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ABSTRACT

Context. The upcoming Square Kilometer Array (SKA) will set a new standard regarding data volume generated by an astronomical
instrument, which is likely to challenge widely adopted data-analysis tools that scale inadequately with the data size.
Aims. The aim of this study is to develop a new source detection and characterization method for massive radio astronomical datasets
based on modern deep-learning object detection techniques. For this, we seek to identify the specific strengths and weaknesses of this
type of approach when applied to astronomical data.
Methods. We introduce YOLO-CIANNA, a highly customized deep-learning object detector designed specifically for astronomical
datasets. In this paper, we present the method and describe all the elements introduced to address the specific challenges of radio
astronomical images. We then demonstrate the capabilities of this method by applying it to simulated 2D continuum images from the
SKA observatory Science Data Challenge 1 (SDC1) dataset.
Results. Using the SDC1 metric, we improve the challenge-winning score by +139% and the score of the only other post-challenge
participation by +61%. Our catalog has a detection purity of 94% while detecting 40–60% more sources than previous top-score results,
and exhibits strong characterization accuracy. The trained model can also be forced to reach 99% purity in post-process and still detect
10–30% more sources than the other top-score methods. It is also computationally efficient, with a peak prediction speed of 500 images
of 512×512 pixels per second on a single GPU.
Conclusions. YOLO-CIANNA achieves state-of-the-art detection and characterization results on the simulated SDC1 dataset and is
expected to transfer well to observational data from SKA precursors.

Key words. methods: data analysis – methods: numerical – methods: statistical – galaxies: statistics – radio continuum: galaxies

1. Introduction
Modern astronomical instruments generate ever-increasing data
volumes in response to the need for better resolution, sensitivity,
and wider wavelength intervals. Astronomical datasets are often
highly dimensional and require precise encoding of the measure-
ments due to a high dynamic range. Also, it is often necessary to
preserve the raw data so they can be re-analyzed with new ver-
sions of the processing pipelines. Radio-astronomy is strongly
affected by this explosion of data volumes, especially regard-
ing giant radio interferometers. The upcoming Square Kilometer
Array (SKA, Braun et al. 2015) is expected to have an unprece-
dented real-time data-production rate, and will provide 700 PB
of archived data per year (Scaife 2020). This instrument is fore-
seen to have the necessary sensitivity to set constraints on the
cosmic dawn and the epoch of reionization and to trace the evo-
lution of astronomical objects over cosmological times. Faced
⋆ Corresponding author; david.cornu@observatoiredeparis.
psl.eu

with data of such volume and complexity, some classical analy-
sis methods and tools employed in radio astronomy will struggle
to keep up due to their limited scalability.

In this context, the SKA Observatory (SKAO) began orga-
nizing recurrent Science Data Challenges (SDCs) in order to
gather astronomers from the international community around
simulated datasets that resemble future SKA data products. The
objective is to evaluate the suitability of existing analysis meth-
ods and encourage the development of new ones. It is also an
opportunity for astronomers to become familiar with the nature
of such datasets and to gain experience in their exploration.

The first edition, SDC1 (Bonaldi et al. 2021), focused on
a source detection and characterization task in simulated con-
tinuum radio images at different frequencies and integration
times. Figure 1 shows a cutout from one of the SDC1 images,
illustrating the source density and high dynamic range. Source-
finding is a common task in astronomy and is often the first
analysis carried out on a newly acquired image product; it is
already performed by a variety of classical methods, such as
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Fig. 1. Cutout of 512 square pixels in the SDC1 560 MHz 1000 h sim-
ulated field. Minimum and maximum cutting values are those used for
our object detector, and the displayed intensity is the raw image flux.

Source-Extractor (Bertin & Arnouts 1996), SFIND (Hopkins
et al. 2002), CUTEX (Molinari et al. 2011), BLOBCAT (Hales
et al. 2012), DUCHAMP (Whiting 2012), SELAVY (Whiting &
Humphreys 2012), AEGEAN (Hancock et al. 2018), PyBDSF
(Mohan & Rafferty 2015), PROFOUND (Robotham et al. 2018),
PySE (Carbone et al. 2018), CAESAR (Riggi et al. 2019), and
CERES (Lucas et al. 2019). The obtained source catalogs can
then be augmented with characterization information and used
as primary data for subsequent studies. This task is especially
affected by increases in volume and dimensionality, making it a
good probe of the upcoming data-handling challenges.

The past decade has seen a rapid increase in the use of
machine learning (ML) methods in all fields, including astron-
omy and astrophysics (Huertas-Company & Lanusse 2023). One
of the advantages of ML methods is their superior scaling with
data size and dimensionality. There are a considerable variety of
ML approaches, but we focus here on methods based on deep
artificial neural networks (LeCun et al. 2015). These approaches
have been extensively used for computer vision tasks, includ-
ing object detection in everyday-life images (Russakovsky et al.
2015; Everingham et al. 2010; Lin et al. 2014). While detection
models have been used in other domains for several years, they
are not yet widely adopted in the astronomical community.

Deep-learning object-detection methods are usually sepa-
rated into three families (Zhao et al. 2019): segmentation mod-
els, region-based detectors, and regression-based detectors. The
main advantage of the segmentation models is their ability to
identify all the pixels that belong to a given class or even individ-
ual objects. They can also be used as a convenient structure for
denoising tasks. Their main drawback is their symmetric struc-
ture (encoder and decoder) and the high level of expressivity
required at near-input resolution, making them computationally
intensive for high-resolution images. This family is mainly rep-
resented by the U-Net (Ronneberger et al. 2015) method. Given
their proximity with classical source detection approaches, they
have been employed for a variety of astronomical applications
(e.g., Akeret et al. 2017; Vafaei Sadr et al. 2019; Lukic et al.
2019; Paillassa et al. 2020; Bianco et al. 2021; Makinen et al.
2021; Sortino et al. 2023; Håkansson et al. 2023).

The second family, the region-based detectors, mostly com-
prise multi-stage neural networks that split the detection task into

a region-proposal step and a detection-refinement step. They are
the most popular method for mission-critical tasks due to their
accuracy. While faster than segmentation methods, these high-
detection-accuracy models are computationally intensive due to
the multi-stage process. This family is mainly represented by the
R-CNN method (Girshick et al. 2013) and all its derivatives (e.g.,
Fast R-CNN, Faster R-CNN). Examples of astronomical applica-
tions with these methods are more limited (e.g., Wu et al. 2019;
Jia et al. 2020; Lao et al. 2021; Yu et al. 2022; Sortino et al.
2023). There is also a subfamily that combines the region-based
detection formalism with a mask prediction used to perform
instance segmentation. This subfamily is mainly represented by
the Mask R-CNN method (He et al. 2017), which is increasingly
used in astronomy (e.g., Burke et al. 2019; Farias et al. 2020;
Riggi et al. 2023; Sortino et al. 2023). We note that region-based
methods are commonly combined with some flavor of pyrami-
dal feature hierarchy construction (Lin et al. 2017), which helps
represent multiple scales in the detection task.

The last family, the regression-based detectors, are
often based on single-stage neural networks, making them
computationally efficient. Therefore, they are frequently used for
real-time object detection. The most popular regression-based
detector method is the You Only Look Once (YOLO) method
and its descendants (Redmon et al. 2016; Redmon & Farhadi
2017; Redmon & Farhadi 2018), but we can also cite the Single
Shot Detector (SSD) method (Liu et al. 2015). There have only
been a few astronomical applications of regression-based detec-
tors, mainly in the visible domain (González et al. 2018; He et al.
2021; Wang et al. 2021; Grishin et al. 2023; Xing et al. 2023).

We highlight that methods based on transformers (Vaswani
et al. 2017) are now common in computer vision (Carion et al.
2020), and astronomical applications are just starting to be pub-
lished (Gupta et al. 2024; He et al. 2023). We also note that
some methods include deep learning parts in more classical
source detection tools, which can improve the detection purity
and the source characterization (e.g., Tolley et al. 2022). Further
references regarding deep learning methods for source detec-
tion can be found in Sortino et al. (2023) and Ndung’u et al.
(2023).

The present paper is the first of a series, the aim of which is
to present a new source detection and characterization method
called YOLO-CIANNA. It was developed and used in the con-
text of the MINERVA (MachINe lEarning for Radioastronomy at
Observatoire de Paris) team participation in the SDC2 (Hartley
et al. 2023), where we obtained first place. The primary objec-
tive of this first paper is to provide a complete description of
the method and to justify several design choices regarding the
specific properties of astronomical images. We then illustrate its
capability by presenting the results of its application to simu-
lated 2D continuum images from the SDC1 dataset. A second
paper will present an application to simulated 3D cubes of HI
emission using the SDC2 dataset. The series will then continue
by applying the method to observational data from surveys of
several SKA precursors.

The present paper is organized as follows:
– In Sect. 2, we present the YOLO-CIANNA method in a

complete and comprehensive manner, targeting readers unfa-
miliar with deep-learning object detectors. Details regarding
the most complex aspects of the method and the in-depth dif-
ferences from a classical YOLO implementation are given in
Appendix A along with details adapted to readers familiar
with these families of methods.

– In Sect. 3, we present the SDC1 dataset, which is composed
of comprehensive 2D images, and describe how we used it
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as a benchmark to evaluate the detection and characterization
capabilities of YOLO-CIANNA.

– In Sect. 4, we present the detection results of our method,
as well as a detailed analysis of the detection catalog we
obtained from the SDC1.

– In Sect. 5, we use these results to highlight the strengths
and weaknesses of our source-detector and also discuss the
impact of some design choices of the SDC1. We then elab-
orate on how this new approach could be applied to real
observational data from SKA precursor instruments.

– There are four Appendices. In Appendix A, we detail the
differences between our method and the classical YOLO
implementation, as well as benchmarks over classical com-
puter vision datasets. In Appendix B, we evaluate the
performance of a classical YOLO backbone architecture
on the SDC1 and compare it to our custom backbone. In
Appendix C, we present an alternative training area defi-
nition for the SDC1. In Appendix D, we evaluate whether
performing the detection and characterization using a single
unified network is beneficial or detrimental to detection-only
performance.

2. Method

Our method finds its inspiration in the classical YOLO (Redmon
et al. 2016; Redmon & Farhadi 2017; Redmon & Farhadi 2018)
object detector, but it is also very similar to the SSD method
(Liu et al. 2015), both regression-based deep learning object
detector. While region-based approaches like R-CNN (Girshick
et al. 2013) are often considered the most accurate object detec-
tors, regression-based methods present a straightforward single
network architecture, making them more computationally effi-
cient at a given detection accuracy. Both families can reach
state-of-the-art accuracy depending on implementation details
and architecture design, but regression methods are usually pre-
ferred for real-time detection applications. In this context, our
choice to design a regression-based approach was driven by (i)
fewer implementation constraints, (ii) a strong emphasis on com-
putational performance considering the data volume of current
and future radio-astronomical surveys, and (iii) the single-stage
regression-based network structure on top of which it is easier to
add more predictive capabilities.

In this section, we present the main design of our method.
Despite being depicted for an astronomical application, our
method remains suitable for general-purpose object detection
(Appendix A.8). Instead of listing all the subtle differences with
various descendant versions of the classical YOLO approach
or other detectors, we describe the main components of our
method from scratch in a comprehensive manner. The descrip-
tion of the most technical parts of the method is done in the
dedicated Appendix A, which also discusses the differences with
the classical YOLO approach. As a result, the main method
description should remain accessible to readers unfamiliar with
deep-learning object detectors. Even though our method dif-
fers significantly from the YOLO algorithm in some critical
aspects, we chose to refer to our approach as YOLO-CIANNA
for simplicity and as a legacy for its inspiration.

The implementation was made inside the custom high-
performance deep learning framework CIANNA (Cornu
2024b)1. The implementation and usage details can be found

1 CIANNA is open source and freely accessible through GitHub
https://github.com/Deyht/CIANNA. The version used in this paper
corresponds to the V-1.0 release 10.5281/zenodo.12806325

on the CIANNA wiki pages. For reproducibility purposes, we
provide example scripts for training and applying the method to
the SDC1 dataset in the CIANNA git repository.

To ease the understanding of the technical parts of the paper,
we list a few ML-specific terms and the descriptions we have for
them. The most common ML terms are not redefined as they can
be found in any ML textbook or review (LeCun et al. 2015).

– Bounding box: in classical computer vision, the smallest
rectangular box that includes all the visible pixels belonging
to a specific object in a given image.

– Expressivity: refers to the predictive strength of a network.
The higher the expressivity, the more complex or diverse
the predictions can be. The expressivity increases with the
number of weights and layers in a network.

– Receptive field: corresponds to all the input pixels that can
contribute to the activation of a neuron at a specific point in
the network. It represents the maximum size of the patterns
that can be identified in the input space.

– Reduction factor: the ratio between the input layer spatial
dimension and the output layer spatial dimension.

2.1. Bounding boxes for object detection

Our method uses a fully convolutional neural network (CNN) to
construct a mapping from a 2D input image to a regular output
grid. Each output grid cell represents a fixed area of the input
image with a size that depends on the reduction factor of the
chosen CNN backbone. Each grid cell is tasked to detect all pos-
sible objects whose center is located inside the input region it
represents. To characterize an object, we rely on the bounding
box formalism that encodes an object as a four-dimension vec-
tor composed of the box center and its size (x, y, w, h). The grid
cells are tasked to predict these quantities. As a supervised learn-
ing approach, our method relies on a training set composed of
images associated with a list of visible objects to be detected.
Each object can be encoded as a target bounding box that the
CNN is tasked to predict from the raw input image. A training
phase is used to optimize the network parameters to minimize a
loss functionL that compares the target boxes with the predicted
boxes from all grid cells at the current step. This loss should
encompass all the object properties to be predicted. To ease the
method description, we first write an abstract loss as

L = Lpos +Lsize +Lprob +Lobj +Lclass +Lparam. (1)

The aim of the Sects. 2.1–2.4 is to describe all of the loss
subparts. Our complete detailed loss function is presented in
Sect. 2.7 with Eq. (14).

For now, we only describe the case of a single box predic-
tion per grid cell. The more realistic case of multiple objects per
grid cell is presented in Sect. 2.5. We consider that the grid is
composed of gw columns and gh lines and that each grid cell
is represented by its coordinate in the grid (gx,gy). To repre-
sent a bounding box, a grid cell predicts a 4-element vector
(ox, oy, ow, oh) that maps to the geometric properties of the box
following

x = ox + gx, (2)
y = oy + gy, (3)

w = pwe(ow), (4)

h = phe(oh). (5)

Each grid cell is only tasked to position the object cen-
ter inside its dedicated area using two sigmoid-activated values
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Fig. 2. Illustration of the YOLO bounding box representation following
Eqs. (2)–(5). The dashed black box represents the theoretical prior (ow =
oh = 0), while the red box is the scaled predicted size.

(ox, oy). The position of the grid cell in the image (gx, gy) is
added to obtain the relative global position of the object. These
coordinates must then be multiplied by the mapped width and
height of a grid cell, corresponding to the reduction factor of
the backbone network, to obtain pixel coordinates in the input
image. Object size is obtained by an exponential transform of
the predicted values (ow, oh) that acts as a scaling on a pre-
defined size prior (pw, ph), which can be expressed in pixels
directly. This is equivalent to an anchor-box formalism (Ren et al.
2015) as discussed in Sect. 2.5. The corresponding bounding box
construction on the output grid is illustrated in Fig. 2.

With this formalism, it is possible to construct a detector
with an output of size ⟨gw, gh, 4⟩ that can position and scale one
bounding box per output grid cell. For each prediction-target
pair, we use a sum-of-square error to compute the loss function
for center coordinates and sizes (Sect. 2.7). The error is not com-
puted on the sigmoid-activated positions but on the raw output
for the sizes after target conversion using ôw = log(w/pw) and
ôh = log(h/ph). This results in the following loss terms

Lpos =

Ng∑
i=0

1match
i

(
(ox

i − ôx
i )2 + (oyi − ôyi )2

)
, (6)

Lsize =

Ng∑
i=0

1match
i

(
(owi − ôwi )2 + (oh

i − ôh
i )2

)
, (7)

where the hat values represent the target for the correspond-
ing predicted value, the sum over i represents all the grid cells
with Ng = gw×gh, and 1match

i is a mask to identify the predicted
boxes that have an associated target box (Sect. 2.6). The grid
cells that do not contain any object have no contribution to these
loss terms. We discuss the possible limitations of using bounding
boxes to describe astronomical objects in Sect. 5.2.2.

A common misconception about grided detection is that the
predicted size can only be as large as a grid element, which is
wrong. The predicted size can be as large as necessary up to the
size of the full image. Each grid cell receives information from

a large area corresponding to the backbone network receptive
field. The receptive fields of nearby grid cells usually overlap,
but a target box center can only lie in one grid cell, hence the
attribution of the detection to a single grid cell. Due to the fully
convolutional structure required for our method, each grid cell
performs a localized prediction using identical weights but using
a different subpart of the image as input. More details about the
effect of the fully convolutional architecture and the output grid
encoding are provided in Appendices A.1 and A.2.

2.2. Detection probability and objectness score

Only predicting bounding boxes is insufficient to obtain an
object detector. We also need to evaluate the chances that they
contain an object. For this, we add a self-assessed detection prob-
ability prediction P to each grid cell, which is constrained during
training. This term uses a sigmoid activation and adds a sum-of-
square error contribution to the loss. Due to our grid structure,
the detector always outputs box properties for every grid cell. In
a context where only a few target boxes are present in the image,
most grid cells only map irrelevant background regions. During
training, we identify the predicted boxes that best represent each
target box and attribute them a target probability of P̂ match = 1.
For all the remaining empty predicted boxes, we attribute them
a target probability of P̂ void = 0. To compensate for the likely
imbalance between the number of matching and empty predic-
tions, we must define a λvoid factor to apply to the loss term
corresponding to the empty case. The resulting loss term can be
written as

Lprob =

Ng∑
i=0

1match
i

(
Pi − P̂ match

i

)2
+ 1void

i λvoid

(
Pi − P̂ void

i

)2

=

Ng∑
i=0

1match
i (Pi − 1)2 + 1void

i λvoid (Pi − 0)2 ,

(8)

where the sum over i represents all the grid cells, 1match
i is a mask

to identify the predicted boxes that match a target box, and 1void
i a

mask to identify the empty predicted boxes. Through the stochas-
ticity of the training process, the network will learn to predict
a continuous probability score that reflects the detection confi-
dence. At prediction time, it is used to identify the grid cells that
should contain an object.

One limit of this probability definition is that it contains
no information about the quality of the predicted box. For
this, we must define a metric that measures the proximity and
resemblance between two bounding boxes. The classical object
detection metric for this is the intersection over union (IoU,
Everingham et al. 2010; Lin et al. 2014). It is defined as the sur-
face area of the intersection between two boxes, A and B, divided
by the surface area of their union, which is expressed as

IoU =
A ∩ B
A ∪ B

. (9)

This quantity takes values between 0 and 1 depending on the
amount of overlap. This classical IoU is the most commonly
used in computer vision, but it presents some weaknesses for
astronomical applications. We present a few alternative match-
ing metrics better suited to our application case in Appendix A.4.
Since several hyperparameters of our method depend on this
choice of metric, we will use a generic fIoU term that can be
replaced by the selected matching metric in all the following
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Fig. 3. Illustration of the output vector of a single detection unit. The elements are colored according to the corresponding loss subpart. For multiple
detection units per grid cell, this vector structure is repeated on the same axis (Sect. 2.5).

equations. The default choice for our detector is the distance-
IoU (DIoU, Zheng et al. 2020), as it includes information about
the distance between the center of the two boxes to compare. For
the unicity of the equations, the selected match metric function
is always considered linearly rescaled in the 0 to 1 range.

From this, we add a self-assessed score called objectness, O,
to each predicted box, which is also constrained during training.
The objectness is defined as the combination of an object pres-
ence probability P and the fIoU between the predicted box and
the target box, expressed as

O = P × fIoU. (10)

This term also uses a sigmoid activation and adds a sum-
of-square error contribution to the loss. During training, the
objectness is constrained like the probability by considering
that P̂ match = 1 for prediction-target matches, while P̂ void = 0
for empty predictions. Therefore, following Eq. (10), the target
objectness for prediction-target matches is Ômatch = fIoU, using
the fIoU between the target and predicted boxes. For predictions
with no associated matches, the target objectness is Ôvoid = 0.
The resulting loss term can be written as

Lobj =

Ng∑
i=0

1match
i

(
Oi − Ô match

i

)2
+ 1void

i λvoid

(
Oi − Ô void

i

)2

=

Ng∑
i=0

1match
i (Oi − fIoU)2 + 1void

i λvoid (Oi − 0)2 ,

(11)

using the same notations as Eq. (8). We stress that fIoU is used
as a scalar in this equation. Therefore, the derivative of the
corresponding matching function is not computed for gradient
propagation, so Lobj does not contribute to updating the position
and the size. After training, we obtain a continuous objectness
prediction representing a global detection score that accounts for
the predicted geometrical box quality. Probability and object-
ness can be used independently or in association to construct
advanced prediction filtering conditions (Sect. 2.8).

With this formalism, we formulate only two states for a
predicted box, either a match or empty. In practice, multiple
predicted boxes can try to represent the same target simultane-
ously. This is common if the target box center is positioned at
the edge of a grid cell or if the boxes are large. This will be even
more common with multiple detections per grid cell (Sect. 2.5).
In such a case, only the best-predicted box will be considered
a match. The remaining plausible detections are called good-
but-not-best (GBNB) predictions. The previous formalism would
result in a loss that lowers the objectness of these GBNB predic-
tions, actively forcing relevant features to fade. To prevent this,

we define a representation quality threshold fIoU ≥ LfIoU
GBNB above

which the corresponding boxes are excluded from both 1match
i

and 1void
i masks. In summary, there are three types of contri-

bution to the loss: (i) the best detection for each target updates
its box position and size while increasing its probability and
objectness, (ii) the background boxes lower their probability and
objectness, and (iii) the GBNB boxes are ignored.

