
analysi
s (y/n) 

Bas-
Hoogenda
m et al., 
2018b 

Social 
anxiety 
disorder  

LFLSAD  110 8 39 Netherlands 56/54 9-61 sMRI Subcortical volume as well as CT 
and SA in temporal, frontal, 
occipital and parietal cortex 
showed moderate to high 
familiality 

n y Subcortical 
volume, 
CT, SA 

ROIs (n=46) y (FDR) 0.92 y 

Bas-
Hoogenda
m et al., 
2019 

Social 
anxiety 
disorder  

LFLSAD  105 8 37** Netherlands 49/49** 9-61 fMRI (task) Moderate to moderately high 
familiality within right 
hippocampus for neural 
habituation response  
No familialityfor other ROIs 

n y BOLD Voxelwise 
within ROIs 
(n=16) 

n / y 

Bas-
Hoogenda
m et al., 
2020a 

Social 
anxiety 
disorder 

LFLSAD 99 8 33** Netherlands 45/46** 9-61 fMRI (task) Moderate to moderately 
highfamilialityof brain activation 
levels within mPFC, MTG, STS 
and STG, which are associated 
with social anxiety  

n y BOLD Voxelwise 
within ROIs 
(n=2) 

n / y 

Bas-
Hoogenda
m et al., 
2020b 

Social 
anxiety 
disorder  

LFLSAD  105 8 38** Netherlands 49/49** 9-61 fMRI (task) In 2 clusters of the amygdala of 
which activity was associated 
with social anxiety, voxels of 
moderate to moderately high 
familiality (ranging from 0.20 to 
0.63; 1 voxel in left cluster and 
22 voxels in right cluster) 

n y BOLD Voxelwise 
within ROIs 
(n=2) 

n / y 

Bas-
Hoogenda
m et al., 
2021 

Social 
anxiety 
disorder  

LFLSAD  109 8 39** Netherlands 56/53 9-61 fMRI (rs) Familiality>0.20 for iFC of 
multiple voxels within SA-
related clusters (dorsal attention 
and frontoparietal network) 

n y FC Networks 
(n=6) 

n / y 
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Fears et al., 
2014 

Bipolar 
disorder  

Multigener
ational 
families 
enriched 
for bipolar 
disorder  

527 26 N/A Costa Rica, 
Colombia  

230/297 18-87 sMRI, DTI Significantfamiliality for most 
measures (88%) 

Country, 
years of 
educatio
n  

n CT, SA, 
volumes, 
FA, 
axial/radial 
diffusivity 

ROIs (n=39) y 
(Bonferro
ni) 

0.91 n 

Harrewijn 
et al., 
2018a 

Social 
anxiety 
disorder 

LFLSAD  115 9 18 Netherlands  56/59 8-61 EEG (task) No significant familiality of EEG 
measures N1, FRN, P3 and theta 
power in response to social 
judgment 

n n Feedback-
related 
EEG brain 
potentials 
N1, FRN, 
P3 and 
theta 
power   

ERP  y 
(Bonferro
ni) 

0.48 y 

Harrewijn 
et al., 
2018b 

Social 
anxiety 
disorder   

LFLSAD  113 9 18 Netherlands 56/57 8-61 EEG (task) Familialityof delta-low beta and 
delta-high beta correlations 
during anticipation of giving a 
speech, but not significant when 
correcting for multiple 
comparisons  

n n Correlation 
between 
delta and 
total/low/h
igh beta  

ROIs (n=3 
electrodes) 

y 
(Bonferro
ni) 

0.37 n 

Hofer et 
al., 2022 

R2* iron  Families of 
first-
degree 
relatives  

130 59 / Austria  59/71 38-85 sMRI  Familialityof R2* iron in basal 
ganglia and cortex was 
moderate to high, with 
estimates ranging from 0.46 to 
0.82  

n n R2* iron  ROIs (n=9) y (FDR) 0.82 n 

McKay et 
al., 2014 

Structura
l features  

Multigener
ational 
healthy 
families  

1,010 49 / USA 384/626 19-85 sMRI, DTI Familiality of SA and CT was 
position and metric dependent 
SA familiality was higher than CT 
familiality 
Significant familiality of WM FA 
Significant effects of age and sex 

n n CT, SA, FA Whole-
brain, ROI 
(n=62) 

n 0.82 n 

Prasad et 
al., 2022 

Schizoph
renia 

Multigener
ational 
multiplex 
families 
enriched 
for 

198 23 23 USA 107/91 12-84 DTI FA of 33/48 WM tracts 
examined with significant 
familiality 

Mothers’ 
highest 
educatio
n  

n FA ROIs (n=48) y (FDR) 0.70 n 
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schizophre
nia  

Roalf et al., 
2015† 

Schizoph
renia  

Multigener
ational 
multiplex 
families 
enriched 
with 
schizophre
nia  

188 32 33 USA  97/89 25-63* sMRI Significant familiality of 
subcortical and limbic volumes 
and shape  
No significant familiality of 
amygdala based on volumes, but 
familiality offocal subfields 
based on shape analysis 

n n Subcortical 
and limbic 
brain 
volume 
and shape  

ROIs (n=14)  y (FDR)  0.81 n 

Sudre et 
al., 2017 

ADHD Multigener
ational 
multiplex 
families 
enriched 
for ADHD  

213 24 N/A USA N/A 4-85 DTI, fMRI 
(rs) 

