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Abstract
Non-contact atomic force microscopy (nc-AFM) offers a unique experimental framework for topographical imaging of surfaces
with atomic and/or sub-molecular resolution. The technique also permits to perform frequency shift spectroscopy to quantitatively
evaluate the tip–sample interaction forces and potentials above individual atoms or molecules. The stiffness of the probe, k, is then
required to perform the frequency shift-to-force conversion. However, this quantity is generally known with little precision. An
accurate stiffness calibration is therefore mandatory if accurate force measurements are targeted. In nc-AFM, the probe may either
be a silicon cantilever, a quartz tuning fork (QTF), or a length extensional resonator (LER). When used in ultrahigh vacuum (UHV)
and at low temperature, the technique mostly employs QTFs, based on the so-called qPlus design, which actually covers different
types of sensors in terms of size and design of the electrodes. They all have in common a QTF featuring a metallic tip glued at the
free end of one of its prongs. In this study, we report the stiffness calibration of a particular type of qPlus sensor in UHV and at
9.8 K by means of thermal noise measurements. The stiffness calibration of such high-k sensors, featuring high quality factors (Q)
as well, requires to master both the acquisition parameters and the data post-processing. Our approach relies both on numerical
simulations and experimental results. A thorough analysis of the thermal noise power spectral density of the qPlus fluctuations
leads to an estimated stiffness of the first flexural eigenmode of ≃2000 N/m, with a maximum uncertainty of 10%, whereas the
static stiffness of the sensor without tip is expected to be ≃3300 N/m. The former value must not be considered as being representa-
tive of a generic value for any qPlus, as our study stresses the influence of the tip on the estimated stiffness and points towards the
need for the individual calibration of these probes. Although the framework focuses on a particular kind of sensor, it may be
adapted to any high-k, high-Q nc-AFM probe used under similar conditions, such as silicon cantilevers and LERs.
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Introduction
Since the 2000s, non-contact atomic force microscopy (nc-
AFM) has established itself as a scanning probe method for the
topographical, chemical, and electrical mapping of the surface
of a sample down to the atomic scale [1-3]. When used in an
ultrahigh-vacuum (UHV) system and at, or close to, liquid
helium temperature (4–10 K, LT UHV), the method allows for
the direct characterization of individual molecules with intramo-
lecular contrast [4], opening up the field of studying on-surface
reactions [5] or tip-induced chemistry [6].

The method also makes it possible to quantify the interatomic
interaction forces that develop between the tip and the surface
acquired in spectroscopic data cube modes [7,8] with both high
sensitivity and high spatial resolution. Recently, the force sensi-
tivity has been pushed forward, and forces as low as 100 fN
have been reported on artificial atoms formed by quantum
corrals [9].

In nc-AFM, the probe, whose mechanical behavior may advan-
tageously be compared to that of a one-dimensional simple
harmonic oscillator (SHO) of resonance frequency f1 (flexural
fundamental eigenmode) and stiffness k1, is sinusoidally excited
at f1 by a phase-locked loop (PLL) that also guarantees a
constant oscillation amplitude, A1 [10]. If the tip is far enough
from the surface, that is, at distances where the strength of the
tip–surface interatomic forces is negligible with respect to the
restoring force induced by the excitation, its resonance frequen-
cy remains unchanged, f1. When the tip is in the range of attrac-
tive interatomic forces Fint(r), that is, for tip–surface separa-
tions r  1 nm, non-linear effects modify the oscillator dynam-
ics, which shifts its resonance frequency down to lower values

 < f1. The resulting frequency shift Δf =  − f1 < 0 is
tracked by the PLL and used as the input of the Z-controller to
form a “topographic image”, which is actually a “constant-Δf”
image. Alternatively, the image can also be acquired at con-
stant height, which then forms a local Δf map of the surface. Δf
is expressed according to [11,12]:

(1)

where ru(z) = z + A1(1 − cos(u)) is the instantaneous tip–sur-
face position, and z is the shortest distance between the tip and
the surface during one oscillation cycle. Thus, if A1 and k1 are
properly calibrated, the interaction force may be quantified,
however, through non-trivial inversion procedures [13-16]. The
amplitude calibration in nc-AFM using the so-called constant-γ
method is well documented and reasonably accurate [16-18],
even if recently reported methods seem more accurate [16].