2.3. Classification

The detected box can be enriched with a classification capability.
This can be done by adding Nc components, corresponding to all
the possible classes, to the output vector of the detected boxes
(Fig. 3). The activation of these components can either be (i) a
sigmoid for all classes using a sum-of-square error, which allows
multi-labeling, or (ii) a soft-max activation, which corresponds
to exponentiating all the outputs and normalizing them so their
sum is equal to 1, with a cross-entropy error. These two options
are available in our method. In both cases, only the best detection
for each target box updates its classes by comparing the target
class vector with the predicted one. There is no contribution to
the class loss from either GBNB or background predictions. The
resulting loss term for a soft-max activation with a cross-entropy
error can be written as

Lclass =

Ng∑
i=0

1match
i

NC∑
k

(
−Ĉk

i log(Ck
i )
)
, (12)

where the sum over k represents all the classes for a given pre-
dicted box, and Ck

i ) is the corresponding class output for the k-th
class of the predicted box i.

2.4. Additional parameters prediction

For astrophysical applications, we often need to predict the char-
acteristics of the sources, such as the flux or some geometric
properties not described by a bounding box formalism. For this,
we propose to add Np components to the output vector of the
detected boxes, corresponding to all the additional parameters
to predict. The activation of these components is linear with a
sum-of-square error contribution to the loss. The respective con-
tribution of these parameters to the loss can be scaled with a set
of γp factors. The resulting loss term can be written as

Lparam =

Ng∑
i=0

1match
i

Np∑
k=0

γk
(
pk

i − p̂k
i

)2
, (13)

where the sum over k represents all the independent parameters
for a given predicted box, and pk

i is the corresponding parameter
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output for the k-th parameter of the predicted box i. This is a
strong added value of our YOLO-CIANNA method compared
to other approaches, allowing it to predict an arbitrary number
of additional properties per detection for any application while
preserving the one-stage formalism specific to regression-based
object detectors.

2.5. Multiple boxes per grid-cell and detection unit definition

With the present definition, the detector output would have
a shape of

〈
gw, gh, (6 + Nc + Np)

〉
, where gw and gh are the

grid dimensions, the six static parameters are the box coor-
dinates, probability, and objectness (x, y, w, h, P,O), Nc is the
number of classes, and Np is the number of additional param-
eters (Fig. 3). While the geometric and detection score outputs
are always predicted, both Nc and Np are problem-dependent and
user-defined.

In theory, the network reduction factor could be adjusted to
the average object density of the application to have no more
than one target object in each grid cell. However, for many
use cases, it would result in an output grid resolution close to
the input resolution, which is very computationally intensive
(Appendix A.2). To overcome this, we can expand the output
vector at each grid cell to contain multiple boxes by stacking
their independent vector as a longer 1D vector. The new output
shape is then

〈
gw, gh,Nb×(6 + Nc + Np)

〉
, with Nb the number of

independent boxes predicted at each grid cell, which is a hyper-
parameter of the detector. For each possible box in a grid cell,
we define an individual size-prior (pw, ph), which impacts the
size scaling in Eqs. (4) and (5). This definition helps to dis-
tribute objects over the available boxes on a given grid cell based
on box sizes and shapes. The prior list is the same for all grid
cells as they only represent different positions at which the same
detector is applied through the fully convolutional architecture
(Appendix A.1). The size priors are user-defined hyperparame-
ters but are often automatically defined through clustering of the
size distribution of targets from the training sample. In the lat-
ter, we refer to the independent predictive elements for a single
grid cell as detection units. For example, a detector set capable
of predicting up to six independent boxes per grid cell comprises
six detection units. Some detection units can have the same size
prior, but they still represent independent predictions.

Because scales or shapes are unlikely to be evenly repre-
sented in the training sample, the detection units should adapt
their positive-to-negative detection ratio to rebalance their prob-
ability and objectness distribution (Sect. 2.2). For this, a λb

void
factor is defined for each detection unit. These factors must be
adjusted so the objectness and probability responses are similar
enough for all detection units to be comparable during prediction
filtering (Sect. 2.8).

2.6. Target-prediction association function

With multiple box predictions per grid cell, deciding which
detection unit should be associated with each target box is
critical. With our YOLO-CIANNA method, we introduce a
prediction-aware association process. Our approach differs sig-
nificantly from the one used in the classical YOLO formalism,
which only uses size priors to define theoretical best matches.
Our method is expected to be more robust for images with a high
density of small objects, which is typical for astronomical data
products. An in-depth discussion about the motivation behind

our implementation and a comparison with the classical YOLO
association process are both presented in Appendix A.3.

The main objective of our association process is to find the
best target-prediction pairs regarding a specific fIoU matching
metric. We start by setting 1void = 1 for all detection units.
Then, we identify all predicted boxes that are a good enough
representation of at least one target regarding our fIoU ≥ LfIoU

GBNB
threshold. This comparison is made for all detection units and
all targets regardless of their center position. All objects that
respect this criterion are removed from 1void. The rest of the
association algorithm aims to find the best match for each tar-
get box through an iterative process. First, matching scores for
all possible target-prediction pairs in a grid cell are stored in
a scoring matrix. Then, the best current score in the matrix is
used to define a new target-prediction pair that is added to the
1match mask and removed from 1void if it was not already the
case. The full row and column corresponding to the target and
detection unit of the best match are masked in the score matrix.
This search process is repeated until the score matrix is empty or
fully masked. A full example of the association a in a grid cell
with the evolution of the score matrix is presented in Fig. A.4,
associated with Appendix A.5. Interestingly, we observed that
our approach presents many similarities with the Kuhn–Munkres
algorithm (Kuhn 1955; Munkres 1957) that tackles the prob-
lem of optimal score-based association, which was not
anticipated.

As presented in Sect. 2.2, the best match associations con-
tribute to all subparts of the loss, while the detection units that
remained in 1void contribute only to the probability and object-
ness following Eq. (11). The remaining GBNB detection units
not being part of either 1match or 1void do not contribute to
the loss. To account for edge cases, size imbalance, or training
instability, we added several specific refinements inside our new
association process, which we detail in an appendix section dedi-
cated to advanced subtleties of our method (Appendix A.6). The
global association function algorithm is presented in Fig. 4 in
a way that separates the simplified association process and the
advanced association with refinements.

2.7. YOLO-CIANNA complete loss function

Depending on the application, it might be necessary to balance
the relative importance of the predicted quantities. For example,
when detecting small objects, the center coordinates become the
main estimate of prediction quality, while a high precision of the
predicted size becomes mostly irrelevant. Therefore, we use loss
scaling factors for the box position λpos, the box size λsize, the
probability λprob, the objectness λobj, the classes λclass, and the
extra parameters λparam.

While loss scaling balances the general importance of each
predicted quantity, it does not allow the network to guide its
expressivity regarding its current prediction quality dynamically.
For example, adjusting the predicted class of a detection unit
that does not yet properly position or detect the corresponding
object is irrelevant and can result in reinforced wrong features
or noisy training. Therefore, we chose to add prediction qual-
ity limits over some predicted properties directly into the loss
function. While the position and the size are always updated
for a match, we added quality conditions for the objectness
LfIoU

O , the probability LfIoU
P , the classification LfIoU

C , and the extra-
parameters LfIoU

p . Each loss subpart is set to zero if the current
fIoU between the target and predicted boxes is below its specific
quality threshold.
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Legend

A. Pre-processing
A.1. Set association masks to default values

A.2. Flag all “good enough” detections

A.3. Fill match score matrix and apply strict-boxes mask

B. Main association search

B.2. Association refinements (described in Appendix)

B.3. Lock selected pair for next search step

B.2.3. Best theoretical box-prior association

B.2.2. Smallest box-prior association

B.2.1. Random startup or regularization

        

B.1. Search current best match

        

        

C. Compute loss

B.2. Association refinements if needed

        

        

B.2.4. Quality check for difficult objects

        

Go To

Condition

OperationTarget loop

Detection unit loop

Grid loop

        

Fig. 4. Summary of the target-prediction association algorithm of YOLO-CIANNA. All steps are performed independently by each grid cell. All
the elements are executed in order from top to bottom. The A, B, and C blocks represent the general case for the association. All the refinement
steps of the association process corresponding to the B.2 block are described in Appendix A.6.
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Target boxes Raw pred. boxes Current best pred. Boxes to remove Final pred. boxes

(a) (b) (c) (d)

Fig. 5. Illustration of the NMS process. Dashed boxes are the targets, and solid boxes are the predictions. The line width of each box is scaled
according to its objectness score. The colors indicate the state of the box in the NMS process at different steps. Frame (a) shows the targets and
the remaining detector predictions after objectness filtering. Frames (b) and (c) represent two successive steps of the NMS process with a different
best current box. Frame (d) shows the selected boxes after the NMS.

This quality limit principle, combined with other associa-
tion refinements, results in what we call a “cascading loss” that
varies during training to guide the network expressivity toward
the important aspects, not adjusting currently irrelevant prop-
erties. A complete description of this process and the effect it
has on training performances and loss monitoring is given in
Appendix A.7.

Combining all the previously introduced loss subparts, con-
ditional masks, and scalings, we can define our complete YOLO-
CIANNA loss function for one image as

L =

Ng∑
i=0

Nb∑
j=0

1match
i j

(
λpos

[
(ox

i j − ôx
i j)

2 + (oyi j − ôyi j)
2
]

+λsize

[
(owi j − ôwi j)

2 + (oh
i j − ôh

i j)
2
]

+λclass 1C
i j

NC∑
k

(
−Ĉk

i j log(Ck
i j)

)
+λparam 1

p
i j

Np∑
k

γk
(
pk

i j − p̂k
i j

)2

+λprob 1P
i j

(
Pi j − 1

)2

+λobj 1O
i j

(
Oi j − fIoUi j

)2
)

+

Ng∑
i=0

Nb∑
j=0

1void
i j λ

j
void

(
λprob

(
Pi j − 0

)2
+ λobj

(
Oi j − 0

)2
)
.

(14)

In this equation, in addition to already defined parameters,
the first sum runs over all the elements of the output grid for
a single image Ng, and the second sum runs over all the detec-
tion units in a grid cell Nb. All the values with a hat represent
the targets for the corresponding predicted values, and the 1X

i j
are masks of predictions that pass the quality limit of each sub-
part. This loss is written for a classification based on a soft-max
activation and a cross-entropy error classification, but it can be
modified for a sigmoid activation with a sum-of-square error.

2.8. Prediction filtering and non-maximum suppression

We expect a properly trained detector to order its predictions by
quality based on the objectness score for each detection unit.
The raw detector output is always a static list of boxes of size

〈
gw, gh,Nb×(6 + Nc + Np)

〉
regardless of the input content. Con-

sequently, the predicted boxes must be filtered based on their
objectness score to remove those unlikely to represent an object.
By design, the number of detectable objects in the image should
be low compared to the total number of detection units. There-
fore, most predicted boxes belong to the background type with a
low objectness score.

While the continuous objectness score for all the predictions
is the best direct representation of the sensitivity of the detec-
tor, it is incompatible with some final metric that needs a list of
considered “good” detections. Visualizing the predicted boxes
also requires filtering to preserve only the plausible detection.
In such cases, an objectness threshold can be used to remove
low-confidence detections. The threshold is usually optimized to
maximize a metric score on a validation or test dataset not used
for training but for which the targets are known.

Due to the fully convolutional structure of the network,
objectness scores from the same detection unit can be com-
pared over the full grid, meaning that the same threshold can
be used. On the contrary, the predicted objectness between two
independent detection units is not comparable as it depends on
the type and frequency of targets associated with each of them
during training. A possible solution is to fit an individual object-
ness threshold for each detection unit. However, it relies on the
assumption that predictions from different detection units are
independent, which is not true for most applications. In practice,
it is still a good solution to remove the vast majority of false pos-
itives. To achieve the best results, the objectness regimes must be
homogenized between the different detection units from the start
by adjusting the individual λb

void factors (Sect. 2.5). This is done
by balancing the ratio between detection and background cases
based on how the objects from the training sample are expected
to distribute over the detection units.

With most false positives removed, there can still be multiple
high-objectness predictions that represent the same underlying
object in the image. To preserve only the best-detected box for
each object, we use a classical post-processing step called non-
maximum suppression (NMS, Felzenszwalb et al. 2010; Girshick
et al. 2013). It consists of an iterative search for the box with the
highest objectness score in the image that is then used to remove
all the overlapping predicted boxes. To consider that there is an
overlap, the two boxes must verify fIoU > LfIoU

NMS with the fIoU
being computed between the two predicted boxes. The best box
is then stored in a static list of selected detection. This process
is repeated until no boxes are left in the raw-prediction list. It is
illustrated in Fig. 5.

A211, page 8 of 42



Cornu, D., et al.: A&A, 690, A211 (2024)

The NMS is done regardless of what detection unit generated
the predicted boxes, demonstrating that they are not independent
as they can remove each other based on their respective object-
ness. This is one of the main reasons we force all detection units
to have similar objectness distributions. The detection quality
can only be evaluated after the NMS, so searching for the best
λb

void factors is dependent on the LfIoU
NMS and respectively.

3. Dataset description and network training

In this section, we present the main properties of the SDC1 data
along with the expected products and the associated metrics. A
complete description of the SDC1 challenge can be found in
Bonaldi et al. (2021), while the underlying T-RECS simulation is
detailed in Bonaldi et al. (2019). We also present the preprocess-
ing of the data to construct our training sample. From this, we
describe our best-performing network architecture and specify
the corresponding setup and hyperparameters for our detector.

3.1. Subchallenge definition

The SDC1 is a source detection and characterization task in sim-
ulated SKA-like data products (Sect. 1) that comprises nine 4GB
images (three frequencies, with three integration times each) of
the same field. The SDC1 is only modestly challenging regard-
ing data volume, especially compared to the SDC2 with its 1TB
data cube. Still, it represents significant challenges for detec-
tion methods in many other aspects. All the images have an
identical pixel size of 32768x32768. As the frequency increases,
the angular resolution improves while the field of view reduces.
Therefore, images at different frequencies only partially overlap,
meaning that the problem to solve varies with the position in
the field. In addition, the number of detectable sources varies
significantly with the integration time and frequency (Table 2 in
Bonaldi et al. 2021). All the images are considered noise-limited,
even at the highest 1000 h integration time. As a benchmark
for our YOLO-CIANNA method, we used only the 560 MHz–
1000 h image due to its wider field of view, higher total number
of sources, and higher source density per square pixel. This
image is a fair example of a typical astronomical detection con-
text with a high dynamic range and a high density of small
sources with occasional blending. While our method could tech-
nically work for the other SDC1 images, it would not be more
informative regarding its capabilities. The consequences and
limits of this choice are further discussed in Sect. 5.2.1.

In the original challenge, participating teams were provided
a True catalog for a small fraction of the image. This was sup-
posed to facilitate method development and tuning but also allow
training of supervised ML approaches. At the time, the full
underlying True catalog was unavailable, and the teams had to
submit their result to a remote scoring service. After the chal-
lenge, the organizers released the full True catalog, the scoring
code in open source2 (Clarke & Collinson 2021), and the
submitted source catalogs from the participating teams. In this
study, we use only the training catalog to constrain our detector
so our results can be compared to those published in the con-
text of the challenge. We then use the full True catalog only
to present an in-depth analysis of our trained detector perfor-
mances. Since the scorer allows individual image scoring (for
all frequencies and exposure), we can produce a detection cata-
log for the 560 MHz–1000 h image that is directly comparable to
other team submissions during and after the challenge.

2 https://gitlab.com/ska-telescope/sdc/ska-sdc

3.2. Image and source catalog description

The 560 MHz–1000 h image has a field of view of 5.5 square
degrees, which contains the primary beam out to the first null.
It has a full size of 32 768 square pixels, a pixel size of 0.6 arc-
sec, and an imaging resolution in the Gaussian approximation of
1.5 arcsec full width at half-maximum. A subfield of 512 square
pixels from this image is presented in Fig. 1. The simulated
image contains no systematic instrumental effects like calibra-
tion, pointing, or deconvolution errors, making it unrealistically
clean (Sect. 5.3). The image is not primary-beam corrected, but
the corresponding primary beam image is available as ancillary
data. With this setup, the instrument sensitivity decreases on the
edges, but it preserves a uniform noise level over the full field.
The thermal noise level reported for this image in Bonaldi et al.
(2021) is 2.55×10−7 Jy beam−1; however, a direct estimate of the
noise using the provided image is about 3.45×10−7 Jy beam−1.
We use this second value for the rest of the paper when neces-
sary. While we could convert the image to a beam-corrected one,
it is better for the detector to work on the constant noise image
and to detect sources from their apparent brightness (Sect. 3.5).
The apparent flux of a source can be obtained by multiplying
the flux from the True catalog by the interpolated primary beam
value at the central position of the source.

The SDC1 challenge task is to detect and characterize the
sources. The expected parameters for each source are the cen-
tral coordinates (RA, Dec), the integrated source flux f , the
core fraction c f if different from zero, the major and minor
axis (Bmaj,Bmin), the major axis position angle PA, and a
classification C (one of AGN-steep, AGN-flat, or star-forming
galaxy). The provided True catalog supplies all these properties
for each source, allowing the training of supervised methods.
From Sect. 5.3 in Bonaldi et al. (2021), the classification part
of the challenge was considered problematic a posterior, as it is
only feasible on the tiny fraction of the field where all frequen-
cies are available. For this reason, we focused on getting the best
performances on a detection and characterization problem only.

3.3. SDC1 scoring metric

The first element of the scorer is a match criterion. Due to source
density, relying only on the central positions of the sources for
matching predictions with the underlying True catalog is likely
to result in many false positives. The SDC1 scorer uses a combi-
nation of the position, the size, and the predicted flux accuracies
to represent a global matching score defined as

Etot =

√
E2

pos + E2
size + E2

flux, with (15)

Epos ∝

√
(x − x̂)2 + (y − ŷ)2/Ŝ ′, (16)

Esize ∝
∣∣∣S − Ŝ

∣∣∣ /Ŝ ′, and (17)

Eflux ∝
∣∣∣ f − f̂

∣∣∣ / f̂ , (18)

where the true values from the catalog are indicated with a hat,
(x, y) is the central coordinates in pixels corresponding to (RA,
Dec), S is the average value of Bmaj and Bmin, S ′ is the largest
axis convolved with the synthesized-beam, and f is the source
intrinsic flux. We note that the difference between S and S ′ is
present in the scorer code but not specified in either Bonaldi
et al. (2021) or in the challenge documentation. To prevent false
detections due to the high source density, the scorer uses a strict
match threshold value for Etot. Each subpart of the error is nor-
malized to a value considered representative of a 1σ error. In the
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Table 1. Error functions and threshold values for all subscores.

Subpart Error function E j Threshold T j

Position
√

(x − x̂)2 + (y − ŷ)2/Ŝ ′′ 0.3
Flux density

∣∣∣ f − f̂
∣∣∣ / f̂ 0.1

Major axis
∣∣∣Bmaj − ˆBmaj

∣∣∣ / ˆBmaj 0.3
Minor axis

∣∣∣Bmin − ˆBmin
∣∣∣ / ˆBmin 0.3

Position angle
∣∣∣PA − P̂A

∣∣∣ 10.0
Classification 1 if C = Ĉ, 0 otherwise
Core fraction

∣∣∣c f − ĉ f
∣∣∣ /0.75 0.05

Notes. Ŝ ′′ is the target source average size convolved with twice the
synthesized beam size, which is different from Ŝ ′

scorer, the normalization coefficients are set to 0.93 for the posi-
tion, 0.36 for the flux, and 4.38 for the size, all using the catalog
units defining a global 1σ error. These individual limits were
obtained by fitting the distribution of the corresponding values
on the combination of all the submitted catalogs at the challenge
time. A match is defined if Etot < 5σ, which was optimized to
reduce the average random association chance of all submitted
catalogs below 10%. We note that the scorer distinguishes false
detection into two categories: either “False” if there is no target
source closer than 1.5×S ′ or “bad” if it passes this distance limit
but has a too-high Etot.

The list of identified matches is then converted to a global
score that captures the detection and characterization quality.
The SDC1 scorer attributes a score of up to one point for each
match depending on its characterization quality and penalizes
every false detection with a strict minus one point. The character-
ization evaluation is decomposed into seven individual subscores
that all respect the following scoring rule (based on the scorer
code) for a single source

s j
i = min

1, T j

E j
i

, (19)

where j represents the subscore part and i a single source from
the match list, T j is a threshold for this subscore part, and finally,
E j

i and s j
i correspond to the error term and the final subscore

part for this source. We list all the subscore parts and their corre-
sponding E j function and T j values in Table 1, and we illustrate
the typical score as a function of the error regarding a given
threshold value in Fig. 6.

We note that all subpart error functions are based on a rela-
tive error, which has an asymmetric behavior. When overestimat-
ing the value, the error can rise infinitely, while underestimating
a strictly positive prediction will never lower the relative error
below -1. The issue is that these errors are associated with sym-
metric score response functions. Consequently, the score will be
higher when underestimating the predictions, which is unlikely
to naturally happen on quantities with intrinsic minimum val-
ues linked to instrumental limits like the flux, Bmaj, and Bmin.
While the effect is minor for the subpart scoring, we note that for
the matching criteria, it will result in excluding properly detected
faint sources for which the noise caps the minimum predictable
flux (Sects. 4.5 and 5.1).