 Significan𝑡	familiality of 
microstructural features of 
association and commissural 
WM tracts but not projection 
tracts  
Significant familiality of FC in 
default mode, cognitive control 
and ventral attention networks  

n n FA, 
radial/axial 
diffusivity, 
FC  

ROIs (n=11) y 
(Bonferro
ni or 
cluster-
corrected 
alpha) 

0.69 n 

van der 
Lee et al., 
2017 

Structura
l features 

Multigener
ational 
healthy 
families  

491 177 / Austria, 
Netherlands 

204/287 38-86 sMRI Voxels with significant familiality 
are predominantly located in 
subcortical regions and language 
areas of left hemisphere  
 

n n GM density Whole-
brain 

y (FDR) / n 

Winkler et 
al., 2010 

Structura
l features 

Multigener
ational 
healthy 
families  

486 N/A / USA 184/302 26-85 sMRI GMV, CT and SA all show 
significant familiality 
CT and SA are genetically and 
phenotypically independent 
GMV more closely related to SA 
than CT   

n n GMV, CT, 
SA 

ROIs (n=34) n 0.83 n 

Notes. ADHD, attention deficit hyperactivity disorder;  BOLD, blood-oxygen-level dependent; CT, cortical thickness; DTI, diffusion tensor imaging;  EEG, electroencephalography; ERP, event-related potentials; FA, 
fractional anisotropy; FC, functional connectivity; FDR, false discovery rate;  fMRI, functional magnetic resonance imaging; GM(V), grey matter (volume);  LFLSAD; Leiden Family Lab study on Social Anxiety 
Disorder (Bas-Hoogendam et al. 2018a); mPFC, medial prefrontal cortex; MTG, middle temporal gyrus; ROI, region of interest;  rs, resting-state; SA, surface area; STG, superior temporal gyrus; STS, superior 
temporal sulcus; sMRI, structural magnetic resonance imaging; WM, white matter. 
*approximated range based on mean +/- SD 
**missing data for part of the participants  
†studies included in the review of Ho et al. (2016)  
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N/A: no information available 
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Fig. 3. Statistical analysis in multigenerational neuroimaging studies. Example for a three-
generation pedigree. The degree of relatedness between the family members is summarized in a 
kinship matrix. The brain measure (mi) for each family member is considered at the voxel level or 
averaged at the ROI level. The brain measure is considered a dependent variable in a linear mixed 
model, with degree of familial relatedness as a random effect. A maximum likelihood estimation of 
the phenotypic (𝜎!") and familial (𝜎#")	variances is implemented, and familiality is calculated as the 
ratio of the familial variance to the total phenotypic variance.  As an output, a measure of familiality 
(often termed heritability in studies, see section 5.3) is calculated either based on a voxel-wise map or 
ROI. Abbreviations: ROI; region of interest.  

 

5.2. Main findings 

The main findings from multigenerational studies are shown in Table 2. The size and familial 

structure of samples in these studies allow researchers to typically focus on two dimensions. First, 

they may investigate associations between the occurrence of a trait and a specific neuromarker 

among family members. For example, studies have found that grey matter characteristics and/or 

functional activity in various regions are associated with social anxiety (SA) (Harrewijn et al. 2018a, b; 

Bas-Hoogendam et al. 2018b, 2020b, a, 2021; Bas-Hoogendam et al. 2019) or ADHD (Sudre et al. 

2017). Second, these studies may estimate the familiality of neuromarkers, i.e., the extent to which 

variation in structural or functional brain measures can be attributed to familial differences among 

individuals. For instance, among studies focusing on the transmission of psychiatric and anxiety-

related disorders, several have estimated familiality within the Leiden Family Lab Study on Social 

Anxiety Disorder (LFLSAD) sample (Bas-Hoogendam et al. 2018a). This has been done for grey matter 

(Bas-Hoogendam et al., 2018b), activity associated with social processing in the fronto-temporal 
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system (Bas-Hoogendam et al. 2020a), hippocampus and amygdala (Bas-Hoogendam et al. 2019; Bas-

Hoogendam et al. 2020b), as well as  functional connectivity within attentional processing networks 

showing association with social anxiety (Bas-Hoogendam et al. 2021). Note that this contrasts with 

EEG studies of social anxiety, which have failed to find evidence for a familiality of brain potentials 

(Harrewijn et al. 2018b) or brain synchronization (Harrewijn et al. 2018a).  