Conversely, it seems that the direct stiffness calibration of
nc-AFM probes in UHV and at low temperature has never been
reported. Furthermore, because the force sensitivity in nc-AFM
critically depends on the mechanical stability of both probe and
tip, it seems crucial to perform the probe stiffness calibration in
situ, that is, within the LT UHV system, by means of a non-
destructive method.

In UHV and at room temperature, nc-AFM experiments are
mostly carried out with silicon cantilevers, similar to those used
during AFM experiments in air or in liquid. Their stiffness
rarely exceeds 100 N/m. In UHV and at low temperature, the
use of cantilevers is more tedious because of the required in situ
optical detection setup. Nc-AFM experiments are then mostly
performed with quartz sensors, essentially implemented accord-
ing to two geometries: quartz tuning fork (QTF) [19] or length-
extensional resonator (LER) [20-22]. The commercial versions
of these probes are the qPlus sensor (Scienta-Omicron) [19,23]
and the KolibriSensor (SPECS) [24-26], respectively. It is
known that these sensors offer several advantages: (i) Their
large stiffness (≃1800 N/m for qPlus and ≃540 × 103 N/m for
KolibriSensor), much greater than that of silicon cantilevers. It
prevents the snap of the tip into contact and enables the use of
small oscillation amplitudes (A1 ≃ 50 pm), which render the
probe highly sensitive to the short-range regime of interatomic
forces. (ii) Their high quality factor (Q, ≃105 in a LT UHV
system), which renders the PLL highly sensitive to the frequen-
cy tracking. (iii) Their piezoelectric nature, which facilitates the
readout of the tip deflection, based on the piezoelectric charge
induced by the quartz upon oscillation through a simple I/V, or
charge, preamplifier [27,28], as compared to the heavy optical
detection setup required for silicon cantilevers.

Nowadays, the qPlus sensor is the probe that is most commonly
used with LT UHV microscopes. This is why we focus on this
type of probe in this work. In this design, only one prong of the
QTF is fixed [19]. At the extremity of the free prong, a thin,
etched wire (usually W or PtIr), less than a millimeter long, is
glued, which forms the tip. The tip is electrically connected to
an electrode that collects the tunneling current if scanning
tunneling experiments are to be performed along with nc-AFM
experiments. The qPlus sensors feature a resonance frequency
of f1 ≃ 25 kHz and a most commonly reported stiffness of
1800 N/m [19]. This estimate was first proposed in 2000 [29],
following previous works [30,31], and was based on geometric
criteria of the sensor that did not consider the influence of the
added tip. Thus, this value of the stiffness reported for the early
versions of qPlus, which is still used in most of the recent works
to perform the frequency shift-to-force conversion (see, e.g., the
supplementary material of [8] and [9]), is not necessarily com-
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patible with that of modern ones. Furthermore, because the
detailed geometry of each tip is never the same (regarding, e.g.,
diameter and length), and because it cannot be glued on the
prong with high reproducibility (regarding, e.g, mass of glue
and location on the prong), the mechanical properties of each
sensor must differ in detail. Therefore, the actual stiffness of
each probe must differ and has no reason to match a particular
predefined value.

The stiffness calibration of silicon cantilevers at room tempera-
ture in air, liquid, or UHV by means of destructive and non-
destructive methods has been discussed quite extensively in the
literature [18,32-60], leading to a set of a dozen distinct ap-
proaches. A “global calibration initiative” has even been
launched by Sader [58,61]. Conversely, much less references
are available for qPlus sensors [62-67], and, among these, none
of them deals with the direct stiffness calibration of the probe in
a LT UHV system.