The final score for a given source and the average subpart
score for all sources are

si =
1
7

7∑
j

s j
i and s̄ j =

Nmatch∑
i

s j
i . (20)
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Fig. 6. Generic scoring function response for a source parameter with
T = 0.1 as a function of the prediction error.

To obtain the full SDC1 score, there is a scaling between the dif-
ferent frequencies and integration times. However, since we limit
this study to a single image, there is no need for these definitions.
The average source score for matching sources is

s̄ =
1

Nmatch

Nmatch∑
i

si, (21)

and the final SDC1 score for a single image is then

Ms =

Nmatch∑
i

si − Nfalse. (22)

When scoring a submitted catalog, the training area is excluded,
so detection performances are evaluated only for examples that
were not used to constrain the detector.

3.4. Selection function

The full simulation of the SDC1 contains more than five mil-
lion sources. Due to the added simulated noise, only a fraction
of these sources are detectable in the image. In Bonaldi et al.
(2021), they estimated that only around 758 000 sources are
above the noise level by 5σ in the 560 MHz–1000 h image. This
construction is problematic for supervised ML methods as they
are sensitive to wrong labeling during training. For an object
detector, it goes two ways: (i) if a source is detectable but not
labeled as a target box, the network lowers the detection object-
ness of all predicted boxes that try to detect sources with similar
features; (ii) if there is a target box for a source that the net-
work is incapable of detecting, it increases the objectness of
nonrepresentative features, likely background noise. To achieve
good detection performances, we must construct a training sam-
ple that is both complete and pure regarding the detectability of
the sources it contains. For this, we defined a selection function
based on the source properties of the provided True catalog.

Our selection function combines the apparent source flux fa
in Jy (Sect. 3.2), and the surface brightness S b computed as

S b = fa/(Wpix × Hpix), where (23)
Wpix = (2/Ps) ×max (1.2,Bmaj) and (24)
Hpix = (2/Ps) ×max (0.6,Bmin). (25)
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Fig. 7. Two-dimensional histogram of the source surfaces as a function
of their apparent flux. The dotted gray line indicates the saturated mini-
mum surface with clipping. The red dashed line represents our selection
function, with all the sources on the right of the line being selected.

The size saturation values are in arcsec and correspond to a two
and one-pixel size, respectively, and Ps represents the pixel size
in arcsec used to obtain the box size in pixels. The selection func-
tion to keep a source in our training sample is then defined as{

S b > 1.0 × 10−7 if fa >= 7.0 × 10−6

S b > 2.5 × 10−7 & fa > 1.65 × 10−6 otherwise.
(26)

The fa > 1.65 × 10−6 hard cut in apparent flux is equivalent
to a signal-to-noise-ratio (S/N) selection with S/N > 4.8. How-
ever, we observed that S/N cuts were insufficient to achieve good
results as too-low cuts failed to properly remove extended faint
sources, while too-high cuts tended to remove detectable point
sources. Consequently, we added the surface brightness cuts that
helped to remove undetectable objects. We represent our selec-
tion cuts over a 2D histogram of the source surface against appar-
ent flux for the training area in Fig. 7. In this figure, the top left
patchy distribution corresponds to steep spectrum AGN. The flat
spectrum AGN and star-forming galaxies distribute similarly and
occupy the rest of the distribution, but they are strongly unbal-
anced with only a few flat spectrum AGN. In practice, both types
of AGNs are mostly undetectable with the 560 MHz–1000 h
setup, and are therefore strongly under-represented after our
selection function. This also contributes to the identified diffi-
culty of the classification task in the SDC1 result paper (Sect. 5.3
in Bonaldi et al. 2021). The hard cut at the bottom left of the dis-
tribution results from a per-class S/N prefiltering done directly
by SKAO, characterized by the “selected” flag in the training
catalog. Due to our size clipping, most of the surface range of
this space is collapsed at a minimum surface, represented by the
dotted gray line. We observed that lowering the clipping lim-
its below the current values increases the number of nonvisible
objects that pass our selection, which should be avoided.

We represent the effect of our selection function on the
source apparent flux distribution in Fig. 8. We also illustrate
our selection on a small field in Fig. 9. We see that it misses
some apparent compact signals, which can result from several
effects: (i) the local noise contribution can increase the perceived
apparent flux of a faint source, (ii) blended faint sources can add
their flux at the same location, and (iii) it can be a bright and
compact part of an extended faint source below the surface

Fig. 8. Source apparent flux distribution histogram in log scale and
using log-bins for the True catalog and the selected sources.

brightness limit. Regardless of their origin, these nonlabeled
compact signals will likely confuse the detector training. We
tried to adapt the selection process and our threshold values, but
the current formulation produced the best results. We also tried
to define our surface brightness using a more common astronom-
ical size definition by convolving the Bmaj and Bmin with the
synthesized beam. Still, it resulted in lower detector scores after
training.

We emphasize that this hand-made selection function relies
on parameters from the True source catalog. Therefore, apply-
ing the method to observed data instead of simulated ones will
require either using estimates from another approach to define
the target or constructing a selection function that does not
rely on these source properties (Sect. 5.3). In Appendix C.2,
we discuss an alternative way to construct a selection function
iteratively using the prediction of a naively trained detector to
evaluate the detectability of the sources.

3.5. Training area

Using the challenge setup, the provided training area only
spans a small part of the image center, corresponding to about
0.308 square degree. The associated training catalog contains
190 552 sources (using the predefined “selected” flag), corre-
sponding to roughly 3.6% of the sources from the full True
catalog. Applying our custom selection function to this region
drops the number of sources to 33 813. Due to the effect of the
primary beam sensitivity over the image field, the central area
is not a good representation of other parts of the image. The
learned features and context awareness of a detector trained on
this region are unlikely to generalize properly to other parts of
the image. We represent the distribution of sources that pass our
selection function for the whole image field using the full True
cat in Fig. 10. The footprint of the primary beam sensitivity is
clearly visible. The provided training area corresponds to the red
box. A more suited training area definition could have been a
narrow band over a complete beam radius of the image field,
which we explore in Appendix C. To mitigate the generalization
issue while still following the original challenge definition, the
detector could be constrained to either be flux agnostic and only
perform morphological detection or to reject all sources outside
a given radius from the image center.

Instead, we propose another approach that uses other regions
of the image without adding any target sources. We observed
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Fig. 9. Illustration of the selection function over a typical input field. The background image represents an identical 256×256 input patch in all
frames, centered on RA = 0.1 deg, Dec = −30.2 deg, using the renormalized input intensity but saturated at half the maximum value to increase
visual contrast. The displayed grid corresponds to the detector output grid mapping for a network reduction factor of 16. The left frame is provided
as an image reference, the middle frame represents all the target boxes from the True catalog, and the right frame represents the remaining target
boxes after our selection function.

Fig. 10. Two-dimensional histogram of the central coordinates of the
sources from the full True catalog that pass our selection function. The
red box indicates the default SDC1 training area, and the orange boxes
indicate our additional noise-only regions.

that detecting an object above a given radius from the image
center becomes very unlikely. From this, we added two “noise
only” regions to our training sample that are sufficiently far
from the image center to be considered devoid of any detectable
source. We selected two rectangular regions of identical width
and height of 2000 and 5600 pixels, respectively, that are both
vertically centered in the image but on opposite sides horizon-
tally with a margin to the image edge of 250 pixels (Fig. 10).
These regions lie between the main lobe and the first sidelobe of
the primary beam. We note that the regions are, in fact, not fully
empty and that it will result in a few unlabeled visible sources.
Still, this approach remains vastly beneficial regarding global
detector performances. During training, examples are drawn ran-
domly in the default training area but also at a low 5% rate in one

of the two noise-only regions. This forces the detector to under-
stand the input intensity dynamic of parts of the image where
it is not expected to detect anything. We observed that detectors
trained with this process can interpolate between the two regimes
and provide much better results for the full image without man-
ually excluding difficult regions. Other things being equal, the
best achievable challenge score is increased by more than 10%
with this approach compared to training only with the default
region.

3.6. Network backbone architecture

As stated in Sect. 2.1, our method requires a fully convolu-
tional neural network backbone to create a mapping from a 2D
input image to a regular output grid. Efficient neural network
architectures can be built by stacking convolutional layers while
progressively reducing the spatial dimension to filter the relevant
information and construct higher-level representations of the
input content (Simonyan & Zisserman 2015; LeCun et al. 2015).
With a fully convolutional structure, the last layer is responsible
for encoding the output grid of the detector. Its spatial dimension
represents the output grid, and the filters encode all the output
vector elements for each grid cell. It also results in the output
grid size being controlled by the reduction factor of the back-
bone network, which corresponds to the total spatial reduction
of the network from its input to the output. The properties of
a fully convolutional architecture and its impact on our method
design are further detailed in Appendix A.1.

With a fully convolutional architecture, the input size does
not impact the model structure and number of parameters. In
this section, we consider the input size to be 256×256 pixels
(Sect. 3.8). Regarding the reduction factor, we found that a value
of 16 resulted in the best detection accuracy, which means that
the training output grid is composed of 16×16 cells. Consider-
ing the source density of the 560 MHz–1000 h image, each grid
cell has to detect multiple sources, which was the motivation for
using a prediction-aware association process (Appendix A.3).

At this point, it would be tempting to adopt the clas-
sical darknet-19 backbone network introduced in YOLO-V2
(Redmon & Farhadi 2017). We notably used it successfully
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Fig. 11. Illustration of our final CNN backbone architecture. The left
column provides the layer structural properties, while the right column
indicates the spatial output dimension for each layer starting from a
256×256 input size. The input image is on the top, and layers are stacked
in order vertically. The width of a layer represents its number of filters.
The green color indicates a layer that preserves the spatial dimension,
while the red indicates a reduction. The output grid dimension and the
list of the predicted parameters for each box are also indicated.

with our custom association process for other contexts
(Appendix A.8). We discuss this possibility and explain why it
would lead to poor performances in Appendix B. Instead, we
meticulously explored increasingly complex custom backbone
architectures. We specifically looked for an architecture that is
both computationally efficient and capable of high detection
accuracy. An illustration of our final architecture is presented in
Fig. 11.

Our final architecture was based on a few educated guesses,
but it also required exploration through score optimization. We
note that the spatial dimension is always reduced by convolution
operations instead of pooling operations, which helps preserve
the apparent flux information and better represents continuous
objects with no sharp edges. The first layer has larger filters to
extract continuous luminosity profiles better. The second layer
performs a local compression (both spatially and in the num-
ber of filters), mainly acting as a local noise filter. Then, for
a few layers, we progressively increase the number of filters
while decreasing the spatial dimension at a rate that maximizes
computing efficiency. Starting with the seventh layer, we begin
alternating large layers with 3×3 filters and smaller layers with
1×1 filters, which is typical of the YOLO darknet architecture.
This structure alternates searches for local spatial coherency with
representation compressions. It improves compute performance

and reduces the global number of parameters compared to a
more classical stacking of identically sized 3×3 layers. We note
that our third spatial-dimension reduction layer (eighth layer in
global) is also considered a compression layer in this scheme.
The second last layer has a 25% dropout rate, which is used for
regularization (Srivastava et al. 2014).

We tested adding group normalization (Wu & He 2018) at
various places in the network, but it almost always degraded the
best achievable score by a few percent (Appendix B). This is
likely because in-network normalization tends to lose the abso-
lute values of the input pixels, making it more difficult to predict
the flux accurately. Since group normalization works at the scale
of the whole spatial dimension, it might also affect the input
dynamic in a way that makes faint sources more challenging to
detect in the presence of bright sources in the image. The only
place where it produces a beneficial effect is near the end of the
network, after the last spatial correlation, where the flux value
is likely fully re-encoded in the high-level features. This spe-
cific normalization layer has several beneficial effects, including
a speed up and stabilization of the training process and a slight
improvement of the best achievable score of about 2%.

The complete architecture contains 17 convolution layers for
around 12.62 million weights, but 76% of these weights are con-
centrated at the end of the network in the connections between
layers 14 and 16. With this architecture, the receptive field for
a given grid cell at the output layer is about 100 pixels. It lim-
its both the maximum size of the sources that can be detected
with this architecture and the context windows accessible to
each detection unit. We discuss the limits of the current network
structure and potential architecture improvements in Sect. 5.2.

3.7. YOLO-CIANNA configuration for the SDC1

3.7.1. Input normalization

Input normalization is critical to obtain good detection perfor-
mances in our specific context. This aspect is key for astronom-
ical images due to their very high dynamic range. Everyday-life
images are usually encoded using three 8-bit integers, resulting
in 256 possible values for each color. Converting an astronomical
image to a similar format often induces a significant infor-
mation loss. We note that some off-the-shelves deep learning
detectors or frameworks implicitly convert images to this for-
mat without warning, sometimes explaining poor performances.
We found that 16-bit floating-point quantization was sufficient
for the SDC1 image after other input transformations, but some
astronomical datasets are likely to require 32-bit floating-point
encoding. It is also useful to offset the raw dynamic to bet-
ter represent the low flux regime. In our case, we redefine our
minimum and maximum values as minp = 4×10−7 Jy beam−1

and maxp = 4×10−5 Jy beam−1, and apply a scaled hyperbolic
tangent for all pixel values, which can be summarized as

p′i = tanh
(
3 ×

pi −minp

maxp −minp

)
, (27)

where pi is the raw pixel value in Jy beam−1 clipped with the two
limits, and p′i is the pixel value as it is presented to the detector.
This normalization remaps all input data in the 0–1 range and
grants most of this range to low signal values using an almost
linear regime to help distinguish faint sources from the noise.
The counterpart is a flattening of the dynamic for high fluxes,
but bright sources require less accuracy on the pixel values to
obtain a good relative flux estimate.
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Fig. 12. Target distribution over the closest box size prior. The associa-
tion uses the Euclidean distance in the 2D box size space.

3.7.2. Detection units settings

To configure our detection units, we must first define our target
boxes. The True catalog does not contain the necessary infor-
mation to define them in the classical computer vision way.
Instead, we define our boxes as centered on the source cen-
tral coordinates and with a size that is scaled on its major and
minor axes. For each target source, we define a rectangular box
with ŵPA=0 = 2 × Bmaj and ĥPA=0 = 2 × Bmin corresponding
to PA = 0. This box is then rotated to correspond to the actual
P̂A of the source, and we search for the smallest square box
that contains the four rotated vertex. The resulting dimensions
are clipped in the 5–64 pixels range to obtain the final ŵ and ĥ
dimensions that are used to define our target box for the corre-
sponding source (Fig. 9). The minimum clipping implies that all
unresolved point sources get the same minimum size, which was
calibrated to optimize the association process of our detection
layer. We stress that box sizes do not have to be very accu-
rate in our specific context. Firstly, they do not constrain the
receptive field in any way, meaning that the detector can use
information outside the box to detect or characterize the source.
Secondly, they are only used during association so the detector
can be trained and are not used in the scorer matching criteria
and characterization score. The important Bmaj and Bmin values
are instead predicted as additional parameters (Sect. 3.7.3).

We define the number of detection units and their size priors
based on the target source density and the box-size distribu-
tion. We chose to have three size regimes: i) a small regime
that is composed of several identical units of 6×6 size prior,
ii) an intermediate regime with two units of identical surfaces
but two aspect ratios with size priors of 9×12 and 12×9 respec-
tively, and iii) a large regime with a single unit of 24×24 size
prior. We illustrate how the target sources distribute over these
size-priors based on the smallest Euclidian distance with their
respective size in Fig. 12. This indicates that most sources would
theoretically be associated with the smallest size regime. We
tried an alternative setup with all our detection units in the
small regime, but it resulted in lower detection performances
for all size regimes. This confirms that the source size remains
an appropriate first-order criterion for distributing the network
expressivity over the detection units, even with such a massive
target size regime imbalance (Appendix A.3).

To detect multiple small sources in the same grid element,
we must populate the small-size regime with several identical
detection units. We observed good results for all models trained
using four to height small units with optimum results for six.
Too few detection units limit the number of detectable objects. It
can also force some units to encapsulate multiple contexts, pre-
venting them from being detected simultaneously at prediction
time. Conversely, too many boxes dilute the context diversity
and increase the training difficulty. Combined with the three

detection units from the two other size regimes, our detector pre-
dicts nine independent boxes in the same grid cell. In practice,
all these detection units are never used simultaneously. We dis-
cuss how the actual predictions are distributed among them in
Sect. 4.2.

3.7.3. Source properties to predict

With our method, source characterization is handled directly
by the detector in the form of a single-stage network. We dis-
cuss the possible impact of this design choice in Sect. 5.1.4
and Appendix D. In practice, each detection unit must always
predict the box center coordinates (x, y), the box size (w, h),
the probability P, and the Objectness O. For all the remain-
ing parameters requested by the SDC1 task, namely source flux
f , major axis size Bmaj, minor axis size Bmin, and position
angle PA, we can use the extra-parameter prediction capability
of YOLO-CIANNA (Sect. 2.4). As stated in Sect. 3.1, we ignore
source classification and the associated core fraction and do not
predict these properties. Still, the scorer requires values for these
parameters to compute the per-source score. We adopted the sim-
ple approach of setting a constant value for these parameters for
all sources. We found that setting c f = 0.0375 and C = 2 (corre-
sponding to SFG) resulted in the best average subscores over the
full catalog with s̄c f = 0.9865 and s̄C = 0.9734.

The output activation for all extra parameters is linear
(Fig. 3), so we have to normalize in a similar range. For the flux,
we convert it to apparent flux as described in Sect. 3.2. Then
we apply minimum and maximum clipping limits so fa is in
the [1.9×10−6, 2×10−3] Jy range, which is then passed through
a log10 function. The resulting distribution is then linearly
rescaled in the 0–1 range using the clipping limits as interval
edges. For scoring, the predicted apparent flux can be converted
back to intrinsic flux by inverting the operations. Bmaj and Bmin
follow the same normalization scheme, with Bmaj clipped in
the [0.9, 60.0] arcsec range and Bmin clipped in the [0.3, 30.0]
arcsec range. They then go through a log10 function before
being rescaled in the 0–1 range. For PA, it is crucial to consider
whether the source is resolved. Trying to predict the position
angle of an unresolved source would result in training noise. We
first search for all sources with Bmaj ≤ 1.8 arcsec and attribute
them a target of P̂A = 0. This filtering only applies when defining
the target, while nothing prevents the detector from predict-
ing an angle for smaller sources at prediction time. We define
two predicted parameters, cos (PA) and sin (PA). Considering
that the target PA is in the [−90, 90] degree range, we linearly
rescale sin (PA) to the 0 to 1 range. Due to angular symmetries
and degeneracies of PA, we obtained better results by predict-
ing both cos (PA) and sin (PA) as output extra parameters, then
reconstructing the predicted PA, than with a direct angle pre-
diction. In summary, each box predicts the following vector for
each source

〈
x, y, w, h, P,O, fa,Bmaj,Bmin, cos (PA), sin (PA)

〉
.

As discussed in Sect. 2.4, we can set independent γp scaling val-
ues for all parameters to balance their respective importance in
the loss. We list the γp we used for all parameters in Table 2.

3.7.4. Remaining hyperparameters

For reproducibility purposes, we list all the hyperparameters for
our application, which include those described in the appendix
Appendix A.3 with the advanced description of the association
process of YOLO-CIANNA. Understanding the specific behav-
ior of each parameter should not be necessary to interpret the
obtained result, and we refer to the Appendix when necessary.
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Table 2. Detection layer configuration hyperparameters.

Parameter γ fa γBmaj γBmin γcos (PA) γsin (PA)

value 2.0 2.0 1.0 0.5 0.5

Parameter LfIoU
GBNB LfIoU

low LfIoU
P LfIoU

O LfIoU
p

value 0.5 −0.1 −0.3 −0.3 −0.1

Parameter S ar αsmall Nrand αbest αrand
value 0 0.0 16 000 0.90 0.02

Table 3. Scaling factors and limits related to the loss subparts.

Pos. Size Prob. Obj. Param.

λ 36.0 0.2 0.5 2.0 5.0
Pre-activ. scaling 0.5 0.5 0.2 0.5 0.5
Pre-activ. max 6.0 1.2 6.0 6.0 1.5
Pre-activ. min −6.0 −1.2 −6.0 −6.0 −0.2

First, we use the DIoU as our matching metric
(Appendix A.4), which implies that the LfIoU limits can
take values in the −1 to 1 range. Following our nine detection
units definition with three scales, we set λvoid = 0.15 for the
six small detection units and λvoid = 0.01 for the three larger
ones. The λ scaling factors, along with the preactivation scaling
and limit values, are given in Table 3. The various LfIoU and
some other remaining hyperparameters are given in Table 2.
For a more exhaustive view of all the detector hyperparameters,
we recommend reading the provided example SDC1 scripts
archived with CIANNA V-1.0.

3.8. Network training

The layer weights are initialized to random values following a
Glorot normal initialization (Glorot & Bengio 2010), the batch
size is set to bs = 16, and the numerical resolution is set to
full 32-bit floating point for all network elements. The train-
ing images are dynamically generated and augmented from the
training area, as described later in the current section. The
learning rate starts low at around 3 × 10−6 and is increased
linearly over the first 64 000 training images up to the default
value or 1.5×10−4. Then, it follows an exponential decay of
3.13×10−7 as a function of the number of training images up
to a minimum value of 5% of the default learning rate. A con-
stant weight update momentum of 0.8 is also used. No weight
decay is used since it always resulted in lower scores. The
initial random association is set to Nrand = 16 000 examples
(Appendix A.6.2).

With our fully convolutional architecture, we could techni-
cally use any input size that is a multiple of the network reduction
factor (see Appendix A.1). A too-small input size can cause
many cutout edge effects, and a too-large input size reduces
the number of independent examples we can generate from a
finite training area, increasing the chances of overtraining. We
observed that a training input size of 256×256 pixels resulted in
the best achievable score for our specific application.