Aside from anxiety disorders, multigenerational studies have also investigated neural 

markers of the transmission of schizophrenia and bipolar disorders, showing familiality in several 

subcortical and limbic regions (Roalf et al., 2015; Fears et al., 2014) and white matter tracts (Prasad 

et al., 2022; Fears et al., 2014). Finally, other studies have investigated the transmission of structural 

brain characteristics in healthy families, showing familiality in total brain volume,  surface area, 

average cortical thickness, voxel-based morphometry and grey matter volume (Winkler et al. 2010; 

McKay et al. 2014; van der Lee et al. 2017) as well as  global fractional anisotropy (McKay et al. 2014) 

and R2* iron (i.e., a relaxation rate indicator of the concentration of iron) (Hofer et al., 2022). Overall, 

multigenerational studies suggest that brain structure and function appear to be under relatively 

strong familial influence.  

5.3. Advantages and limitations of multigenerational studies 

A multigenerational design has a number of advantages compared to a parent-child design. 

For instance, their relatively large sample size (i.e., ranging from about 100 to 1,000 participants in 

Table 2) typically allows for better estimates of associations between traits and neuromarkers than 

what is possible from parent-child studies (which tend to have much smaller sample sizes, see Table 

1). In theory, measuring neural similarity between parents and children as is typically done in parent-

child designs (see Fig. 2) is also possible in multigenerational studies. However, such analyses are 

rarely conducted with multigenerational designs, researchers focusing instead on brain-behavior 

associations and estimation of familiality across the entire sample. Note that such designs, which 
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typically include males and females, may also allow studying the parent-of-origin effect as the 

respective contribution of maternal and paternal familial effects may be partitioned (Wu et al. 2021).  

Multigenerational family studies, however, also have a number of limitations.  First, as 

discussed above, multigenerational studies usually rely on larger samples than parent-child designs, 

and data collection is both cost- and time-intensive (Bas-Hoogendam et al. 2016). This is why studies 

to date have largely relied on already-existing datasets of unrelated individuals (Hofer et al., 2022; 

Paus et al. 2015) or have focused on nonhuman primates (Fears et al. 2009; Fox et al. 2015, 2018; 

Tromp et al. 2019), which allows researchers to collect many phenotypic measures over many 

generations of large pedigrees with distant familial relationships (Fears et al. 2009). However, 

studying non-human primates makes it difficult to investigate human disorders, and markers found in 

non-human primates might not be applicable to humans and specific disorders. Second, 

multigenerational studies have mostly focused on a few extended pedigrees, which might limit the 

generalizability of the results (van der Lee et al. 2017). Third, most multigenerational studies have 

also focused on pedigrees of individuals affected by a given disorder, without comparing the results 

to pedigrees of healthy comparison subjects (Roalf et al. 2015). This may raise concerns regarding the 

specificity of the markers for the disorder as compared to the general population (Bas-Hoogendam et 

al. 2019).  

Finally, a major issue with multigenerational studies lies in the interpretation of familiality. To 

our knowledge, all studies reviewed here equate this notion with that of heritability, which describes 

the proportion of variance that is due to genetic factors versus environmental factors. For familiality 

to be equivalent to heritability, however, environmental effects would need to be exclusively 

individual and unshared among family members, which is an assumption that is clearly wrong. 

Indeed, genetic similarity between family members is almost systematically confounded by 

environmental similarity (i.e., family members who are the closest genetically tend to live in more 

similar environments than family members who are more distant genetically). Thus, not taking into 

account shared environment among family members may lead to inflated estimates of heritability 
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(Almasy and Blangero 2010). Note that it is possible to get more accurate estimates of heritability 

from multigenerational designs, for example by adding environmental covariates when calculating 

familiality to estimate shared environmental influences. However, this is seldom done in 

neuroimaging studies, as only two studies within the body of literature reviewed here have added 

environmental covariates when estimating heritability, such as mothers highest education (Prasad et 

al. 2022) and country and years of education (Fears et al. 2014) (see Table 2). More generally, it 

would be advisable for future studies interested in estimating heritability (and not only familiality) of 

neuromarkers to include in their model as much environmental covariates as possible, for example 

information regarding socioeconomic status, lifestyle factors, as well as which individuals in the study 

share the same household or were reared together (Almasy and Blangero 2010). Even more accurate 

estimates of heritability could be gathered by including in the sample different individuals who are 

known to have varying degrees of genetic and environmental similarity (e.g., biological siblings 

reared together versus apart, monozygotic versus dizygotic twins). 

 

6. Conclusion 

There is little doubt that identifying the cerebral markers underlying the intergenerational 

transmission of cognitive and affective traits is of both theoretical and clinical significance. Both 

parent-child and multigenerational studies may help with this objective, each design providing 

complementary information. On a theoretical level, intergenerational studies may help testing 

hypotheses about neuromarkers coming from case-control studies. On a more practical level, the 

composite markers identified in parent-child studies, which may not be causal but correlated with 

aspects of the disorder (Lenzenweger 2013),  might in the future serve as useful indicators of the 

disorder for diagnosis, prevention and tracking of illness state (Malcolm and Phillipou 2021). 

Multigenerational studies can also identify familial markers which, combined with improved designs 

allowing for parsing out genetic from environmental variance (which is currently lacking), may inform 
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in the future about the etiology of psychiatric and neurodevelopmental disorders (Flint et al. 2014; 

Fehlbaum et al. 2022). 
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