The goal of the present work is to propose a framework based
on thermal noise measurement to calibrate the stiffness of qPlus
sensors operated in a LT UHV system. The concept was intro-
duced by Hutter and Bechhoefer, and Butt et al. in 1993
[33,34], and was further improved by Butt and Jaschke in 1995
[35]. It is based on the measurement of the spectrum of the fluc-
tuations of the free end of the probe excited by thermal noise.
The peak of the thermal noise spectrum at the resonance fre-
quency of the probe may be related to its stiffness if the me-
chanical behavior of the probe can be modeled as that of an
equivalent SHO. Our framework combines experimental mea-
surements performed with qPlus sensors in UHV at 9.8 K and
numerical simulations of the thermal fluctuations of a SHO
under equivalent conditions. The numerical results permit to
refine the experimental strategy, which allows us to achieve an
uncertainty of 10% maximum in the calibration.

This work is inspired by, and based on, results from the
literature, but extends the scope of AFM probes stiffness cali-
bration through thermal noise measurement to very stiff
(k > 1000 N/m) and large-Q (Q > 105) probes, such as qPlus
sensors. To this end, many theoretical and practical elements
are detailed, which usually are either not clearly stated or little
discussed in the literature because they are not salient with
softer probes, but they become crucial with very rigid and high-
Q probes in LT UHV.

Finally, we want to stress that although this work treats the par-
ticular case of qPlus sensors, the framework can be adapted to
any other kind of nc-AFM probes used in LT UHV, including
other types of QTFs, silicon cantilevers, and LERs, with the
KolibriSensor among the latter.

The paper is organized as follows. The section “Stiffness cali-
bration methods: a brief review” briefly introduces the biblio-
graphic context of the stiffness calibration methods, restricted to
the main of our requirements. Section “Framework to the stiff-
ness calibration” details the concepts of stiffness calibration
based on thermal noise measurement, along with our assump-
tions. Section “Numerical simulations” details the numerical ap-
proach to the stiffness calibration. Section “Experimental
results” presents the experimental results, which are discussed
in section “Discussion” before the Conclusion.

Four Supporting Information files support our framework.
They contain important results from the literature and are orga-
nized to help the reader to follow our developments. Support-
ing Information File 1 reminds the most salient results of the
Euler–Bernoulli model and how it sustains the point-mass SHO
equivalence. Supporting Information File 2 reminds funda-
mental elements of signal processing applied to discrete time
signals, which include the power spectral density (PSD), a key
tool for the stiffness calibration. Supporting Information File 3
reminds the expression of the thermal noise PSD of a SHO in
thermal equilibrium within a thermostat. The PSD of the
stochastic thermal force giving rise to the fluctuations of the
SHO is derived as well, which is used in the numerical simula-
tions. Supporting Information File 4 discusses the relevance of a
digital antialiasing filter on the measured thermal noise PSD.

Stiffness Calibration Methods: A Brief
Review
This section reminds some salient results about stiffness calibra-
tion methods reported in the literature, which forms the context
of the present study.

In the following, unless specified otherwise, the word “probe”
either means a silicon cantilever or the free prong of a qPlus
sensor. The discussion is restricted to probes with a rectangular
cross section (length l, thickness t, width w are such that l ≫ t
and l ≫ w) treated in the Euler–Bernoulli model of the embed-
ded beam, extensively detailed, for example, in [35] (cf. also
Supporting Information File 1). The displacement of the probe
is assumed to occur vertically (along the z axis, as defined in
Figure 1) and to be small with respect to all its dimensions
(elastic deformation only). The word “deflection” means the
displacement that takes place at the free end of the probe with
respect to its equilibrium position z = 0. Torsional effects are
not accounted for, which is justified in the section “Framework
to the stiffness calibration” (cf. subsection “Experimental
context”).