To generate a training image, we draw a random pixel posi-
tion inside the training area, extract a small region corresponding
to our network input size, and apply pixel-preserving operations
selected randomly from vertical or horizontal flips and 90 or
−90 degree rotations. Images from the additional noise region

are selected at a low 5% rate and follow the same augmentation
rules. With this dynamic augmentation, it becomes impossible to
define an epoch traditionally. By cutting out patches of the larger
image, sources on the edges of a patch might be cut, which can
negatively impact the detector capabilities (Sect. 3.4). We tried
various approaches for handling these sources (Appendix A.6.4)
but obtained the best scores with a simple exclusion of any tar-
get box that is not fully contained in the input patch. With this
dynamic generation scheme, the classical epoch definition can-
not be used. Therefore, to ease the monitoring of the training,
we consider 1600 generated images to form a group that we call
an iteration and use this quantity instead of the number of seen
examples to express the advance of the network training.

Because the labeled area is small, splitting it into indepen-
dent training and validation subsets would significantly reduce
the context diversity for both subsets. The detection performance
would be negatively affected, and we would have no guarantee
that the validation set is representative. For this reason, our train-
ing examples are randomly drawn from the full labeled area.
Our validation dataset is built from the same region and cata-
log but using a fixed grid of nonoverlapping patches for a total
of 100 images. We acknowledge that this validation set would
fail to identify overtraining. However, we can rely on the SDC1
scorer to provide an independent metric on a separate dataset to
evaluate our detector performances at a regular iteration interval.

With this setup, the detector reaches a high score after only
400 iterations, but the extended sources are not properly con-
strained yet, and the global characterization is suboptimal. The
detector usually requires around 3000 iterations to converge to
its best score. After that, it oscillates for a few hundred iterations
and eventually exhibits overtraining. We present the validation
loss with scoring stamps every 200 iterations in Fig. 13. We note
that using stricter values for parameters that control the associa-
tion process like LfIoU

GBNB or LfIoU
low would speed up the training. It

would result in more stable results, but it also decreases the best
achievable score by up to 2%.

On an RTX 4090 GPU and by doing image augmentation on
the CPU in parallel, we can reach almost 400 images per second
of training performances. Reaching iteration 3000 takes around
3.5 hours. With the current training setup, the GPU memory
footprint of the network is around 8GB. A save file represent-
ing the model at a given iteration requires 50MB of storage.
We tried using mixed-precision training to leverage tensor-cores
acceleration, but it always resulted in a score decrease of about
2%. Still, it speeds up network training by a factor of up to
1.8 while preserving the relative performance impact of vari-
ous hyperparameters, allowing a more efficient exploration of
network architectures and hyperparameter combinations.

3.9. Prediction pipeline

To use our trained detector on the full SDC1 image, we need to
decompose it into patches. As stated before, our method allows
us to use any input size for the prediction, even if it differs
from the one used for training. By decomposing the image into
patches, some sources will end up close to the edges of a patch,
resulting in poor detection or characterization. To overcome this
issue at prediction time, we use overlapping patches with an
overlap size of 32 pixels. This value was chosen to be half the
maximum size for our target boxes. It is also a multiple of the
reduction factor, making it an integer number of complete grid
cells. With this setup, each source will likely be well-represented
by at least one patch. In the case of multiple detections of the
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Fig. 13. Evolution of the validation loss subparts during training, using the “natural” loss representation (Appendix A.7). The first 20 iterations
are skipped. Optimized scores obtained using the procedure described in Sect. 3.9 are displayed every 200 iterations. The small difference in
exact score that can be observed compared to Table 5 is due to rounding of the objectness thresholds, some minor adjustment of the largest prior
threshold, and the use of FP16 mixed-precision at inference.

Table 4. First NMS rejection limit pairs.

LfIoU
NMS 0.05 −0.1 −0.3 −0.5

Lobj
NMS 1.0 0.7 0.5 0.3

same source by two overlapping patches, having perfectly over-
lapping grid cells ensures that objectness scores are comparable.
Thus, these multiple detections can be filtered through an inter-
patch NMS process. From there, we observed that larger patches
produce better results by reducing the proportion of sources close
to an edge. We settled for a prediction input size of 512×512 pix-
els, which results in a good balance between prediction quality
and compute efficiency. By setting a small offset on the edges of
the full image, we can obtain a map composed of 67×67 partially
overlapping patches.

For each prediction patch, we first apply a per-detection-unit
objectness threshold filtering. The threshold values are obtained
through score optimization by identifying the objectness interval
contributing positively to the score (Sect. 3.3 and Eq. (22)). This
optimization is only a refinement, and we would only lower our
best score by a few percent by using naive guesses on threshold
values instead of searching for the best ones. We also add a rejec-
tion criterion based on the average pixel flux inside the predicted
box area as a function of the objectness score to exclude small
false detections induced by very extended and bright sources.
Multiple detections are then filtered by the NMS process for each
patch (Sect. 2.8), using multiple LfIoU

NMS and Lobj
NMS thresholds pairs

that are given in Table 4. Following the NMS process, consid-
ering the best current score box, any other box that respects one
of the condition pairs DIoU > LfIoU

NMS and O < Lobj
NMS is removed.

With this setup, the rejection chance is based on a combination
of the detection confidence and the distance to other confident
detections. Multiple detections from overlapping patches are fil-
tered using a secondary inter-patch NMS process. It works as the
first NMS but with a constant LfIoU

NMS = −0.15. From the filtered
box list, we construct a catalog in the SDC1 scorer format by
inverting our normalizations on the predicted parameters.

On an RTX 4090 GPU, the raw prediction compute perfor-
mance at the largest available batch size is around 300 images
per second for an input size of 512×512 pixels, or almost 80 mil-
lion pixels per second. The raw processing time for the full
4GB image of 32 768 square pixels after the network loading is
around 15 seconds. To this, we need to add the post-processing

time of the prediction pipeline, which strongly depends on the
minimum objectness threshold values for the different detection
units. Using an end-to-end Python pipeline that produces the
converted detection catalog from the raw detection catalog, the
post-processing time is about 40s on a single CPU core (Ryzen
9 5900X). Interestingly, the detection performances are fully
preserved when doing the prediction in mixed-precision using
16-bit numerical computations with a 32-bit accumulator when
necessary, allowing the use of Nvidia AI-dedicated tensor-cores
compute units available on modern GPU architectures. With this,
we can reach around 500 images of 512×512 pixels per second,
or around 130 million pixels per second, of raw computing per-
formance. At this point, the time required to save the results on
our high-end SSD storage becomes the limiting factor, and the
network loading time becomes comparable to the prediction time
over the full image. This confirms that our method is suited for
application over large surveys and real-time detection (Sect. 5.3).

4. Results and analysis

In this section, we present the results of our best model over the
full field of the selected SDC1 image. We stress that there are
small variations of results from retraining a network with the
same training setup, with typical variations of the best achiev-
able score around ±0.5%. In practice, the detailed analysis of
this specific training holds perfectly with any training we have
done using the same setup. The results in this section are ordered
following the post-processing pipeline from the raw predicted
quantities up to the predicted source catalog using the challenge
format. The validation loss curve as a function of the training
iteration is presented in Fig. 13. This figure also indicates the
optimized score at a regular interval of 200 iterations. The fol-
lowing results are presented for iteration 3000, which achieved
the best score for this specific training.

4.1. Patch-divided prediction results

From the raw model prediction, after applying the first object-
ness filtering and the in-patch NMS, we can obtain a list of
all the detected sources per patch. We represent the respective
number of sources for all patches over the whole image field in
Fig. 14. We note that some sources contribute to multiple bins
in this representation because the inter-patch NMS has not yet
been applied. We see that the detector sensitivity follows the pri-
mary beam imprints over the full image. We do not observe a
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Fig. 14. 2D representation of the full SDC1 image field decomposed
into overlapping patches. Each pixel corresponds to a specific patch,
and the color represents the number of detected sources after object-
ness filtering and in-patch NMS. The central coordinates of the field are
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Fig. 15. Distribution of the number of detections in a single cell
(nonempty only) after objectness filtering and in-patch NMS.

clear overdensity of detected sources in the training area region,
which tends to indicate the absence of overtraining.

To analyze in detail the behavior of the individual detection
units from our detector output (Sect. 2.5), we represent a his-
togram of the number of found-useful detections per grid cell
for all patches in Fig. 15. Here, empty grid cells are excluded,
but they represent the most common case. We observe that cases
with six or more detections are very few, four or five detections
are not common but significant, and most nonempty grid cells
contain less than three detections. Further analysis indicates that
only around 26% of the nonempty grid cells have more than
one detection. This proportion drops to 4.5% for more than two
detections. In practice, the in-patch NMS process removes 78%
of the raw good detections. This indicates that many detection
units are in use simultaneously and capable of detecting real
sources, but they often end up detecting the same sources. Still,
we observed that lowering the number of detection units lowers
the score, indicating that they are useful for some specific con-
texts or that having more detection units better distributes the
information. To further verify this idea, we represent in Fig. 16 a
histogram of the number of predictions per detection unit for the
whole image after the in-patch NMS. The distribution over the
different detection units from the small-size regime is relatively
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Fig. 16. Distribution of the detections regarding the detection unit that
produced them, after objectness filtering and in-patch NMS. The size
prior is indicated for each detection unit.

homogeneous, confirming that all detection units are useful. We
also observe that the relative proportions of each size regime are
well preserved regarding the theoretical target distribution from
Fig. 12, which confirms that our association process properly
distributes the information over the available size regimes.

To better understand the representation regime of individ-
ual detection units, we can look at their respective distribution
of predicted sizes and aspect ratios in Fig. 17. We observe that
some boxes are more specialized regarding aspect ratios, which
is natural for the intermediate size regime due to the two differ-
ent ratios of size priors. The behavior of the small-size regime
detection units is more surprising, as they all appear to prefer
a positive aspect ratio when predicting small boxes and a nega-
tive aspect ratio when predicting large boxes. The cause of this
behavior remains unidentified for the moment, but it is repro-
ducible in all of the backbone and hyperparameter configurations
we tried. Finally, the detection unit from the large-size regime
and usually one or two from the small-size regime also predict
sizes representative of the intermediate regime. Due to the dif-
ference in aspect ratio, only one of the intermediate-size regime
units is likely to be used in a given grid cell. When two or more
sources of intermediate size have to be detected simultaneously,
a small or large box with a square prior might be better than
using the wrong aspect ratio from the appropriate size regime.

4.2. Full catalog scoring

After the inter-patch NMS filtering and conversion of all the pre-
dicted source parameters, we obtain a source catalog for the full
image that can be put through the SDC1 scorer (Sect. 3.3). It
automatically excludes the training area and produces a detec-
tion score for the rest of the image. Our score is presented in
Table 5 under the name MINERVA (YOLO-CIANNA), along
with scores from other methods. In addition to the challenge
score, we also indicate the number of sources retrieved, the
precision of the submitted catalog, and the average source char-
acterization score. For a fair comparison, we recomputed the
scores from the available detection catalogs for each method
using the same scoring code. The top three results from the
original challenge leaderboard on the same single 560 MHz–
1000 h image are indicated for reference. The Engage-SKA team
used the ProFound package (Robotham et al. 2018), a collec-
tion of astronomical image processing and analysis tools that
produce segmentation maps. The Shanghai team worked with
a combination of three classical astronomical source-detector
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Table 5. SDC1 scores and related properties for source catalogs from different teams and methods.

Team (method) Ms (Score) Ndet Nmatch Nfalse Nbad ∈ Nfalse Purity s̄

Post-challenge results

MINERVA (YOLO-CIANNA) 480 450 724 480 680 000 44 480 16 839 93.86% 0.7719
↪→ purity-focus thresholds 418 434 541 542 536 412 5130 2506 99.06% 0.7896

JLRAT2 (JSFM2) 298 201 502 146 484 212 17 934 2274 96.43% 0.6529

Original challenge results

Engage-SKA (PROFOUND) 200 939 421 992 418 384 3608 2677 99.15% 0.4889
Shanghai (multiple methods) 158 841 292 646 291 553 1093 698 99.63% 0.5486
ICRAR (CLARAN) 142 784 279 898 259 806 20092 6875 92.82% 0.6269
... ... ... ... ... ... ... ...

Notes. The bold element represents the target metric that is optimized for each result.

packages, namely AEGEAN (Hancock et al. 2018), DUCHAMP
(Whiting 2012), and SExtractor (Bertin & Arnouts 1996), but
ended up using only the last one to construct its catalog. Finally,
the ICRAR team used the deep learning CLARAN method
(Wu et al. 2019), with a region-based method similar to R-CNN
(Girshick et al. 2013). We note the participation of another team
(not in our table) that used a very shallow convolutional network
structure for segmentation, achieving a much lower score with
the ConvoSource method (Lukic et al. 2019). We also include
another post-challenge score from Yu et al. (2022), which is a
refinement of the JLRAT team that participated in the original
challenge but with a lower submitted score, also with a deep
learning-based method using a combination of a region-based
approach with a feature pyramid network. Their new catalog is
publicly available and is provided in the scorer format, allow-
ing us to include their result on the same image in the table.
Our SDC1 source catalog is also made publicly available (Cornu
2024c)3 with the present paper so the full score table can be
reproduced.

The source catalog obtained with our YOLO-CIANNA
detector improves the best-submitted score of the originally par-
ticipating teams by +139% and the score of the only other
published post-challenge score by +61%, which already outper-
formed what was submitted during the challenge. We observe
that most teams focused on catalog purity to achieve high scores.
This is likely to be due to their relatively low average source
characterization score, which is discussed in Sect. 4.4. As the
apparent flux should be an appropriate first-order proxy to rep-
resent the detection difficulty, we present the apparent flux
distribution of our detection list in comparison to the True cata-
log in Fig. 18. We also present the corresponding completeness
and purity for each flux bin. The completeness represents the
proportion of total sources we successfully detected, and the
purity represents the proportion of the proposed detection that
are real sources. These quantities are computed based on the
full True catalog and SDC1 matching criteria. Comparing this
flux distribution with the one from our selected training sam-
ple (Fig. 8), we observe that our detector can identify sources
outside its training flux range close to the noise limit. This is
likely to correspond to sources for which the perceived apparent
flux was increased by the local noise or blended faint sources
that add their flux, leading the network to detect them as a single

3 Our reference SDC1 detection source catalog along with other inter-
esting catalogs described in the present paper have been archived at
10.5281/zenodo.13141772 in the scorer format.

brighter source (Sect. 3.4). These two cases will result in sources
with a target apparent flux close to or below the detection limit to
be detected. This out-of-range detection capability is also visible
in the example fields from Fig. 19. The completeness is high in
the intermediate apparent flux range but drops progressively at
lower flux values. While it can be explained by sources getting
under the detection noise limits, it can also come from sources
that are too blended to be detected individually. In such a con-
text, the prediction will be associated with the brightest target,
removing mostly low apparent flux sources. This is also visible
in the example fields from Fig. 19. On the opposite side of the
flux range, our detector misses a few bright sources, which can
be explained by the absence of similar examples in our train-
ing sample. While they are too few to influence the scoring by
their absence, they can still have a strong effect by adding false
positives, which is discussed in Sects. 3.9 and 4.1.

4.3. Alternative purity focused detection

By trying to optimize for the best possible SDC1 score, we
are forced toward a predefined catalog purity. Consequently, our
per-source characterization score defines the ratio of true-to-
false detections above which new detections add score points
(Sect. 3.3). This relation is nonlinear, as objects that are dif-
ficult to detect will likely be challenging to characterize. This
is why we optimize the score using the ordered detection in
objectness, which reflects the detector confidence (Sect. 3.9). If
catalog purity is the main concern, we can adjust the objectness
threshold selection to preserve only more confident detections
using the exact same model (no retraining is necessary). With
this approach, we can evaluate the performance of a given
trained detector in different confidence regimes. To illustrate
this capability, we present the result obtained with the same
trained YOLO-CIANNA model but with a post-process search
for objectness thresholds that enforce a 99% purity. The score
for this purity-focus catalog is presented in Table 5 as a subprod-
uct of our model. As expected, keeping only the most confident
sources reduces the score by around 13% compared to our score-
optimized catalog, as it removes sources that were contributing
a positive score. Still, this score remains much higher than the
other methods with a similar purity. We observe that the average
source score also increases with this selection, which confirms
that the predicted objectness captures information about both the
detection and characterization difficulty of the sources.

We represent the apparent flux distribution of this purity
focus catalog in Fig. 18. Comparing this distribution with our
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Fig. 18. Histograms of the sources as a function of their flux using logarithmic bins for the underlying True catalog and the predicted sources in the
testing area. The true source flux is used for matches, while the predicted flux is used for false positives. The bottom part of each frame represents
the purity and completeness of each bin of the histograms (defined in Sect. 4.2). The top frames use the apparent flux after multiplication with the
primary beam, while the bottom frames use the integrated flux. The columns represent the two possible post-process objectness-thresholds search
objectives over the same trained YOLO-CIANNA model.

default result shows that the detections at low and high appar-
ent fluxes get removed first. While the link between low flux and
difficulty is straightforward, it is less clear why bright objects
get removed more than intermediate apparent flux regimes. It
is likely due to the small number of bright source examples in
the training sample that leads to poor characterization, result-
ing in lower detection confidence. It can also be related to the
fact that extended sources often exhibit bright-compact regions
over much fainter extended structures, resulting in target bound-
ing boxes that do not correlate well with the detectable part of
the objects. This naturally prevents the detector from predicting
the appropriate box sizes and lowers the geometrical confidence
reflected in the objectness of extended sources.

As discussed in Sect. 2.2, having a predicted confidence
score mapped by a continuous function implies that the trained
detector can sample all its sensitivity regimes simultaneously
at prediction time. By optimizing for the best SDC1 score or
for a given purity, we only select specific sensitivity thresholds.
From a user perspective, a given trained model can be adapted
to various applications with either completeness or purity
requirements. We discuss how this principle could be used to
design an alternative detection metric in Sect. 5.2.

4.4. Source characterization

In addition to the global score, the scorer code can produce
detailed results, which include a list of matches along with the
predicted and target properties for each. In the following sec-
tions, we use these products to perform a detailed analysis of the
characterization capabilities of our YOLO-CIANNA detector.

A primordial aspect of our produced source catalog is
its high source characterization performance with s̄ = 0.7703.
Before analyzing it in detail, it is important to highlight that
parameter prediction accuracy is impossible to decorelate from
the detection capability in the SDC1 scorer. The average param-
eter score ignores the fact that the characterization is not equally
difficult for all sources. For example, we could choose to detect
only the ten sources that are the easiest to characterize and obtain
a very high characterization score. In contrast, a method that
detects many sources, including some that are difficult to char-
acterize, would get a lower average characterization score even
if it is better at characterizing the specific ten easiest sources.
This effect is well illustrated by the increase in average source
score for our alternative purity-focused result compared to our
default score result in Table 5. Overall, this average source score
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Fig. 19. Distribution of sources and predictions for three 256 square pixels example fields. The background images use the same clipping and
normalization as the network input (Sect. 3.7.1) but are saturated at 50% of the maximum. Each line represents a different field. Left: scatter plot of
the central source coordinates from the full True catalog. Middle: boxes for predictions that match a true source based on the scorer. The match-out
boxes indicate properly detected sources with a target flux below the minimum value in the training sample, so outside our selection function
criteria (discussed in Sect. 4.2). Right: boxes for true sources that pass our selection function but are not detected, and boxes for predictions that
are false positives based on the scorer.

metric penalizes more efficient detectors that properly identify
more difficult sources. To overcome this limitation, it would be
possible to order or bin the sources by difficulty before evaluat-
ing the characterization capability of different methods on each
bin. However, defining a characterization or detection difficulty
proxy that would be method agnostic is likely impossible. The
best proxies we have are source brightness or signal-to-noise
ratio (S/N) measurements. A better solution to compare method
characterization capabilities would be to use subsets of sources

detected by the different methods. In our opinion, this is a
significant limitation of the analysis from both SDC1 and SDC2
summary papers.

Our approach to overcome this difficulty is to use 2D his-
tograms of the parameter errors from sources matched by the
scorer as a function of a difficulty proxy, presented in Fig. 20.
This figure also comprises histograms of the sources regarding
only the parameter errors, which are directly aligned with their
respective score response functions to ease the comparison. The
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Fig. 20. Two-dimensional histograms of the different parameter errors defined by the scorer as a function of relevant difficulty proxies. The left
column represents the two-dimensional histograms. The right column represents a 1D histogram of the relative error projected over the same axis
as the left column. To the right of this projection and using the same axis projection, we indicate the specific response of the score function for
each parameter following Eq. (19) and Fig. 6. The red dashed line indicates the edges of the area for which the parameter score is saturated at its
maximum value. The orange lines and arrow indicate the value range available in the training sample. The gray overlay represents the size regime
for which the sources are smaller than the beam size.
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following subsections detail the prediction capability for each
type of predicted parameter.

We achieve a very high positioning score of s̄pos = 0.964,
which is, in fact, a requirement for reaching a high detection
recall and precision regarding the scorer match criteria. For point
sources to be considered a match, we must reach subpixel posi-
tioning accuracy (Sect. 3.3). This typically explains why we
configured our detector with a strong focus on the position loss
in Table 3. From this point of view, the 0.3 error threshold for
the position seems relatively permissive and is not very useful in
comparing methods regarding their positioning accuracy.

For the flux prediction, the distribution mostly centers on the
score function response, granting a good average flux score of
s̄flux = 0.646. As for the position, sources with a bad flux pre-
diction are more likely to be rejected based on the scorer match
condition (Sect. 3.3), imposing practical limits on the accessible
flux dispersion. For faint sources, the detector overestimates the
flux, which is typical of a prediction over a noise-limited image.
Overall, the detector tends to predict the minimum flux value
it was trained on for fainter objects. Still, the faintest sources
are only detectable when the local noise increases their apparent
flux. This can result in a selection effect bias that causes the net-
work to overestimate the underlying flux of faint sources. This
can explain the spreading of the flux predictions above the min-
imum training value prediction. For the few bright sources, our
detector underestimates the predicted flux, which results from
the combination of several factors: (i) our maximum value at
training time will push the network to underestimate all fluxes
above the limit, (ii) high flux sources are represented mainly by
a rare class of objects (Sect. 3.4) that are only detectable at this
flux regimes meaning that they are unconstrained, and (iii) our
hyperbolic tangent transform applied in the input renormaliza-
tion might slightly reduce the accessible information for high
flux sources (Sect. 3.7.1).

Regarding Bmaj and Bmin, the global predictions are con-
vincing and centered on the score response function with s̄Bmaj =
0.627 and s̄Bmin = 0.594. We also observe the same type of
out-limit generalization behaviors. Here, these effects are rein-
forced by the fact that the True values to be predicted are not
convolved with the synthesized beam. In practice, the detec-
tor is expected to predict nonavailable information for most
detectable point sources. Still, we observe that predictions for
Bmin are surprisingly not collapsed toward a single solution
below the synthesized beam size. This indicates that the network
can extract residual information about the source size under the
resolution limit or reconstruct this information from correlated
parameters. For Bmaj specifically, we observe that the predic-
tions are distributed over two independent prediction regimes
that both follow the same type of error function. This separa-
tion is induced by the source distribution over different detection
units based on their size. This creates a discontinuity as only
detection units with a large size prior are properly constrained
to predict large Bmaj values, while small detection units with
small size priors are constrained to predict small Bmaj values.
This effect is already strongly mitigated by the addition of the
random box association regularization in our association func-
tion (Appendix A.6 and Fig. 4) that forces detection units to
generalize outside of their size range. When forcing more detec-
tion unit independence, this separation between different size
regimes gets even more striking in the figure.

For the position angle, the average score is surprisingly high
with s̄PA = 0.601, considering that most detected sources are
smaller than the beam resolution limit. From the distribution,
we observe that the prediction is not too noisy and that small

sources distribute evenly over the error range, while the predic-
tion accuracy improves progressively with the increase in source
size.

4.5. Example fields

We illustrate the detected boxes from our model over a few exam-
ple fields outside the training area in Fig. 19. We use the same
field size as our training input window, namely 256×256 pix-
els. The first field represents the central high-sensitivity region
where our detector reaches peak detection performance. This
field illustrates the capability of our detector to identify faint
sources outside its training interval (Sect. 4.2). A few sources are
considered missed, but most of them are blended with sources
already correctly detected. The few false detections can be sep-
arated into three cases: (i) it is near a properly detected source,
but our NMS process did not remove it, (ii) it is near a source,
but the matching criterion failed, certainly due to the target flux
being lower than the minimum accessible flux, or (iii) it is near
a compact signal that does not correspond to a source. The first
and second cases are the most common.

The second field illustrates the extreme case of an extended
resolved galaxy. As previously stated, there is no similar source
in the training area that the detector could have learned to iden-
tify. Therefore, the large source itself was expected to be missed.
However, this field illustrates our capability to prevent false
detections in such a context. Only a few detections are consid-
ered false, and most of them seem to represent a real underlying
source, indicating that the matching criteria likely rejected it
because of the predicted flux or size. Several blended sources are
also properly detected on the edges of the extended source. The
detector manages to identify blended sources in bright regions
of the extended central source that appear saturated. The back-
ground images in this figure are, in fact, oversaturated to increase
contrast over faint sources. Using the actual input image pro-
vided to the network, these detected sources are also obvious to
the eye. There are many missed sources in this context, which are
completely hidden by the bright source and are therefore unde-
tectable. These missed undetectable sources highlight a typical
possible improvement of our training selection function, which
could be modified in order to remove them.

The last field illustrates a region far from the image center
but still in a primary beam regime where several sources can be
detected. This is typical of the intermediate regime between the
default training area and our noise-only areas. With this field, we
can verify the capability of our detector to interpolate between
the two training contexts. We observe that most sources are prop-
erly detected. Only a few are considered missed, and their origin
is likely the same as in the two other example fields. This field is
typical of the regions of the whole image for which we identify
a small overdensity of false detection in Fig. 21.

4.6. Whole image field distribution

Using the match criterion from the scorer, we can look at the
match distribution over the whole field and the distribution of
false positives and missed sources, which are all illustrated in
Fig. 21. All distributions follow the primary beam imprint over
the whole field. The striking feature of this figure is that the false
positives appear more concentrated in a ring that spans from the
farthest point of the training area up to the edge of the primary
beam. This is a direct consequence of the training area defini-
tion, and this specific distribution is more pronounced when we
do not include the two additional noise-only regions in our train-
ing sample (Sect. 3.5). The distribution of missed sources based
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Fig. 21. Two-dimensional histograms of various kinds of “objects” representing their distribution over the full SDC1 field for the YOLO-CIANNA
model. The training area is masked when necessary. All densities are binned using the same 200x200 grid. The match and false detections are
based on the scorer, while the missed ones are based on our selection function. The central coordinates of the field are RA = 0 deg, Dec =
−30 deg.

on our selection function mostly follows the primary beam foot-
print, illustrating that our detector completeness is uniform over
the whole image field. The distribution of false and missed both
exhibit compact over-densities of a few pixels, corresponding to
the position of the few extended and bright sources.

5. Discussion

5.1. Challenge definition and scorer biases

The SDC1 successfully gathered research teams to develop,
adapt, and evaluate detection methods on a controlled dataset
with a fixed evaluation metric. Even now that the challenge
has ended, it remains a valuable dataset in its challenge form,
even more so now that they have provided the full True cat-
alog. However, as stated in Sect. 3.2, with only 4GB images,
the SDC1 does not prepare the community for handling data-
intensive workloads. The following SDC2 and SDC3 editions
are more challenging in this regard. In addition, our study high-
lighted a few limitations that are the result of some design
choices of the challenge. In this section, we discuss these lim-
its and propose a few directions that could help design future
challenges.

5.1.1. Training area

In Bonaldi et al. (2021), the authors highlight that the source
classification aspect is challenging due to the small number of
detectable sources for which all frequencies are available. As
the frequency increases, the size of the training area is also
reduced, leading to a very small training sample, especially for
rare classes. More generally, they do not illustrate or discuss
the distribution of the matched sources and false positives of
the submitted catalogs over the whole image field to highlight
the potential effects of the training area selection. We exten-
sively discussed how having only access to a central part of
the image for training affects the generalization capability of
our detector Sect. 3.5 and proposed a workaround by adding
the two extra noise-only training regions. In Appendix. C, we
explore an alternative training region that spans an entire beam
radius to encapsulate all the sensitivity regimes from the pri-
mary beam. We demonstrate that this simple change solved most
of the related issues. Overall, the SDC1 falls under the classi-
cal supervised learning hiccup of having a training sample that
does not represent the final task to perform. Interestingly, this
aspect was corrected for the SDC2 (Hartley et al. 2023), for

which the training sample was provided as an independent data
cube representing another realization of the same underlying
simulation.

5.1.2. True catalog properties

In Sect. 3.4, we discussed how the construction of the training
sample matters, especially regarding the selection of detectable
sources. While sampling the transition between detectable and
nondetectable sources with a sufficient margin is a good thing,
keeping the vast majority of un-detectable objects in the ref-
erence True catalog causes several issues. At testing time, it
increases the chance of random association. To counterbalance
this effect, restrictive matching criteria have been used in the
SDC1 scorer, notably on the flux, which then causes the rejec-
tion of actually detected sources too often (Sect. 5.1.3). We note
that in Bonaldi et al. (2021), the authors indicate that back-
ground faint sources contribute to the realism of the image noise.
Still, most of them could have been ignored during scoring to
reduce the random matches over undetectable sources. In all
cases, a selection function must be defined to select a fixed point
in the detectable to undetectable transition. In this regard, the
provided True catalog could have contained more information
directly from the simulation instead of just the source proper-
ties to predict. For example, the underlying simulation produces
pixel masks for all sources, which would help recognize blend-
ing or identify compact detectable regions in extended resolved
sources. Such extra information provided only for the True cat-
alog would have allowed the construction of a more advanced
selection function while not changing the amount of information
in the image from which the detection has to be made.

Some other design choices do not directly impact the detector
performances but could have been made differently to serve dif-
ferent purposes. For example, the True catalog contains a unique
true value for all the parameters of every source. An alternative
approach would have been to provide a single noised realization
for each target parameter and accompany them with uncertainty
measurements. It would have improved the realism of the pro-
duced catalog, considering how target sources can be acquired
from real observations. Consequently, uncertainty predictions
could have been added to the scorer.

5.1.3. Scorer metric

The main impactful choices are naturally in the evaluation metric
itself in the form of the scorer (Sect. 3.3). Firstly, several error
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thresholds are permissive. Therefore, multiple detection meth-
ods with different characterization capabilities will have similar
scores for the corresponding source parameters. Secondly, most
parameters use an asymmetrical relative error with a symmet-
rical score response function. This implies that underestimated
predictions tend to achieve better scores. Finally, the error func-
tions do not consider some structural or observational limits
of the predicted parameters. For example, the limited instru-
mental resolution constrains the accessible values for the Bmaj,
Bmin, and PA parameters, while the noise limit constrains the
accessible flux values. Having target values lower than the obser-
vational limits results in an uncapped positive relative error that
does not reflect the intrinsic detector capability. This is strik-
ing for the Flux, Bmaj, and Bmin error distribution illustrated in
Fig. 20. Since the score of a properly detected source depends
on its characterization, successfully detecting difficult sources is
poorly rewarded compared to detecting obvious ones. Another
issue specific to the flux is that the target value is the intrinsic
source flux instead of the apparent flux. As the sensitivity varies
with the primary beam, the flux score estimate and matching
criteria are inhomogeneous over the image. This can also con-
tribute to explaining the faint outer ring of false detection visible
in Fig. 21. As discussed in Sect. 4.4, characterization scores are
averaged over all the detected sources regardless of their intrinsic
difficulty. Consequently, a good detector with a good charac-
terization capability will have a lower average characterization
score than a less complete detector with poor characteriza-
tion capability. A better approach would be to use subsets of
sources identified by the two detectors. In this regard, we strongly
encourage any future method application to the SDC1 dataset to
include figures that represent the distributed parameter errors as
a way to evaluate their characterization capability (e.g., Fig. 20).

To maximize its score, a detector has to identify as many
objects as possible while preserving a given purity dictated by its
average source characterization score. This challenge is strongly
detection-focused as all identified sources always contribute a
similar score, while a false positive always contributes –1. It is
equivalent to having set a fixed purity requirement and tasked
teams to achieve the best completion at this purity level. Still,
the set of match criteria includes predicted characteristics like
the flux and the size of the sources, which are used to prevent
random association with the many nondetectable objects. As for
the source characterization, the match criterion uses asymmet-
rical relative errors on quantities with instrumental limitations.
When defining a match, the effect of the synthesized beam
on the size and position has been accounted for, but nothing
was done regarding the predicted flux. Consequently, perfectly
detected faint sources regarding the instrument limits can be
considered false positives if their True catalog flux is slightly
overestimated. In addition, since these sources get lower charac-
terization scores, the detection purity in this regime has to be
higher to add a positive score, biasing the detector to remove
them more than necessary. This results in underestimating the
capability of strong detectors for low S/N, which is exactly the
regime in which the comparison of method capabilities would
be interesting. While using the flux in the matching criteria is a
good idea to reduce the chance of random matches, it would have
been better to incorporate the matching score in the global scor-
ing instead of rejecting sources based on an arbitrary threshold.
Also, the target apparent flux correlates well with the detection
difficulty and could have been used as a conditional threshold for
the match criteria. Another approach could have been to directly
scale the contribution of each target to the total score based on
their target flux.

5.1.4. Alternative custom AP metrics

Another drawback of this scoring approach is that it expects a list
of considered true detections, which does not exploit the capabil-
ity of some methods to produce a continuous confidence score.
In classical computer vision challenges, the predicted score is
used to construct a completeness-purity curve based on a rel-
atively permissive match criterion. The integral of this curve
is then used to evaluate the detector capability over its full
sensitivity range (Appendix A.8.2). For some challenges, they
also build a metric that is the average of sensitivity curve inte-
grals using multiple matching thresholds. Interestingly, since the
SDC1 scorer represents a matching criterion, it can be used to
sample the completeness-purity curve and build a custom AP
metric. We present the raw and smoothed completeness-purity
curve for our YOLO-CIANNA model over the test region in
Fig. 22, along with the binned purity as a function of the object-
ness for each detection unit. To speed up the scorer cross-match,
we rejected all predicted sources with an objectness score below
0.03, which cuts the tail of the curve in the high-recall law pre-
cision regime, slightly reducing the AP score as well. We see
that the purity drops quickly to a 0.9 plateau up to 0.1 complete-
ness. This indicates that some confidently detected sources are
rejected by the SDC1 scorer match criteria, which is likely the
result of the scorer limitations discussed in Sect. 5.1.3. As a ref-
erence, we achieve APSDC1 = 14.47. Since most of the objects
in the simulation are nondetectable, the resulting AP is low,
but it should remain sensitive to variations in detection capa-
bility. While this is an interesting alternative detection metric, it
only accounts for the characterization of the sources through the
match criteria.

While the source characterization is a core part of the SDC1
challenge and is likely to be required as well for observational
data, we can try to evaluate how our method performs with
a purely geometric detection-only metric. For this, we use the
classical AP definition with a DIoU as our matching criteria.
This allows us to focus mostly on source positioning while still
accounting for the box size to some extent. Since our target boxes
are small, this metric should only be lightly affected by random
matches. We build the completeness-purity curve over the full
image, which should not cause issues as the training area repre-
sents only a small fraction of the image, and we do not observe
any sign of over-training. We also rejected all predicted sources
with an objectness score below 0.03. We present the sensitiv-
ity curve of this alternative metric in Fig. 22, along with the
binned purity as a function of the objectness for each detection
unit. As a reference, we achieve APDIoU:0.1 = 17.87. We note
that a DIoU limit of 0.1 is already quite demanding regarding
position accuracy, especially for small objects, as illustrated in
Fig. A.3. We see that the purity is near the maximum value up
to a completeness of 0.1, showing that at this DIoU threshold,
all confident detections are considered to match a real source.
However, for higher completeness values, the purity drops sig-
nificantly, indicating that the low objectness source remains less
reliable.

At this point, one can wonder if our choice of merging
the source detection and characterization in a single network
model was the best approach. As detection-related characteris-
tics and extra-parameters contribute to a common loss (Eq. (14)),
it would be possible that the network struggles to find a balance,
reducing its predictive capability for both. However, in our expe-
rience, trying to optimize correlated parameters simultaneously
usually produces better results than when optimizing them inde-
pendently. As stated before, we consider the flux and source size
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Fig. 22. Detector sensitivity curves for the YOLO-CIANNA model. The top frames represent purity-completeness curves built from running purity
and precision scores on an objectness-sorted prediction list. The smoothed version considers that the purity at any completeness point is the
maximum purity at any superior completeness. The bottom frames represent the binned purity as a function of the objectness for each detection
unit. The bin size is 0.01, 0.05, and 0.1 for the small, intermediate, and large size-prior regimes, respectively. The left and right columns present
curves produced with the SDC1 scorer matching rule and a purely geometrical DIoU-based with a 0.1 threshold matching rule, respectively. All
curves are produced from the same candidate catalog where all detections with an objectness less than 0.03 have been removed.

to correlate with source detectability. Thanks to the detection-
only AP metric we just defined, we can verify that a network
trained to do the detection and characterization simultaneously
performs better in terms of detection-only performances than a
network trained on the detection task only. This demonstration is
made in Appendix D.

Finally, we note that the obtained detection-only AP can-
not be directly compared with the SDC1 equivalent. However,
it shows that our method produces a high-quality detection and
allows for future comparisons with other methods. For now, it
is impossible to compute this metric using catalogs from other
teams listed in Sect. 4.2, as the SDC1 file format does not ask
for the required per-source detection score. These catalogs are
also cut to optimize the SDC1 score and therefore do not sam-
ple the full sensitivity range of the associated detectors. We do
not provide our full sensitivity catalog as an end product, but it
can easily be reconstructed from the provided trained network
models and associated scripts.

5.2. Method weaknesses and possible improvements

5.2.1. SDC1 specific limitations

In this study, we tackled only a subproblem compared to the
original challenge description. We applied our method to the
single 560 MHz–1000 h image and excluded the classification

and core fraction estimate. We could have used a combination
of images at different frequencies as independent input chan-
nels, but we would have been limited to their overlapping area.
The combination of the 560 MHz and 1400 MHz images would
be an interesting case study for our method as the highest fre-
quency would help reduce source confusion and even allow a
simple attempt of classification. Still, our application to the sin-
gle 560 MHz–1000 h image was sufficient to demonstrate the
capabilities of our YOLO-CIANNA source-detector in a context
with a high density of small sources and occasional blending. It
also demonstrated the characterization capability of our method.

Regarding the specific case of very extended and bright
sources that are not detected, we discussed that it results from the
lack of similar examples in the training area content and is not
an intrinsic limitation of our method. One approach to recover
these objects in the current setup would have been to downsam-
ple the image to reduce the apparent size of all objects and apply
the same trained detector to recover the extended sources. As
discussed in Sect. 3.8 and Appendix A.1, changing the appar-
ent resolution of the objects has a significant impact on what is
considered to be the instrumental limits, hence the absence of
rescaling augmentation in our training. However, using rescaled
input with a detector trained to recover only sources that are
far from the resolution limit is a viable solution. Regarding
the predicted parameters, simple scaling rules could be used
to reconstruct the original quantities. We did not include this
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approach in this study as it would increase the complexity of the
prediction for only a marginal number of recoverable sources.

We exposed in Sect. 5.1.2 that adding noise and uncertainty
to the parameters to predict in the training catalog would have
been more realistic. Following this idea, we tried adding random
noise realizations to the target parameters in our augmentation
during the training process as a regularization. While it stabi-
lizes the training, it also reduces the best achievable score. Still,
it demonstrates that accounting for the uncertainty is technically
straightforward. If predicted uncertainty were included in the
scoring procedure, our method would have to predict uncertainty
as well. By adding dropout in our network, our YOLO-CIANNA
method can already use MC-dropout to predict posterior distri-
butions for all the predicted parameters, which scales with the
uncertainty (Srivastava et al. 2014; Gal & Ghahramani 2016).

5.2.2. Method limitations

Currently, the depth of our network backbone architecture is
limited due to vanishing-gradient. We identified that group nor-
malization and other variants known to mitigate this issue are
detrimental to our detection and characterization performances
with our current setup. The best solution would be to use resid-
ual or skip connections (He et al. 2016), but those are not yet
available in our generic CIANNA framework. The absence of
these elements also prevents us from adding an efficient multi-
scale detection in our YOLO-CIANNA method, as is the case
in most modern object detectors. Even considering our limited
accessible architectural space, and despite exploring hundreds of
variations, we might have missed some specific architectures that
would outperform our current YOLO-CIANNA model. It goes
the same way regarding our selection of hyperparameter values,
especially considering their number and strong interdependence.

Another obvious limitation of our YOLO-CIANNA method
is that it is fully supervised. In this regard, we already discussed
how the training area and catalog representativity affect the capa-
bility of our method. We also presented the importance of the
purity and completeness of the training sample when designing
our selection function (Sect. 3.4), which could still be improved.
Consequently, the trained model is constrained to a specific
instrumental setup, and generalization toward other datasets is
likely to be difficult (Sect. 5.3). There are ways to force the detec-
tor to be more independent of the exact training dataset. For
example, it can be incentivized to base its decision on relative
contrasts and morphologies rather than the absolute signal. Still,
the absolute source flux would have to be retrieved differently.
We could also have a single network trained on images from var-
ious instruments and configurations and provide the instrumental
setup as an external input. This way, the shared features between
similar images would be mutualized into a single model.

Then, we have limitations linked to the construction of the
method itself. The most striking is that we predict bounding
boxes to detect mostly elliptical objects that typically fade with
the distance to the center. In practice, the detector has to fit
luminosity profiles, with a significant part that can be below the
noise level, to identify the objects correctly. This task is inher-
ently different than searching for the box that contains all the
visible pixels of a given object, which justifies several design
choices in the method itself and the network backbone archi-
tecture. This specific property of astronomical source detection
explains why most source detection methods are based on seg-
mentation. The main issue with segmentation methods is that
they are computationally intensive. In this regard, bounding-
box-based detection methods are more efficient in discriminating

what part of the input signal is relevant to the specific task. From
this, we consider that the best approach would be to use segmen-
tation methods on small regions around sources detected with a
method like ours.

Another structural limitation is that we must know in
advance the density of sources we expect to detect and at which
typical size and resolution. Several modern deep-learning object
detectors implement multi-scale detection capabilities. This is
usually done by placing detection heads periodically in the net-
work between spatial dimension reduction operations or adding
skip connect at similar places toward the single final detection
head. This way, the network can access information from small
scales before they are compressed into larger-scale patterns (e.g.,
Lin et al. 2017; Redmon & Farhadi 2018). In addition, grid-
based detection can bias the estimated confidence of objects
near grid element edges and construct an artificial discretiza-
tion of the detection space. A possible solution would be to have
overlapping grid cells, which would complexify the association
process and the post-process filtering. As a long-term objective,
we would like to modify our method to recursively extract boxes
of different sizes until nothing is left in the detection area, which
should be feasible using transformers (e.g., Carion et al. 2020;
Zhang et al. 2021; Fang et al. 2021). It means we could remove
the need to define the number of detection units.