Since we focus on the stiffness calibration in UHV, we also
restrict the context to cases where the hydrodynamic function of
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Figure 1: SEM images of the type of qPlus sensor used in this work. All dimensions are estimated with a relative uncertainty of 5%. a- Side view
showing the complete geometry of the qPlus sensor. The circuitry of the electrodes is well identifiable. b- Front view of the qPlus free prong showing
the tip glued to the right-hand side. c- Magnification of the dotted rectangle shown in b-.

the fluid surrounding the probe [38], if described in the model,
plays no role.

Following Burnham’s classification [40], we essentially focus
on two categories of non-destructive calibration methods, re-
ferred to as “geometric” and “thermal” methods.

Geometric methods
Geometric methods permit to calculate the stiffness of the probe
from its dimensions and the mechanical properties of its consti-

tutive material. When the load is applied at the free end of the
probe, its static stiffness is given by:

(2)

where E, w, t, and l are Young’s modulus, width, thickness, and
length of the probe, respectively. Cleveland et al. early
exploited this concept to determine the stiffness of soft levers
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[32]. But these authors, as well as Sader et al. [38,68], also pro-
posed a calibration method of the static stiffness based on the
measurement of the unloaded resonant frequency of the probe
flexural fundamental eigenmode (f1), whose mass mprobe is to
be estimated then. In this framework, the probe is assumed to
behave as an equivalent SHO; then, the static stiffness is
derived from f1 according to: . The quantity

 is the effective mass of the fundamental eigen-
mode of the probe; mprobe = ρwtl is calculated from the density
ρ, thickness t, and plan view dimensions (length l and width w)
of the probe. The quantity μe,1 is the probe’s normalized effec-
tive mass of the fundamental eigenmode, taking the value
μe,1 ≃ 0.2427 for l/w > 5 [32,38] (cf. also Supporting Informa-
tion File 1). Because the experimental determination of the
length of the probe is prone to less error than that of its thick-
ness (l ≫ t), Cleveland et al. and Sader et al. removed the thick-
ness dependence from Equation 2 and came to an equivalent
expression for :

(3)

As discussed by Burnham et al. [40], for rectangular probes
with a stiffness of ≃1 N/m, Cleveland/Sader’s calibration
methods agree within 17% of the manufacturer’s nominal value.

In 2012, Lübbe et al. extended Cleveland/Sader’s approach to
the Euler–Bernoulli model and derived an expression giving the
static stiffness of the probe from the resonance frequency of any
of its flexural eigenmodes [51]:

(4)

where αn is a term occurring in functions that define the
Euler–Bernoulli model used to describe the probe oscillation. αn
is the solution of a so-called dispersion relation, written as
[35,48,49,55]:

(5)

leading to α1 = 1.875, α2 = 4.694, α3 = 7.864, …, αn ≃
(n − 1/2)π.

The latter formalisms consider a homogeneous probe without
influence of the added mass due to the presence of the tip at its
free end (unloaded case). This added mass changes the eigen-
modes geometry, though. This results in a change of the value

of the constant αn of each eigenmode. Lozano et al. [49], Lübbe
et al. [51], and Yamada et al. [69] have addressed the issue of
the tip mass correction in the Euler–Bernoulli model. To this
end, an extended probe oscillation model is used [70], which
leads to a new equation for αn (loaded case), now written  in
order to not confuse it with the solution of the unloaded case:

(6)

where μ = mtip/mprobe is the ratio between the tip mass and the
probe mass. Hence, μ must now be established before obtaining
the value of .

In their work, Lübbe et al. [51] point out that the direct stiff-
ness calibration from the probe dimensions yields values with
an uncertainty of ±25% as the result critically depends on the
probe thickness, which is difficult to determine experimentally.
But the uncertainty is reduced to ±7% when the measured
fundamental eigenfrequency is included in the calculation and a
tip mass correction is applied.