By using a prediction-aware association process, our method
exploits information about the current detector confidence to
guide the training. However, we limited our matching score met-
ric to geometrical properties. Another approach would be to
allow some of the additional predicted properties to constrain the
association. For example, we could include the predicted flux and
position angle of a source to select the best current detection in
the association process, which would be more similar to classical
astronomical cross-matching criteria. As we observed that pre-
dicting correlated extra-parameters improves the detection-only
score, we are confident that this addition would accelerate and
stabilize the training process of our detector and likely result
in higher detection scores. We note that this would only affect
the association phase and that the resulting trained model could
still be applied to a detection-only task with no prediction of the
source flux or other extra parameters.

5.3. Generalization to real observational data

In this paper, we evaluated and discussed the performances
of YOLO-CIANNA on a simulated dataset. We still have to
evaluate its capability over real observational data. The only
strict requirement for the method is to have a training sam-
ple representative of the dataset to which it will be applied.
Several approaches could be employed to generate a confident
target dataset compatible with an application over observational
data.

One approach would be simulations since they provide com-
plete and unambiguous target catalogs. The difficulty is that it
must be as realistic as possible regarding source shapes and
properties. But more importantly, it must be realistic regarding
instrumental properties and background signals. This includes
possible diffuse structures, characteristic instrumental noise, or
artifacts of various kinds and origins. Overall, the instrumen-
tal model is often more critical regarding supervised detector
performances than the target catalog, which is an identified
weakness of the SDC1 dataset (Sect. 3.2). Any lack of realism
in the training sample would result in missed interesting objects,
false detections, or unpredictable behaviors due to unconstrained
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contexts. While the SDC1 dataset could be used to train super-
vised methods before applying them to similar radio astronom-
ical data, there is much more value in the underlying T-RECS
simulation that was used to construct it (Bonaldi et al. 2019).
Such simulation could generate mock observations for various
radio telescopes on which dedicated detectors can be trained.
We also note that much effort has been put into the realism of
the instrumental data pipeline for the simulated data used in the
latest SDC3. These improvements could be used to construct a
new simulated continuum dataset. In practice, even if a detec-
tor trained solely on simulated data could be directly applied to
observational data, it is often better to consider the simulated
images as pretraining data and have a fine-tuning step over some
real data, which is a case of transfer learning.

Another approach would be to use solely observed data to
define a training sample for a given instrument. While realism
is assured, it is more difficult to define the target list. One clas-
sical approach in computer vision is to rely on human labeling
through crowd science. While it was already extensively used
for astronomical datasets and notably for galaxy identification
(e.g., Lintott et al. 2008; Banfield et al. 2015), it presents sev-
eral difficulties. First, analyzing astronomical datasets requires
more expert knowledge than tagging everyday-life images. Then,
due to the survey size, source density, diversity of morpholo-
gies, and variety of contexts, a large crowd-science campaign
would be required to obtain exploitable results. This limitation
explains why some studies only call for visual inspection of
litigious cases after automated detection. The more robust and
classical alternative would be to use strong observational con-
firmations for a limited number of examples. A typical example
would be to observe a small region of a large survey using the
same instrument but with a much longer integration time. This
way, a classical detection method can be employed to construct
a robust training catalog for a deep learning detector that takes
input images at the typical survey lower integration time. Such
a detector is expected to produce better results than a classi-
cal method at the application integration time and can then be
used over the whole survey. However, instrument time is expen-
sive and difficult to obtain. A possible solution would be to get
strong confirmations only for a limited number of source can-
didates obtained with a detector trained from a less confident
source catalog (see Appendix C.2).

We tried to apply our SDC1-trained model to surveys from
SKA precursor instruments. We notably explored the respective
closest frequency from the LOFAR (LOw-Frequency ARray)
Two-metre Sky Survey (LoTSS, Shimwell et al. 2022), and the
Rapid ASKAP (Australian Square Kilometre Array Pathfinder)
Continuum Survey (RACS, McConnell et al. 2020). Perform-
ing a direct prediction over images from instruments with a
different resolution and sensitivity requires adapting the image
dynamic range and the apparent size of the objects to be similar
to what was seen during training. Then, the detector sensitiv-
ity can be adjusted through the objectness thresholds to achieve
the desired completeness or purity. Our preliminary results with
this approach are encouraging for both surveys, the main draw-
back being that there is a high amount of false detection around
bright sources that produce radial artifacts. Still, we are confident
that our method will be capable of understanding such context
through complementary training using observational examples.

As exposed in Sect. 3.9, our method can be used to pro-
duce a computationally efficient source-detector, making it well
suited for real-time object detection. It could be used to per-
form low-level analysis and flagging inside data-heavy pipelines
or as an integrated module for added-value data visualization.

We are currently exploring how to deploy our method as a
standardized service using virtual observatory tools to interact
with image viewers through an API. It would allow users to
perform detection and characterization on the fly from a list
of pretrained models with the possibility of adjusting several
prediction-related hyperparameters. We are developing experi-
mental support for these functionalities in the YaFITS viewer
(Salome et al. 2021).

5.4. Numerical environmental footprint

We want to finish this paper by evaluating the computational
numerical footprint of the present study. Most of it was per-
formed on a single workstation equipped with an AMD Ryzen
5900X and a high-end NVIDIA GPU (RTX 3090 at the start,
then replaced by an RTX4090). Our typical load is mostly
GPU-dominated. We measured the power consumption of our
workstation during training at approximately 0.5 kW. Between
the first step of this study and the publication of this paper, three
years have passed, during which we estimate the total number of
computing hours invested to be around 13 000 hours. To convert
this into a CO2-e/kWh estimation, we need to estimate the car-
bon intensity (CI) of the consumed electricity. We chose to use
the average energetic mix value estimated for France in 2022 by
the ADEME of 52 g of CO2-e/kWh. The total impact for this study
would then be around 338 kg of CO2-e. Interestingly, we can
evaluate the impact of a single training of our current architec-
ture at 156 g of CO2-e. For prediction, the measurement would
change depending on the CI of the user localization. Using the
same value for CI, every gram of CO2-e allows us to process
around 69 000 images when doing the prediction at a 512×512
input size using mixed-precision.

We acknowledge that a CO2-e metric cannot fully represent
the environmental impact. We also only accounted for the power
consumption, while the full impact should include hardware pro-
duction cost and other aspects of the research process. We note
that the numerical environmental footprint of our data analysis
can be considered negligible compared to the estimated impact
of astronomical facilities (Knödlseder et al. 2022). This is espe-
cially true for the simulated SDC1 image we used, which would
correspond to 1000 h of integration time with the future SKA.
Still, we think that our estimation provides a valuable order of
magnitude regarding the impact of deep learning methods when
actively trying to produce computationally efficient models.

6. Conclusion

In this paper, we present a new deep-learning source detec-
tion and characterization method called YOLO-CIANNA, which
takes inspiration from the widely adopted YOLO regression-
based object detector. We use the SKAO SDC1 dataset as a
benchmark for evaluating the capability of our method when
applied to simulated continuum radio images that should resem-
ble upcoming SKA data products.

We highlight that astronomical data have specific proper-
ties that challenge the classical design of deep-learning detec-
tion methods. Typical astronomical images representing wide
fields with high sensitivity have a huge dynamic range and
are crowded with small objects of a few pixels, which can be
blended. We present several low-level functionalities and discuss
method design choices introduced to handle these specificities,
like using a conditional prediction-aware association function
during training and putting the focus on the central position
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prediction. This results in a cascading loss process that progres-
sively guides the detector expressivity toward a more complex
and complete problem as it gets better at solving the task. Our
method is also capable of predicting an arbitrary number of
additional parameters, allowing it to characterize the detected
astronomical sources while preserving a single prediction stage.
In the dedicated Appendix A.3, we provide more details about
our custom association process and highlight the main differ-
ences from the classical YOLO method. We also show that our
method achieves the same level of performance as YOLO-V2
for classical computer vision datasets using a given network
backbone.

Some specificities of the SDC1 challenge design require spe-
cial attention. We present a selection function that extracts the
detectable sources from the complete catalog. In its default con-
figuration, the SDC1 training area does not represent the full
image because of the shape of the primary beam response. We
present an approach that uses the accessible full image to enrich
the training sample with noise-only fields. We demonstrate that
this approach allows our detector to interpolate between these
two regimes and to achieve good results at the scale of the full
image. In the dedicated Appendix C, we propose an alternative
training area that represents a beam radius over the image field,
and allows us to solve the representativity issue.

We introduce a custom network architecture backbone for
our method that we have optimized regarding the specifici-
ties of astronomical images. In the dedicated Appendix B, we
evaluate the performance of a classical darknet-19 architecture
backbone on the SDC1 task using our adapted detection formal-
ism. This test shows that architectures designed for everyday-life
images are not suited to astronomical images and that our
custom architecture significantly outperforms it. We also dis-
prove the classical assumptions that low-level features trained on
everyday-life images are good candidates for domain adaptation
toward astronomical images.

To perform the prediction over the large 32768×32768
input image of the SDC1, we establish a prediction pipeline
that decomposes it into overlapping patches used as individual
input for our detector. We present a complete post-processing
approach that removes multiple detections while preserving
blended sources that are confidently detected and that account
for the overlapping areas between patches.

In its current setup, our YOLO-CIANNA detector strongly
outperforms other methods applied to the SDC1 dataset. We
achieved a +139% score improvement in the SDC1 scorer met-
ric compared to the team that reached first place during the
actual SDC1 challenge. Even in comparison with another post-
challenge result, we still achieve a score that is higher by 61%.
Our catalog has a detection purity of more than 94% while
detecting 40–60% more sources than the other top-score meth-
ods. We also demonstrated that it is possible to constrain the
purity regime of a given trained model in post-processing. This
capability was used to produce a catalog with 99% purity that
still detects 10–30% more sources than the other top-score meth-
ods. Our detector is especially efficient in low-S/N regimes, and
we are likely to have reached a structural limit on this aspect.
Regarding source characterization, our method also significantly
outperforms all the other submissions. The corresponding source
catalogs are archived at 10.5281/zenodo.13141772.

We are working on applying our YOLO-CIANNA detector
to observational data from the LOFAR and RACS instruments
and expect it to be a great tool for analyzing upcoming SKA sci-
ence data products. Our method is also computationally efficient,
allowing us to reach real-time detection capability. As a result, it

could be deployed as a service and integrated into astronomi-
cal image viewers, especially in the context of the future SKA
science regional centers.

For reproducibility purposes, the training and prediction
scripts that allowed us to construct our YOLO-CIANNA result
are provided alongside this paper in the form of an exam-
ple directory dedicated to the SDC1 in our CIANNA reposi-
tory. We also provide simplified notebooks for visualizing the
model results and to make it easier to explore the method
itself. The exact scripts are archived with the CIANNA V-
1.0 release (10.5281/zenodo.12806325), while our refer-
ence YOLO-CIANNA model for the SDC1 is archived at
10.5281/zenodo.12801421.
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Appendix A: Method details and comparison to the
classical YOLO

Classical object detection methods have usually been designed
explicitly to detect objects in everyday life images. These respect
some implicit properties like objects with sharp features, objects
obscuring each other, images being not too noisy and with a lim-
ited dynamic range, images being relatively not crowded, and
detectable objects being relatively large in pixel size. In contrast,
as stated in Sect. 1, astronomical images can have a dynamic
range of several orders of magnitude, be noisy, have complex
instrumental artifacts, be crowded with objects that might be as
small as a few pixels, have blending between objects, and have
object types or classes that are very degenerate. Some of these
difficulties were highlighted at multiple places in Sects. 2 and
3. In this appendix section, we expose some specificities of our
YOLO-CIANNA method that contrast with the classical YOLO
method, making it more suitable for astronomical source detec-
tion. We first discuss how to achieve simultaneous detection of
multiple objects per grid cell and the cascading loss principle
we implemented to balance the network expressivity. Finally, to
verify that our method performs well for classical object detec-
tion, we apply it to some standard computer vision datasets and
compare our results to the classical YOLO-V2 using an almost
identical CNN backbone.

A.1. Fully convolutional network specificities

In Sects. 2.1 and 3.6, we stated that we use a fully convolutional
to create a mapping from a 2D input image to a regular output
grid corresponding to independent regions of the input image.
This is the choice of most classical object detection methods
due to its translation equivariance property. It presents two main
advantages. Firstly, each grid cell is the direct spatial reduction
of an input region of the size of the network reduction factor.
For example, a network that contains four 2×2 pooling layers
has a reduction factor of 24 = 16 in both dimensions. This struc-
ture would take an input image of size 128×128 to produce a
8×8 output grid, with each element directly mapping a 16×16
input region. Adding convolution layers with overlapping fil-
ters between the spatial reductions increases the input receptive
field. This way, each output grid cell can search for objects in
a much larger area but remains “structurally” centered on the
appropriate input region. Secondly, a fully convolutional archi-
tecture preserves translational equivariance for input shift values
that are a multiple of the network reduction factor. With a con-
volutional layer as output, the grid cells share the same weight
vector. Therefore, the output layer defines a single “detector” that
is applied independently to subparts of the image to construct the
grided output. It ensures that the objectness score has the same
meaning for a given detection unit over all the grid cells for post-
prediction filtering (Sect. 2.8). It also helps the training process
since all objects contribute to training the same position-agnostic
set of weights regardless of their associated grid cells.

An interesting side effect of having a fully convolutional
structure is that we can use any input size that is a multiple
of the reduction factor. Doing so will only change the size of
the output grid but not the behavior of the detector at the level
of a detection unit. In classical computer vision applications,
the detections must be invariant to the apparent scale of an
object and its resolutions. For this, the bounding boxes must be
expressed in a resolution-invariant format, for example, by pre-
dicting the box sizes as fractions of the image size. The network
can then be trained using various resolutions. In the classical

YOLO method (starting with V2), this principle is mainly used
to adjust the computational cost and detection accuracy of the
model by adjusting the input resolution at prediction time.

For astronomical applications, having a resolution invariance
model is not always beneficial. In our datasets, the pixel size
is often valuable information regarding the instrument limita-
tions. Due to the synthesized beam effect acting as a resolution
limit, downscaling an image by a factor of two will not result
in sources that look similar to sources of half the size. It goes
the same way for the flux value that cannot be trivially pre-
served when changing the scaling of an astronomical image. For
these reasons, we decided to drop the detector apparent scale
invariance apparent in our method. Instead, we consider all the
predicted box quantities directly related to a fixed pixel scale as
constrained during training. By doing this, our detector will pre-
dict the same detection box for a specific source regardless of the
input size. We could, in theory, apply our detector to the whole
32768×32768 input image of the SDC1 in a single prediction
path. This approach should produce the same results as our over-
lapping patches split, or even better results, as it would eliminate
edge effects created by the patch decomposition. However, the
maximum input size remains limited by hardware constraints,
and it is not always computationally efficient to use the largest
possible image size for training or prediction. We use this prin-
ciple in Sects 3.8 and 3.9, independently optimizing the training
and prediction input sizes regarding their respective constraints.

A.2. Grid resolution and detection unit density

With a fully convolutional architecture, the output grid resolu-
tion depends on the input size and the chosen network backbone
reduction factor. In addition, the number of detection units per
grid cell is fixed before training (Sect. 2.5). Therefore, the net-
work structure sets the total number of detectable objects in an
image in advance as a function of the input resolution, which is a
common limit of most regression-based detectors. It is a substan-
tial issue for models that are supposed to be scale and resolution-
invariant, as changing the input size alters the number of output
grid cells and therefore the maximum number of objects that can
be detected, which contradicts their claimed resolution-invariant
property. With our nonscale-invariant approach, the only quan-
tity that matters is the density of objects at a given resolution.
We consider that our pixel size represents a fixed angular scale
defined by the instrument resolution limit. Increasing the input
size is then equivalent to having a wider field of view, which
does not change the pixel size of the objects. From there, the
reduction factor and the number of detection units per grid cell
can be chosen to be representative of the source density in the
field.

In the classical YOLO method, the multiple detection units
per grid cell were not designed to handle simultaneous multi-
ple detections. In everyday-life images, objects are considered to
obstruct each other, and, in most cases, only a single object from
a given scale regime can be detected by a grid cell simultane-
ously. In this classical formalism, the multiple detection units per
grid cell are not here to allow multiple detections but to distribute
the objects by apparent size or aspect ratio. Due to this construc-
tion, the default YOLO association process during the training
phase was not designed to detect multiple objects of similar size
centered in the same grid cell (Sect. A.3).

From this, as stated in Sect. 2.5, classical detection methods
answer to a high object density by lowering the reduction factor
so each grid cell maps a small enough area unlikely to contain
multiple objects. The issue with this approach is that it forces the
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(0,0)

Centered target Centered priors

Fig. A.1: Illustration of a zero-centered comparison between a target in
dashed green and different size-priors in shades of red, which represents
the classical YOLO association process.

network to work at a higher resolution while still reaching the
necessary expressivity and having a large enough receptive field.
In practice, typical 2D astronomical images with high sensitivity
are so crowded that reaching the appropriate reduction factor is
unrealistic, as it would result in a network that is computation-
ally costly and very difficult to train. While using a finner output
grid resolution is helpful up to some point, we also need to be
capable of detecting multiple similar objects in each grid cell in
order to reach the target object density. This can be achieved by
switching to a prediction-aware association function as exposed
in Sects. 2.6 and A.3. For our reference network backbone, we
chose a reduction factor of 16 (Sect. 3.6), which is lower than the
typical reduction factor of 32 of various backbones, including the
YOLO-V2 architecture (darknet-19), but still high enough for our
network to remain trainable and computationally efficient.

A.3. Prediction-aware association

During training, the association function is responsible for find-
ing the best two-by-two associations from two independent
lists of targets and predicted boxes, all in the same grid cell
(Sect. 2.6). In the classical YOLO method, the association pro-
cess is based on the best theoretical match using the size priors
of each detection unit. For this, it will consider that all target and
predicted boxes are centered on a fictive (0, 0) coordinate and
only compare their respective IoU, as illustrated in Fig. A.1. In
the classical YOLO, all detection units are implicitly supposed
to represent mutually exclusive size categories, and it is consid-
ered unlikely for multiple targets of similar size to be present in
the same grid cell. When it happens, the second closest prior is
used, even if it is badly constrained on the target size regime.

To detect multiple small objects in a single grid cell, we first
need multiple detection units with comparable size priors. We
then use an association function based on the IoU between the
targets and the current position and size of the predicted boxes.
To illustrate the difference between these two approaches, we
present in Fig. A.2 a case study with three target boxes and four
predictions from independent detection units, all in the same grid
cell, and the resulting association based on both the theoretical-
prior association and the best current prediction association. We
observe that the first one considers that no prediction is placed

correctly but that their size is relatively good. In contrast, the sec-
ond one considers that the network is already good at detecting
the objects and that the predicted size needs to be adjusted.

A.4. Box matching metric

A prediction-aware association function has to be capable of
selecting which prediction is the best current representation of
the target. It means we need a box-matching metric capable
of discriminating between all the possible predictions in our
specific context. The classical IoU matching criteria defined in
Sect. 2.1 with Eq. 9 present strong limitations. To illustrate them,
we compare IoU computations between a reference box and two
possible test boxes in different contexts in Fig. A.3. We see that
the IoU is equal to zero for all couple of boxes that have no inter-
section regardless of their distance (Fig. A.3, frame A). While it
is an issue for a prediction-aware association function, the best
theoretical association from the classical YOLO is not affected
due to the recentering of all boxes to compare. For our specific
astronomical applications where objects can be much smaller
than the input size mapped by a grid cell, we need to be capable
of attributing a different match score to nonintersecting boxes
based on their distance to the reference. For this, we can use the
Generalized IoU (GIoU, Rezatofighi et al. 2019) that makes use
of the smallest box C that encloses the two boxes A and B to be
compared by refining the default IoU following

GIoU = IoU −
C − (A ∪ B)

C
. (A.1)

The GIoU can take values from -1 to 1 while still being equal
to the IoU in cases where C is equal to one of the two boxes.
While leveraging the first limitation, the GIoU remains insuf-
ficient to distinguish between test boxes fully contained inside
the reference box. In such a context, we would like to attribute a
different match score based on the distance between the box cen-
ters (Fig. A.3, frame B). For this, we can use the Distance IoU
(DIoU, Zheng et al. 2020) that combines the classical IoU with
the ratio between the distance of the box centers Ac and Bc and
the smallest enclosing box diagonal-length d in the form

DIoU = IoU −
ρ2(Ac, Bc)

d2 , (A.2)

where ρ represents the Euclidean distance between the two cen-
ter coordinates. The DIoU can take values from -1 to 1 while
being equal to the IoU and GIoU in cases where the two boxes
have the same center, corresponding to ρ2(Ac, Bc) = 0 (Fig. A.3,
frame C and D). This last metric is well suited for astronomi-
cal applications, but it remains limited in cases where the aspect
ratio of the boxes matters. For example, all the metrics we
described would give the same results for two test boxes with
the same center and identical surface but different aspect ratios
(Fig. A.3, frame D). This could be included in a more refined
matching metric like the Complete IoU (CIoU, Zheng et al.
2020).