Thermal noise methods
Thermal methods are based on the measurement of the probe’s
thermal fluctuations when it is in thermal equilibrium within a
thermal bath [35,40,43,44,46-48,55-57,59,60,71]. The influ-
ence of thermal noise on a system has first been investigated by
Nyquist and Johnson in 1928 with electric resistors [72,73].
Their seminal work has later been formalized by the linear
response theory and the fluctuation–dissipation theorem (FDT)
[74,75], establishing a connection between fluctuations about
equilibrium and the response of a system to external forces
upon its susceptibility (or response function).

Thermal energy and probe fluctuations are linked by the
equipartition theorem, which states that the energy transferred
from a thermal bath to a dynamic system equals kBT/2 for each
of its degrees of freedom, kB being the Boltzmann constant and
T the temperature of the thermostat. Here, as discussed in
[35,48,56], the probe is described as an equivalent point-mass
SHO that features stochastic deflections of its free end along the
vertical z axis over time due to thermal noise, forming a signal
zth(t). The equipartition theorem is written as:

(7)

where ⟨⟩ represents a virtually infinite time averaging. The
quantity
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is the power of the probe fluctuations (mean quadratic deflec-
tions) induced by thermal noise over time. For a qPlus sensor of
stiffness ks ≃ 1800 N/m at T = 9.8 K, the rms deflection in-
duced by thermal noise is  ≃ 270 fm.

As discussed early by Butt and Jaschke [35] and explicitly
measured by others [48,55], the rigorous analysis of the ther-
mal fluctuations is to be performed in terms of modal decompo-
sition of the probe deflections over its eigenmodes. Then, the
total deflection of the probe’s free end due to thermal fluctua-
tions results from the superposition of the deflections of equiva-
lent SHOs embodying the eigenmodes of the probe, which are
assumed to be independent [49]. Because of their high quality
factors, the former assumption is particularly valid for qPlus
sensors (cf. also Supporting Information File 1). Thus:

(8)

where  is the power of the thermal fluctuations of the
n-th flexural eigenmode (resonance frequency fn, quality factor
Qn, and stiffness kn), and the summation represents all eigen-
modes of the probe. Under the assumption of thermal equilib-
rium, the thermal noise-induced deflection of each eigenmode
follows the equipartition theorem, such that:

(9)

Upon proper normalization of the solution functions of the
Euler–Bernoulli model, the modal stiffness kn of an unloaded
probe may be connected to the static one ks (or equivalently

) according to [35,76]:

(10)

Thus, for the fundamental eigenmode of an unloaded probe
(α1 = 1.875), .

Combining Equation 8, Equation 9, and Equation 10 yields:

(11)

Equation 11 is similar to Equation 7 if the summation is per-
formed over all the eigenmodes of the probe ( ,
cf. [35,77]).

From an experimental point of view, the number of accessible
eigenmodes (m) is limited because the detection bandwidth of
the fluctuations is restricted. Then, the relative error introduced
in the estimated static stiffness is 

, which may
be estimated. For instance, restricting the detection bandwidth
to the fundamental eigenmode of an unloaded probe (α1 =
1.875) sets m = 1 and  In other words, the
modal stiffness k1 of the fundamental eigenmode of an
unloaded probe exceeds the static stiffness ks by 3%, or equiva-
lently, 97% of the thermal fluctuations are due to the probe’s
fundamental eigenmode.

Equation 9 states that the measurement of the thermal fluctua-
tions of the deflection of the n-th eigenmode over an arbitrary
long time interval might allow us to derive the corresponding
modal stiffness. But this is not feasible in practice because of
measurement noise, which usually exceeds thermal noise. There
are several origins to measurement noise. For qPlus sensors,
two main noise sources may be considered: the preamplifier,
which converts the piezoelectric current of the QTF into a scal-
able voltage signal, and the subsequent analog/digital converter
(ADC), which converts the analog signal into a digital signal to
be processed by the digital control unit of the microscope. It is
difficult to quantify the strength of those sources with respect to
that of the thermal noise based on the time trace of the fluctua-
tions as it gives no idea on how the noise is spectrally spread
within the system. This is why the analysis of noisy signals is
rather performed from their PSD. The PSD Sz(f) of an analog
signal z(t) featuring thermal fluctuations with measurement
noise is defined according to:

(12)

It is also usually assumed that thermal noise and measurement
noise are uncorrelated. Thus, noting the power of the measure-
ment noise:

(13)

the power of the measured thermal noise probe deflections is
such that:
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(14)

The power of the thermal fluctuations without measurement
noise is ultimately given by integration of a quantity we name
the thermal noise PSD (tn-PSD) (f), according to:

(15)

Technically, the PSD is defined from the Fourier transform (f)
of the time trace of the signal z(t) forming the Fourier pair
z(t)  (f), according to:

(16)

Thus, if the measurement noise PSD (f) is quantified, the
quantity  depicting the thermal fluctuations of the probe
can be estimated from the measurement of Sz(f) (Equation 15)
and, thus, also the probe stiffness (Equation 7).

Because the Fourier transform is intrinsically two-sided (f ∈ ℝ),
the integration in Equation 12, Equation 13, and Equation 15
spreads from −∞ to +∞. The two-sided representation of the
DFT forms a strict, self-consistent, mathematical background;
however, in the case of the PSD, its one-sided representation is
preferred (f ∈ [0;+∞[). In addition, the observables that are
measured from stochastic signals usually relate to rms values
(e.g., Vrms). It is therefore preferable to express their corre-
sponding PSD from the rms value of their Fourier transform.
Supporting Information File 2 explicitly details the connection
between the two-sided expression of the PSD and that of the
one-sided rms PSD (cf. Supporting Information File 2,
Equations S14 and S15). In the following, we will only use the
spectral expression/representation of the one-sided rms PSD of
the signal zth(t), which is defined for f ≥ 0 only. Unlike in Sup-
porting Information File 2, the “rms” superscript will be
systematically omitted in the notations in order to lighten them,
but it is maintained in the units.

A large part of the thermal fluctuations stems from the probe’s
fundamental eigenmode. Thus, it is interesting to compare

(f) to the formal expression of the one-sided rms tn-PSD of
an equivalent SHO (resonance frequency f1, quality factor Q1,
and stiffness k1), which is established in Supporting Informa-
tion File 3 (cf. Equation S8). This quantity is written as:

(17)

The function exhibits a resonance for f = f1 (u = 1), and then:

(18)

Equation 15, Equation 16, Equation 17, and Equation 18 form
the analytical framework for the analysis of the thermal fluctua-
tions, which ultimately allows for the probe stiffness calibra-
tion from Equation 7. They are used according to three method-
ological approaches, which all are reported in the literature:

• Method 1:  is derived by integration of the tn-PSD
(f) (Equation 15), that is, the as-measured thermal

noise PSD Sz(f) corrected from its measurement noise
(f). Sz(f) may either be measured with a properly

calibrated spectrum analyzer or derived from the Fourier
transform of the time trace of the thermal fluctuations
(Equation 16) [48]. Depending on the acquisition band-
width, ks may be estimated from Equation 10 or
Equation 11.

• Method 2: The stiffness of the probe’s fundamental
eigenmode k1 may as well be fitted from (f) from the
tn-PSD of the SHO (Equation 17) [56], provided that (i)
the probe’s mechanical behavior satisfactorily compares
to that of an equivalent SHO, and (ii) resonance frequen-
cy f1 and quality factor Q1 of the probe are known. Then,
ks may be derived from Equation 10.

• Method 3: k1 may be directly estimated from the
maximum of (f) (Equation 18) [40], provided that f1
and Q1 are known. Then, ks may be derived from
Equation 10.

These methods all require a good estimate of the measurement
noise PSD (f), otherwise the estimated stiffness will be
uncertain (cf. hereafter).