In our YOLO-CIANNA method, all these IoU variants are
only used as match criteria or as a scalar for scaling the object-
ness. The bounding-box-related loss remains a simple sum-of-
square error on the box position and size following what was
presented in Sect. 2.1 and Eqs. 6 and 7. This contrasts with what
is described in the papers describing these metrics, where they
are presented as alternative loss functions for object detection
methods. In practice, all these matching metrics are implemented
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Target boxes Predicted boxes

Best theoritical-prior association Best prediction association

Fig. A.2: Comparison of the target-prediction asso-
ciation in a grid cell using two different association
functions. The size of predicted boxes is considered
close to the prior of their corresponding detection
unit. The color indicates which prediction was asso-
ciated with each target. The association results are
illustrated for the default YOLO association func-
tion that is based on the best theoretical priors (left)
and for an association function that uses the best
current network prediction (right).

Reference Test box 1 Test box 2

(a)

IoU 0.00  GIoU -0.46  DIoU -0.51
IoU 0.00  GIoU -0.59  DIoU -0.57

(b)

IoU 0.11  GIoU 0.11  DIoU 0.11
IoU 0.11  GIoU 0.11  DIoU -0.22

(c)

IoU 0.56  GIoU 0.56  DIoU 0.56
IoU 0.25  GIoU 0.25  DIoU 0.25

(d)

IoU 0.36  GIoU 0.36  DIoU 0.36
IoU 0.36  GIoU 0.36  DIoU 0.36

Fig. A.3: Comparison of three IoU-based metrics in different contexts. For all cases, the reference box is the dashed green box, and two test boxes
in blue and orange are compared. The IoU-based metrics are computed between a given case and the reference.

within YOLO-CIANNA and can be selected regarding the appli-
cation. The predicted objectness uses the corresponding metric
(rescaled between 0 and 1 if necessary) to follow Eqs. 10 and 11,
so the predicted score reflects all the related subtleties.

A.5. Association ordering effect

In the classical YOLO, the association is done by looping over
the target list for each grid cell, which works well as they are
considered unlikely to require the same detection unit. With an
association process based on the current network prediction, any
detection unit can be the best representation for any target regard-
less of its size prior. As described in Sect. 2.6, we defined our
YOLO-CIANNA association function to be a search for the high-
est value in a matching score matrix that contains the fIoU for
all the target-prediction pairs. We illustrate the effect of such an
association function compared to a loop over the targets and a
loop over the predictions in Fig. A.4. The main advantage of
our approach is that the well-detected objects will get associ-
ated first, so they will not be wrongly forced to adapt toward a
different object than the one they were trying to detect. In addi-
tion, targets that are not yet well detected are more likely to be
associated with a truly idling detection unit.

A.6. Association refinements

Using a prediction-aware association implies that the network is
free to distribute the diversity of objects over the detection units
independently of their size prior if needed. This added degree
of freedom increases training difficulty. Therefore, completely
removing the theoretical box-prior association process is usually

inefficient. This section describes several refinements we added
to our prediction-aware association (Sect. 2.6) to constrain the
accessible solutions and guide the training process. Regarding
our complete loss function (Eq. 14), these refinements only affect
the content of the 1match and 1void masks. Most of them occur
after a target-prediction couple has been selected in the associa-
tion search and are verified sequentially in a mutually exclusive
way, following the blue B.2 block in Fig. 4.

We emphasize that we describe all the refinements available
in our method, whether or not they have been employed for the
SDC1 application. Listing all the accessible refinements in the
same place will allow future reference.

A.6.1. Strict detection unit association

The first refinement is to prevent some detection units from being
associated with targets that are too different from their size prior.
We do this by defining a “strict association range” S ar that rep-
resents the number of detection units available to a target object
of a given size. For example, with S ar = 3, each target can only
be associated with the three detection units with the closest the-
oretical size priors. In practice, we do this by masking elements
in the matching score matrix before starting the association pro-
cess (A.3 frame in Fig. 4). The association is still based on the
best current prediction but uses only a subset of detection units
depending on each target.

For this selection to work, we must define which detection
units best suit a given target. We implemented three different the-
oretical proximity measurements. The first uses a zero-centered
IoU comparison like the classical YOLO. The second one uses
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Target boxes Predicted boxes

Loop over targets
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B
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Loop over predictions

A
B

C

1

2

3
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Match matrix

A
B

C

1

2

3

4

1 2 3 4
 A 12.2 16.7 15.3 18.9
 B 16.0 11.3 15.7 46.5
 C 14.1 19.7 48.5 14.5

1 2 3 4
 A 12.2 16.7 15.3 18.9
 B 16.0 11.3 15.7 46.5
 C 14.1 19.7 48.5 14.5

1 2 3 4
 A 12.2 16.7 15.3 18.9
 B 16.0 11.3 15.7 46.5
 C 14.1 19.7 48.5 14.5

1 2 3 4
 A 12.2 16.7 15.3 18.9
 B 16.0 11.3 15.7 46.5
 C 14.1 19.7 48.5 14.5

Step 0

Step 1
Associate A to 4

Step 2
Associate B to 1

Step 3
Associate C to 3

1 2 3 4
 A 12.2 16.7 15.3 18.9
 B 16.0 11.3 15.7 46.5
 C 14.1 19.7 48.5 14.5

1 2 3 4
 A 12.2 16.7 15.3 18.9
 B 16.0 11.3 15.7 46.5
 C 14.1 19.7 48.5 14.5

1 2 3 4
 A 12.2 16.7 15.3 18.9
 B 16.0 11.3 15.7 46.5
 C 14.1 19.7 48.5 14.5

1 2 3 4
 A 12.2 16.7 15.3 18.9
 B 16.0 11.3 15.7 46.5
 C 14.1 19.7 48.5 14.5

Step 0

Step 1
Associate 1 to B

Step 2
Associate 2 to C

Step 3
Associate 3 to A

1 2 3 4
 A 12.2 16.7 15.3 18.9
 B 16.0 11.3 15.7 46.5
 C 14.1 19.7 48.5 14.5

1 2 3 4
 A 12.2 16.7 15.3 18.9
 B 16.0 11.3 15.7 46.5
 C 14.1 19.7 48.5 14.5

1 2 3 4
 A 12.2 16.7 15.3 18.9
 B 16.0 11.3 15.7 46.5
 C 14.1 19.7 48.5 14.5

1 2 3 4
 A 12.2 16.7 15.3 18.9
 B 16.0 11.3 15.7 46.5
 C 14.1 19.7 48.5 14.5

Step 0

Step 1
Associate C to 3

Step 2
Associate B to 4

Step 3
Associate A to 2

Fig. A.4: Comparison of the target-prediction association in a grid cell regarding the search order. The color indicates which prediction was
associated with each target. All predictions and targets have the same size and shape, respectively. The prediction-target pairs are compared using
a scaled matching metric expressed as (DIoU + 1)×0.5×100. The results for all pairs are displayed in a matching matrix. For each step of the
association process, the rows and columns corresponding to the targets and predictions are highlighted in light red, with the intersection being
the match score for this pair. For all subsequent steps, the now unavailable elements in the matrix are shown in gray. The three frames compare
different association results, along with the corresponding association steps highlighted in the match score matrix, when looping over the targets
(left), looping over the predictions (middle), or searching for the maximum value in the score matrix (right).

the Euclidean distance between the target and the prior of each
detection unit in the 2D box-size space. The third one searches
for the minimum absolute value for the target size by comparing
what would be ôw and ôh for each detection, which is equivalent
to measuring a distance in the exponentiated and prior-scaled
size space. Our preference goes to the third approach as it is
more directly related to the loss expression (Eq. 7). The classical
zero-centered IoU was mainly kept so our method can emulate a
classical YOLO association by setting S ar = 1.

In case identical priors are defined, they are all made avail-
able and only count for a single S ar increment. For example, with
a list of size-priors pw = ph = [6, 6, 6, 6, 12, 24] and S ar = 2, a
square target of size ŵ = ĥ = 7 could be associated with all the
detection units except the one with the size prior of 24. With this
definition, we can distribute the target in different size categories
while allowing the detection of multiple objects in the same grid
cell for specific size categories. Ultimately, we expect detection
units with identical size priors to specialize based on other crite-
ria. By construction, we define that a value of S ar = 0 turns off
this refinement with all detection units available.

A.6.2. Startup and forced random association

At the beginning of the training, when all the weights are still
close to their initialization values, the network can be exposed
to gradient divergence. One solution to mitigate this issue is
to have a low starting learning rate that progressively increases
(Sect. 3.8). However, it works best when combined with a second
solution that is to deactivate the prediction-aware association for
a given number of iterations Nrand in favor of a random target-
prediction matching (B.2.1 frame in Fig. 4). This refinement
is notably found in specific versions of the classical YOLO. It
allows each detection unit to see a variety of examples repre-
sentative of the full training dataset distribution, constraining
them to a permissive range of plausible values while preserving
diversity.

One other problem we can face with a prediction-aware asso-
ciation is solution collapse, with only a subset of detection units
trying to represent all the targets. It reduces the capability of the
detector to detect multiple objects, resulting in a suboptimum
distribution of the network expressivity. While this issue mostly
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appears at the early stage of training, it is likely to persist indefi-
nitely as unconstrained detection units are less likely to be a good
match. To prevent solution collapse, we need to push detection
units to specialize in mostly independent categories of objects.
However, this might result in discontinuities in the predicted val-
ues for some object properties. For example, as detection units
distribute over size categories, there will likely be intermediate-
size regimes for which none of the available detection is accurate
as it is on the edge of the representation space for all of them.
Overall, some degree of specialization of the detection units is
required, but it must remain permissive enough so each detection
unit can sample a wider parameter space.

Using a strict size association refinement with a permissive
range S ar > 1 already provides some leverage over the permis-
sivity versus specialization balance. However, this approach only
allows representation overlap and does not guarantee it. As for
random startup, forcing random associations at a user-defined
rate αrand can force each detection unit to occasionally access
parts of the underlying function outside its usual specialized
parameter subspace, ensuring better continuity (also B.2.1 frame
in Fig. 4). A very low αrand value around one or two percent is
usually enough to prevent mode collapse and to obtain a strong
additional regularization effect. However, regarding parameter
discontinuity, random association only mitigates the effect that
remains measurable in many application cases.

A.6.3. Forced specific detection unit association

There are some specific cases where more constraints in the asso-
ciation can be beneficial. The first forced association is for small
objects, which are often difficult to identify or position due to
poorly resolved features. In addition, getting small boxes to over-
lap requires a higher positioning accuracy, and the chances of
random matches in the association process are reduced com-
pared to larger boxes. To overcome these issues, we force the
association to the smallest prior if the target surface is smaller
than a limit value defined as αsmall×sw×sh, with sw and sh the
width and height of the smallest size-prior, and αs a user-defined
scaling factor (B.2.2 frame in Fig. 4). If multiple detection units
have an identical size-prior that is the smallest, they are all con-
sidered viable options. The new target-prediction pair is then
selected by searching for the best current prediction in this subset
of detection units.

The second forced association is for targets that no detec-
tion units actively try to identify. In such a context, associating
the closest prediction results in selecting a random detection unit
most of the time. For example, in Fig. A.4, target A has no good
association, and the two remaining available predictions fall far
away in the background. In such a case, instead of using the
distance, it might be better to associate the target with the avail-
able detection unit that should theoretically be the best suited
for it. In our method, this forced association with the best the-
oretical detection unit is adopted when fIoU ≤ LfIoU

low with fIoU
the score of the current target-prediction pair and LfIoU

low a user-
defined threshold. The best theoretical detection unit is defined
as described in Appendix A.6.1 accounting for multiple identi-
cal priors and excluding already locked boxes (B.2.3 frame in
Fig. 4).

Finally, we can also use this principle as a regularization
approach by defining an αbest rate at which the best theoretical
detection unit is used regardless of the fIoU value for the current
target-prediction pair. This is another way to mitigate solution
collapse in cases where S ar is high. We found that αbest = 0.05

works well as a regularization for datasets based on everyday
life images. This last approach can also be used in an alternative
way. By setting it to a high value, up to αbest = 0.95, in associa-
tion with a high S ar, we are emulating a case where S ar = 1 but
allowing another detection unit for which the current prediction
is better to get the association at a low 1 − αbest rate. This type of
setup is especially relevant for contexts with a strongly imbal-
anced scale distribution in the training sample, and it is also
better at improving the continuity of the predicted parameters
across the available detection units. We stress that this approach
is different from a setup with S ar = 1 and a low αrand rate for
which the quality of the current prediction would never matter.

A.6.4. Difficult flagging and quality check

All target objects are not equally difficult to detect, be it due to
specific class features, apparent size, strong context dependency,
partial obscuring from another object, or proximity to the edges
of an image. Moreover, the detection difficulty is not a discrete
property. From this, deciding if an object should be included as a
target in the training sample regarding a specific application and
set of objectives is complex. There are even cases where both
removing or keeping the object can result in poor performance.
As stated in Sect. 3.4, removing a target that the network would
have confidently detected will lower the objectness score of all
objects with similar detectable features. In the opposite case,
keeping a target that is impossible to detect for the network will
add noise to global objectness score training. Several reasons
could make an object difficult but not impossible to detect. A
typical example arises when doing image augmentation, where
objects can be cut on the edge of a zoomed-in image. In such a
case, the detectability of the object can depend strongly on what
part of the object remains, making criteria based on box size
fraction inefficient.

To help solve this issue, we designed a “difficult flag” that
can be attributed to any target object and for which we apply
a “positive reinforcement only” update. Flagged targets can
only be matched with predictions for which the network is
confident in its prediction. This is controlled by two user-defined
thresholds based on the predicted box quality fIoU ≥ LfIoU

diff

and current confidence O ≥ Lobj
diff of the network (B.2.4 frame

in Fig. 4). If one of these limits is not fulfilled, we consider
there is no match, but the target still counts for defining the
GBNB masks. It means that a good match with low confidence
is not penalized, allowing its confidence to increase with
further training from similar targets. These limits are tested
after all the association refinements, so if the quality condition
is not fulfilled, the associated detection unit remains free for
subsequent associations.

Objects can not only be difficult to detect but also to classify
or characterize. For example, predicting the flux of an astronomi-
cal source only partially visible on the edge of an image requires
the network to learn symmetrical assumptions. To allow more
control, our difficult flag can take different values defining which
parameters get updated when the object passes the quality check:
“0” when the object is not difficult; “1” when all the parameters
should be updated; “2” when the box geometry, objectness, and
probability should be updated, but not the class nor the extra
parameters; and “3” when only the objectness and probability
should be updated. All these flagging only affect training and
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do not impact the prediction process directly but reflect in the
predicted objectness score.

A.7. YOLO-CIANNA cascading loss

In sect. 2.7, we introduced the concept of cascading loss, which
refers to the loss changing during training as a function of the
current state of the network prediction. This is a direct conse-
quence of having a prediction-aware association in addition to
various quality checks on the loss subparts and multiple associa-
tion refinements. In practice, at the beginning of the training, the
loss should be dominated by position and size updates toward
the most obvious target objects. As the network improves for
these objects, their respective loss term will lower, allowing
terms from less obvious objects to be more dominant. Simultane-
ously, the obvious objects will become sufficiently well detected
for other aspects like the objectness, the class, or the additional
parameters to be included. From the loss perspective, it results in
the search for a balance between better characterizing the most
striking objects and starting to detect less obvious ones.

In summary, the better the network gets, the more complete
and complex the loss becomes. The objective is to guide the net-
work expressivity toward the most important aspects at a given
point in the training, not bothering to adjust currently irrelevant
properties. Looking at the evolution of the validation loss dur-
ing training, we usually observe that the loss for the parameters
with a quality threshold starts low, then increases before low-
ering again and reaching a first plateau. This behavior tends to
repeat several times during the training with a lower increase
and subsequent plateau with a smaller value each time, hence the
“cascading” name. The same behavior can also appear on object-
ness and probability independently of the fitting limits due to
possible regime change in the object distribution over the detec-
tion units or simply due to the “difficult-flagged” objects being
progressively integrated into the loss.

Identifying overtraining with a dynamic loss is challenging.
To counter this, our implementation can monitor the validation
loss with (“complete” loss) or without (“natural” loss) the refine-
ments and limits. In the second case, only the base association
process is maintained when computing the error on the vali-
dation set, and all the loss parameters are computed for every
association regardless of their quality. This usually results in a
more classical loss behavior suitable for monitoring overtraining
while keeping the cascading loss for the training dataset only. In
Fig. 13, we use the "natural" loss, so the cascading effect is not
visible in the monitored validation loss.

A.8. Classical detection dataset benchmark

This section presents a quick summary of the results we obtained
on classical object detection datasets using our YOLO-CIANNA
method. This aims to validate that our implementation is at least
on par with the classical YOLO-V2 performances and that design
choices motivated by astronomical image properties have not
impaired the capabilities of the method for other applications.
We tried to reproduce the darknet-19 backbone from YOLO-
V2 as closely as possible, considering the current limitation of
the CIANNA framework. The later darknet-53 backbone from
YOLO-V3 is currently out of reach with CIANNA. We then
present classical benchmark results on the ImageNet, Pascal
VOC, and COCO datasets. We only present the most critical
aspects of these benchmarks, as analyzing them is not the scope
of this paper. Still, all the corresponding scripts with all the
parameters are provided on the CIANNA git repository and

archived with the V-1.0 release (10.5281/zenodo.12806324,
Cornu 2024b). The different trained models are also available
and archived at 10.5281/zenodo.12801421(Cornu 2024a).

A.8.1. Backbone pretraining with ImageNet-2012

Following the description in Redmon & Farhadi (2017), we build
a network backbone as similar as possible to the darknet-19
architecture, which comprises 19 convolutional layers and a few
pooling layers. The main structural difference is that we use
group normalization layers (Wu & He 2018) instead of batch
normalization layers (Ioffe & Szegedy 2015), which should not
significantly impact our result as long as we compensate for
the missing batch scale regularization effect with more image
augmentation. We also miss the skip connection near the end of
the network, which reduces our ability to detect small objects.

We first train this backbone on the ImageNet-2012 dataset
(ILSVRC-2012, Russakovsky et al. 2015) composed of roughly
1.2 million single-label images with 1000 possible classes so
it can identify generic low-level features that are likely rele-
vant for various applications. We first trained our network at
the typical 224×224 input resolution up to a loss plateau that
achieved a Top-1 accuracy of 70.1% and a Top-5 accuracy of
89.4% on the validation dataset. We then continue to train the
network at a 448×448 input resolution, which is closer to the
desired input resolution for our object detectors. With access to
finer features, the network achieved a Top-1 accuracy of 74.7%
and a Top-5 accuracy of 91.7%. For comparison, the classical
darknet-19 architecture reaches a top-1 accuracy of 76.5% and
a top-5 accuracy of 93.3%. The remaining difference is likely
due to the absence of the regularization effect of batch normal-
ization. When diverging slightly from the original darknet-19 to
include more regularization in another form, for example, adding
two large layers with 50% dropout, it is possible to bridge the
accuracy gap.

A.8.2. Mean average precision metric

The classical metric for object detection tasks is the mean
average precision (mAP). While mAP can refer to slightly
different quantities depending on the challenge, they all usually
rely on the computation of the area under a sensitivity curve,
representing the precision as a function of recall. The mAP
is analog to the receiver operating characteristic curve (ROC)
but for object detection tasks. In practice, mAP computation
works as follows. All object detectors are expected to produce a
score for their detection and sort them for the full dataset. Each
prediction is flagged as a true or false detection using a match
criterion based on a classical IoU threshold limit (Sect. 2.1 and
Eq. 9). From this ordered list of true and false detections, it is
possible to construct a running precision and recall quantity.
The constructed raw recall-precision curve can present local
drops due to some high-confidence objects being flagged as
false detections. Therefore, the curve is modified to respect
p(r) = maxr̃>r p(r̃). The average precision (AP) is then obtained
by computing the integral over this interpolated precision-recall
curve.

Usually, the AP is computed for each class individually. All
the AP values are then averaged to construct a more general
mAP score. For some challenges, mAP is computed for a single
IoU value and expressed as mAP@IoU. For others, multiple IoU
thresholds can be used independently or together to construct an
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Table A.1: Results comparison for COCO using the dedicated challenge metrics on the test-dev 2017 dataset.

AP0.5:0.95 AP0.5 AP0.75 APS APM APL AR1 AR10 AR100 ARS ARM ARL
YOLO-V2 21.6 44.0 19.2 5.0 22.4 35.5 20.7 31.6 33.3 9.8 36.5 54.4

YOLO-CIANNA 21.9 40.1 21.8 4.1 22.8 37.9 20.7 30.2 31.2 4.5 34.6 55.0

averaged mAP over a given IoU range. Overall, this metric has
the advantage of sampling the full sensitivity of a given detec-
tor, corresponding to its discrimination capability between the
background and the objects to detect (Sect. 5.1).

A.8.3. PASCAL-VOC object detection

The PASCAL-VOC (PASCAL Visual Object Classes, Evering-
ham et al. 2010) dataset was a yearly computer vision challenge
that ran from 2005 to 2012, and that included an object detec-
tion task. This dataset is still commonly used as a benchmark
to compare the performances of different object detectors. One
classical approach is to combine the training and validation
dataset from the 2007 and 2012 editions onto a single training
sample comprising around 16500 images containing multiple
bounding boxes belonging to 20 possible classes. The evalua-
tion of the detector performances is then done on the 2007 test
dataset of 5000 images. Using our high-resolution pretrained
backbone on ImageNet, we can drop the last pooling and output
layer and add three new convolutional layers with 3×3 filters plus
group normalization. Finally, we add our detection layer. The
input resolution is changed for a 416×416 input, which results
in a 13×13 output grid. Regarding the setup of our advanced
association function, we use the DIoU as our matching score,
S ar = 3, LfIoU

low = −0.1, LfIoU
C = −0.1, αbest = 0.05, and some diffi-

cult object flagging. After training this network for a few hundred
epochs, we achieve an mAP@0.5 of 74.98 on the PASCAL 2007
test dataset. At an identical resolution, the original YOLO-V2
model achieves 76.8. Considering the structural limitations of
our approximated darknet-19 backbone, this result demonstrates
the efficiency of our YOLO-CIANNA method.

A.8.4. COCO object detection

The COCO (Common Objects in Context, Lin et al. 2014) dataset
was also a yearly computer vision challenge that ran from 2014 to
2017, and that included an object detection task. Like PASCAL,
COCO is still commonly used as a benchmark to compare the
performances of different object detectors. In the 2017 version,
the training set comprises roughly 118000 images, the validation
set comprises 5000 images, and the hidden test set comprises
roughly 40000 images (accessible through a test server). For the
detection task, the objects are labeled with over 1000 classes. We
use the same network backbone pretrained on ImageNet, with
the same set of hyperparameters we used for PASCAL and a
416×416 input resolution. Our result on the test dataset obtained
using the submission server is presented in Table A.1 with all the
COCO metrics and is compared with the result of the classical
YOLO-V2 model. We first observe that our method is competi-
tive with the classical YOLO-V2 detector on this dataset despite
our structural limitations. In addition, these metrics indicate that
our method retrieves more large objects and better reconstructs
the objects it manages to detect. However, the lower mAP@0.5
score indicates that we recover fewer objects overall. This is
likely due to a poorer detection of small objects, confirmed by
the small ARS corresponding to recall at small scales. This result

was expected, considering that we lack the ending skip connec-
tion to allow our method to preserve more resolved features at
the detection layer.

Regarding computing performances, we can achieve 690
images per second at this resolution using an RTX 4090 GPU
with mixed precision enabled. On a much lighter A2000 mobile
GPU, we still reach above 60 images per second, meaning
that our implementation allows real-time detection on modern
entry-level hardware. We note that this level of performance is
similar to the one achieved by the original YOLO-V2 darknet
implementation.

Finally, we highlight that our result is far from the current
top scores on the COCO dataset, which require much stronger
architectures, but it is not our scope to compete with them.
The presented benchmarks validate the method for a given rela-
tively light architecture. Most of the time, the architectures that
are truly useful for astronomical datasets are relatively shallow
due to much less feature diversity and complexity, the main
challenges being placed in other aspects of the method design.

Appendix B: Classical YOLO-V2 backbone for
SDC1

When exploring the suitability of a given method to a new prob-
lem, the classical approach is to look at how this method was
applied to a similar problem. This is especially true for net-
work architectures and hyperparameters since exploring these
aspects from scratch can be extremely costly in terms of time
and computing resources. If the new application is sufficiently
close to other well-known applications of the same method, one
could even use pretrained models to save some training time or
improve the performance of their new model. For example, it is
the approach used in Sortino et al. (2023) where they test the
capability of a YOLO architecture on a source detection prob-
lem. They conclude that the results were improved when using
a pretrained model. However, achieving apparently good results
with known architectures or with pretrained models does not
guarantee that the new application will have close to optimal
results. In cases where it achieves bad results, it can even lead to
the false conclusion that the whole approach is inefficient while
only the backbone architecture might be unsuited for the task. To
participate in this global discussion, we explore in this section
the results we obtained on the SDC1 dataset using the classical
YOLO-V2 darknet-19 architecture in a naive way and compare it
to our reference result with our custom architecture.

B.1. Selection of architectures and training setups

While the classical YOLO-V2 formalism could be emulated with
our implementation, doing a thorough and documented compar-
ison of the individual effects of all the differences would be too
complicated. In this section, we preserved all the data prepara-
tion, training setup, hyperparameters selection, detection units
setup, and prediction pipeline construction that we defined in
Sect. 3 and studied variations in the network backbone and start-
ing weights. To achieve the same reduction factor of 16 as our
reference SDC1 model with pretrained darknet-19 backbones, it
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Table B.1: SDC1 scores and related properties for source catalogs from different models and architectures.

Method Ms (Score) Ndet Nmatch Nfalse Nbad ∈ Nfalse Purity s̄
darknet-19-regul-scratch 445093 688112 645626 42486 15070 93.83% 0.7552
darknet-19-base-pretrain 423077 665304 620685 44619 16003 93.29% 0.7535
darknet-19-regul-pretrain 411541 642153 600193 41960 13398 93.47% 0.7556
darknet-19-base-scratch 386395 644371 591039 53332 15020 91.72% 0.7440

is necessary to cut the end part of the darknet-19 architecture
before it reaches a reduction factor of 32.

We compare two slightly different architectures. The first
one is obtained by taking the first 13 convolution layers of our
darknet architecture pretrained on the COCO dataset and adding
three new convolutional layers with 1024 filters of size 3×3, each
followed by a group normalization. We then add our detection
layer. This first architecture is referred to as darknet-19-base.
The second one uses the same pretrained part but then adds
layers to recreate the detection head structure of our custom
architecture consisting of the last four layers in Fig. 11. This
architecture has a more progressive increase in size and includes
dropout regularization. This second architecture is referred to
as darknet-19-regul. It is essential to note the darknet-19-regul
architecture is composed of 14.4 million parameters, which is
very similar to our custom architecture. In contrast, the darknet-
19-base is almost twice the size with a total of 28.3 million
parameters, which is explained by the differences in the last four
layers. Regarding computing performances, the darknet-19-regul
architecture has almost the same performances as our custom
architecture, while the darknet-19-base is around 20% slower.

We performed two independent training for each architec-
ture, the first using the pretrained COCO weights for the corre-
sponding layers (-pretrain) and the second from scratch using
classical random weight initialization for all layers (-scratch).
Therefore, we have a total of four trained models to compare.
We use the same prediction pipeline as our reference model for
all of them, following the description in Sect. 3.9.

B.2. Results and discussion

The best score results for each of the four models are presented
in Table B.1. We can first observe that the best one has a score
7% lower than our reference model from Table 5, which reaches
better scores after only 400 iterations (Fig. 13). We stress that
the results are reproducible and stable over multiple training with
different initial weight values. In addition, the difference in score
between models is significant as it is higher than the typical score
fluctuation observed over multiple training of the same setup.
From these results, we see that for the darknet-19-base architec-
ture, pretraining improves the detection results, while it degrades
it for the lighter darknet-19-regul architecture. The apparent flux
distribution for these four models is very similar to our reference
model. The main difference between these models is their com-
pleteness at a given purity, allowing some of them to detect more
sources. We also note that models that achieve the best score
have the highest characterization accuracy. This is expected, as
the predicted flux accuracy is one of the match criteria.

Our interpretation is that the truncated darknet-19 architec-
ture is not adapted to our application and encapsulates too much
expressivity to be properly constrained by our training data. It
appears that the pretrained weights do not encapsulate relevant
information but still act as a startup regularization by reduc-
ing the accessible parameter space, preventing the network from
over-fitting. The training of the darknet-19-base-scratch model is

very unstable as we observe variations of about 100000 points
between successive control steps when continuing the training
after the best score iteration, which is a striking proof of overfit-
ting. This model exhibits the poor results of an unconstrained
network, while the darknet-19-regul-scratch demonstrates that
adding a small amount of structural regularization solves this
issue better than pretraining. In our opinion, the most robust
demonstration of the irrelevance of the features learned on
COCO for our problem is that the darknet-19-regul-scratch
model significantly outperforms the darknet-19-regul-pretrain
model. In addition, we tested a variety of alternative setups
around our darknet-19-regul architecture by changing the num-
ber of layers that start from their pretrained weights, the rest
being initialized from scratch. We observed that the best achiev-
able score degrades as the number of pretrained layers increases.
In this regard, we consider the common empirical observa-
tion about obtaining better results using pretrained models as
incomplete and possibly misleading regarding the relevance of
low-level features learned from everyday-life images for astro-
nomical datasets (e.g., Sortino et al. 2023; Wu et al. 2019). In
addition, pretrained models do not necessarily train faster than
the others on this specific application, which is another sign of
the nonrelevance of the features they are starting from.

Finally, achieving better results with our custom backbone
indicates that architectures that have been proven efficient for
everyday-life images are not necessarily suited for astronomical
images. A striking difference between the two architectures is
the absence of inter-layer normalization. We already identified
in Sect. 3.6 that using group normalization between most layers
in our custom architecture significantly reduces our best achiev-
able score because it alters the absolute value of the input pixels,
which contains information about the source flux and the input
dynamic. Still, group normalization is not enough to explain
the lower result of the darknet-19-regul-scratch model (Sect. B),
highlighting that other architectural design choices matter.

Appendix C: Alternative training area for the SDC1

C.1. Reference architecture

We exposed in Sect. 3.5 the issues that arise from having access
to only a small subpart of the full image to train our detector.
This section explores an alternative definition for the training
area that is more representative of the image field variations. We
use the post-challenge access to the full True catalog and define
a new training area that spans from the center of the image up
to the right edge, representing a radius of the primary beam.
We do not add extra noise-only regions since they should not
be required anymore. To evaluate only the effect of the train-
ing region, we adjust the area around the selected radius so the
number of selected sources remains similar to our reference case
(Sect. 3.4). Our alternative training area is then a rectangular
region with −2.80 ≤ RA ≤ 0.00 degrees and −30.12 ≤ Dec ≤
−29.88 degrees as illustrated in Fig. C.1, and that contains 34913
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Table C.1: Scores and related properties based on the alternative training area for source catalogs from different models.

Method Ms (Score) Ndet Nmatch Nfalse Nbad ∈ Nfalse Purity s̄
YOLO-CIANNA-alt-train-large-bootstrap 502656 723655 690894 32761 12991 95.47% 0.7750
YOLO-CIANNA-alt-train-large 486053 709689 674404 35285 14380 95.02% 0.7730
YOLO-CIANNA-alt-train 484145 708954 672906 36048 14988 94.91% 0.7731

Fig. C.1: Two-dimensional histogram of the central coordinates of the
sources from the full True catalog that pass our selection function. The
red box indicates our alternative training area.

selected sources. Figure C.2 represents the apparent flux distri-
bution of the selected sources, which is similar to the distribution
we obtained with the default training region.

We train our network using the same configuration as our ref-
erence model and only change the training sample, which results
in the YOLO-CIANNA-alt-train model. The prediction pipeline
remained unchanged, but we altered the SDC1 scorer code to
modify the definition of the training area. We obtain the score
presented in Table C.1 and a list of matching sources to pro-
duce the same diagnostics we did on our reference catalog. While
the scores cannot be directly compared due to the different test-
ing areas, the number of detected sources is relatively similar
to our reference catalog. The purity is even slightly improved
by 0.70%. The histogram of the apparent flux of the detected
sources is presented in Fig. C.4, exhibiting a similar distribu-
tion to our reference result. The average source score is also
slightly higher, thanks to the presence of sources from all the
primary beam regimes in the training sample. Looking at indi-
vidual fields, this new model produces results that are visually
similar to our reference model. However, Fig. C.3 shows that the
distribution of false positive detections over the full image field is
more homogeneous. It demonstrates that this alternative training
sample allows for better generalization without requiring extra
noise regions.

C.2. Larger architecture and bootstrap training

An interesting side effect of this alternative training area is that
the network training is more stable. We tried providing a bit
of extra expressivity with less regularization by replacing the

Fig. C.2: Source flux distribution histogram in log scale and using log-
bins for the True catalog and the selected sources in our alternative
training. The top frame represents the classical selection function, and
the bottom frame represents the bootstrap selection function after a sin-
gle iteration.

second last layer of our default architecture with two 1×1 con-
volutional layers, the first one with 3072 filters and a dropout
of 30% and the second one with 2048 filters, constructing the
YOLO-CIANNA-alt-train-large model. Training this new archi-
tecture with our alternative training area only modestly improves
the score, as presented in Table C.1. This improvement can not be
considered significant since it is of the same order as our typical
multiple-training-identical-setup variability.

The combination of a more representative training sample
and a stronger network makes it possible to use a bootstrap
approach for refining our selection function. Instead of decid-
ing which objects from the True catalog should be considered
detectable, we land this decision on the detector itself. Using a
model trained with a hand-made selection function for a few hun-
dred epochs, we can produce a catalog of predicted sources with
an objectness score over the training region. This catalog can
then be cross-matched with the underlying list of target objects
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Fig. C.3: Two-dimensional histograms of various kinds of “objects” representing their distribution over the full SDC1 field for the YOLO-CIANNA-
alt-train model. The training area is masked when necessary. All densities are binned using the same 200x200 grid. The match and false detections
are made using the DIoU-based matching metric, while the missed ones are based on our selection function. The central coordinates of the field
are RA = 0 deg, Dec = −30 deg.

Fig. C.4: Histograms of the sources as a function of their apparent flux
using logarithmic bins for the underlying True catalog and predicted
sources in our modified testing area. The bottom part of each frame rep-
resents the purity and completeness of each bin of the histograms. Top
and bottom frames represents the alt-train and alt-train-large-bootstrap
models respectively.

from the simulation to construct a new training sample. Targets
that the detector fails to detect can be removed from the train-
ing sample, and targets that are detected outside our hand-made
selection function can be added back. We stress that this pro-
cess is never used to directly inject a detector prediction as a new
target. The properties from the True catalog sources that were
successfully detected are used to define the new training sample.
This approach requires stable training, as selecting a prediction
before network convergence or when the network overtrains can
harm the self-constrained selection function. This approach can
be repeated several times using the successively trained detectors
to refine the selection function for the next training.

We tested this approach with our reference architecture using
the default SDC1 training area, but it did not improve the result
significantly. With the default training area, any change in our
hand-made selection function results in significant variations in
the best achievable score. This variability mainly comes from
the intermediate primary beam regime in which the detector has
to interpolate from the discontinuous training area. This effect
is corrected with the alternative training area, and the bootstrap
training approach actually becomes useful. It is especially rele-
vant in this context where the visibility of a source is strongly
dependent on the beam regime, which was less the case for the
central training area with less sensitivity variation. In such a con-
text, having the detector provide information on which sources
should be detectable is especially useful.

Using our alternative training area and our larger architecture
alternative, the bootstrap approach significantly improves the
results after only a single step. We present the resulting selection
function over the apparent flux histogram in Fig. C.2. Compared
to our handmade custom function, it removes targets for almost
all apparent flux values. The most plausible explanation is that
it removes blended sources that the detector cannot separate.
Another effect is to smooth the low-cut flux in a wider flux inter-
val. The score of the resulting model is indicated in Table C.1,
and the predicted sources flux distribution in Fig. C.4. While
all the diagnostics show results that are very similar to what we
obtain with our reference architecture on our alternative training
sample, we observe a significative score improvement of more
than 3%, correlated with a better flux characterization score with
s̄flux = 0.680. More improvement would likely be achievable by
searching the optimum architecture and hyperparameters setup
with this new training sample.

Overall, this approach removes the necessity for a well-
defined selection function. This could be useful in a highly
dimensional input space where defining a selection function can
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be difficult. With this approach, the starting selection function
could be the catalog of a less performant detection method. Still,
it requires access to all the possible targets regardless of their
visibility, so only real detections are kept at each step. While
a simulated dataset is a best-case scenario for this approach, it
could still be employed on observed datasets by confirming the
proposed new detections with additional observations.

Appendix D: Impact of simultaneous detection and
characterization on detection-only perfomances

In Sect. 5.1.4, we introduce the idea that merging the detec-
tion and characterization inside a single loss could result in
suboptimal performances. In practice, it is possible to separate
both tasks by having a pure object detector and a dedicated
characterization network. We could even train an independent
characterization network for each parameter to predict. However,
we observed that predicting correlated parameters in a single net-
work produces better results for both parameters. For this reason,
we expect a combined detection and characterization network to
achieve better results as long as the parameter to predict corre-
lates with the detectability of the object. The aim of this section
is to verify this point for our method over the SDC1.

To compare models on a detection-only task, we can use the
purely geometrical metric defined in Sect. 5.1.4 based on DIoU
matching criteria. To evaluate the results at different detection
quality requirements we use multiple DIoU threshold values of
0.1, 0.5, and 0.9. To reduce the matching time, predictions below
a too-small objectness threshold will be removed. This threshold
depends on the detection units and is set to 0.1 for the six small-
size regimes and 0.05 for the three intermediate and large-size
regimes. This will result in lower AP values than in Sect. 5.1.4,
but the respective performances of different models will remain
comparable. The results are compiled in Table D.1.

One issue with a purely geometrical match is that it increases
the chances of a random match compared to the SDC1 match
criterium that accounts for the flux. Before training any model,
we evaluate the chances of random matches. For this, we build
a density map from the raw ∼950000 detections from our refer-
ence model. This map is used as a prior for drawing an equivalent
number of sources with a random position, size, and objectness
score that all follow the distributions of our reference model.
The resulting “random 950k” catalog is passed through the scor-
ing pipeline, and the results are reported in the same table. The
number of random matches for DIoU > 0.5 is near 3%. How-
ever, this is not a good representation of our detection catalog as
it comprises many detections overlapping over the same object.
As stated in Sect. 4.1, almost 80% of the detections are removed
by the NMS process that expects interdependency between the
detections. Therefore, we build a second random catalog with
only 110000 random sources, corresponding to the typical num-
ber of objects from our catalog that are not removed and do
not match at the end of the post-process pipeline for a DIoU
threshold of 0.1. This time, the obtained AP values are likely
good approximations of the uncertainty of the AP values over
the detected sources catalogs at their respective thresholds.

All the metric scores are reported for our default model
with the prediction of the extra parameters as a reference (With
param. reference). Our first test deactivates the optimization of
the extra-parameters part of the loss while keeping the same
architecture and training process (No param.), which is just a
toggle switch in our CIANNA framework. As expected, the geo-
metrical score decreases for all DIoU matching values, and the

number of detected sources is also reduced. One alternative
explanation would be that the network expressivity is now too
high for the simplified task, which would also explain why the
optimal epoch is found earlier than for our reference model. To
test this hypothesis, we train two new models that slightly alter
our reference architecture: one where we increase the dropout
rate on the before-last layer (No param. more regular), and a sec-
ond where we reduce the number of filters in the same layer
by about 30% (No param. light). Both models perform lower
than the simple “No param” case at most DIoU thresholds. This
indicates that predicting the extra parameters does have a direct
positive impact. Still, we must verify if this effect is generic or if
we mitigated the possible negative impact with our quality con-
ditional fitting that results in the extra-parameter cascading loss
(Sect. 2.7). We test this hypothesis by retraining our reference
model with the extra-parameter prediction activated but setting
LfIoU

p = −1 (With param. no cascade). The results are lower
than with the parameter deactivated, so predicting parameters
for poorly detected sources has a negative impact. In summary,
we conclude that extra-parameters can have a positive impact
when predicting correlated quantities but only when the neg-
ative contribution from unreliable detection is mitigated in the
corresponding loss subpart.

Finally, we perform a few extra tests to verify if the lower
performance observed when not predicting the extra parameters
was only caused by a bad input normalization or augmenta-
tion design. For this, we use a per-input patch normalization
instead of our global normalization. We train two models with
(With param. patch norm) and without (No param. patch norm)
the parameter prediction enabled. As expected, the performance
of the model with the parameter prediction is lowered, while
the performance of the model without the parameter prediction
is improved. However, our reference model, which combines
parameter prediction and global normalization, remains better.
As a last test, we use two input channels corresponding to the
two normalization types and train new models with and without
the parameter prediction (With param. dual norm. and No param.
dual norm.). The detection performances are improved for both
models and even surpass our reference model on the detection-
only metric, but again, keeping the parameter prediction is better.
Still, from the SDC1 metric perspective, our reference score
remains higher than with the dual normalization input. This
is likely the result of a lack of expressivity in the upper lay-
ers of the network that now have to handle two inputs with a
limited number of parameters, negatively impacting the source
characterization. These results strongly demonstrate that simul-
taneously predicting correlated parameters with a dynamic loss
is a viable approach for improving detection-only performances.

Still, all these results were obtained for a single architecture
with only small variations, a single set of hyperparameters, and
one dataset. Empirical verification on a per-application basis is
advised. Also, we acknowledge that global normalization is only
possible in the context of a constant noise image from a sin-
gle acquisition on a unique instrument. If the objective were to
construct a generic source-detector, we would either have to i)
input more context information about the instrumental setup or
ii) adopt the per-input-patch normalization that forces the detec-
tor to base its detection on morphological contrast between the
objects and the noise structure or artifacts. The resulting model
would likely lose performances in a specific setup but would be
more generic and resilient to new structures in the images.
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Table D.1: Detection-only score metrics for various approaches with and without the extra-parameter part of the loss.

Approach Epoch AP0.1 AP0.5 AP0.9 Nm
0.1 Nm

0.5 Nm
0.9 Score APS DC1 Nm

S DC1
With param. reference 3000 15.71 13.57 0.70 835789 737056 120467 480439 14.47 679778
With param. no cascade 4200 14.94 13.12 0.69 791421 708597 117005 476943 14.24 676288
With param. patch norm. 3200 15.25 13.05 0.71 811351 711355 117859 461417 14.08 654838
With param. dual norm. 3600 15.96 13.74 0.73 857652 751529 126662 473758 14.35 657853
No param. 2600 15.12 13.05 0.58 801494 709853 108664 N/A N/A N/A
No param. more regul. 3000 14.91 13.06 0.73 789935 707086 119189 N/A N/A N/A
No param. light 3000 14.93 12.89 0.67 791478 699148 114422 N/A N/A N/A
No param. patch norm. 2600 15.62 13.18 0.64 836355 723201 113519 N/A N/A N/A
No param. dual norm. 2600 15.84 13.52 0.62 847780 740967 116617 N/A N/A N/A
Random 950k N/A 0.40 0.01 0.00 137877 26416 633 N/A N/A N/A
Random 110k N/A 0.05 0.00 0.00 17152 3306 75 N/A N/A N/A
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