Other non-destructive methods
Finite element method (FEM) modeling has been applied suc-
cessfully to calibrate the stiffness of both silicon cantilevers
[59,76,78-82] and qPlus sensors [18,65]. For qPlus sensors,
however, FEM does not offer a generic approach. Indeed, as
presented in the Introduction, the fact whether the sensors are
custom-made or commercial, the tip shape (nature, diameter,
and length of the wire), the precise location where it is glued on
the free prong, along with the nature and quantity of glue used
to hold the wire, imply a large range of geometric parameters,
which ultimately influence the resulting stiffness of the probe.
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Falter et al. pointed out this issue [65], and the authors outlined
the urge of stiffness calibration for each sensor. The main
conclusion of their FEM modeling shows quantitative agree-
ment with the beam formula (Equation 2) if the beam origin is
shifted to the position of zero stress onset inside the tuning fork
base; however, there was a systematic overestimation of the ex-
perimental stiffness due to the tip gluing geometry.

In the 2000s, Rychen et al. proposed an approach to the calibra-
tion of the modal stiffness of QTFs used below 4.2 K and at
5 mbar [62,63]. The method is based on the measurement of the
admittance of the piezoelectric current produced by the fork
upon oscillation. The authors fitted that quantity with a Butter-
worth–Van Dyke-type electrical equivalence, and they put in
relation the fitted electrical parameters with those of an equiva-
lent mechanical SHO. This approach is valuable as it is per-
formed in situ (however here not in UHV) and is non-destruc-
tive. However, it requires the precise knowledge of the piezo-
electric constant of the quartz, and, with current qPlus designs,
it was shown that the Butterworth–Van Dyke equivalent circuit
failed at describing all their features [83].

Framework to the Stiffness Calibration
Methodology
Our experimental results are interpreted with the help of numer-
ical simulations, but experimental and numerical approaches
rely both on the same methodology.

Our framework to the stiffness calibration consists in process-
ing the time trace of the qPlus thermal fluctuations to extract the
quantity . To this end, the time signal of the thermal fluc-
tuations including, or not (in the case of numerical simulations),
measurement noise, is acquired over a windowing duration Tw.
This process is repeated to form a statistic set of M time traces
of the fluctuations (Mexp ≥ 500, Mnum ≥ 60). Then, the properly
normalized one-sided rms PSD spectrum of each trace is calcu-
lated. The M rms PSD spectra are ultimately averaged resulting
in a single final spectrum.

The value of the stiffness is then deduced according to the
methods 1–3 described before. However, as discussed in detail
by Cole [46] or Sader et al. [53], in the case of noisy signals like
the tn-PSD, the use of non-linear least-squares fits, such as
those required in method 2, is problematic. Their convergence
and the accuracy of the fit coefficients may depend on type of
noise, type of fit functional, minimization algorithm, and num-
ber of coefficients to fit along with their boundary conditions
and may lead to erroneous results. Because some of these diffi-
culties were faced when processing our data, we do not use
method 2 for the experimental stiffness calibration and restrict
the analysis to methods 1 and 3.

Experimental context
The experimental results presented in this work have been
acquired with a closed-cycle UHV SPM Infinity microscope
from Scienta-Omicron, operated at 9.8 K. We use commercial
qPlus sensors purchased from Scienta-Omicron.

Scanning electron microscopy (SEM) pictures of one of these
probes are shown in Figure 1. SEM analysis was performed
with a Zeiss GeminiSEM 500 ultrahigh-resolution FESEM at
15 kV. Secondary electron detection was used for imaging. At
15 kV, the resolution is 0.6 nm. Energy-dispersive X-ray spec-
troscopy (EDS) chemical analyses have been performed too, for
which an EDAX Octane Silicon Dri Detector (129 eV energy
resolution for manganese) coupled to the SEM was used at
15 kV. A large side view (cf. Figure 1a) shows the overall probe
geometry. The qPlus sensors we use feature QTFs whose prong
geometry is asymmetric. The sensor is glued by means of an
insulating epoxy glue (white areas) on a massive metallic
holder, not visible in the figure, that is mechanically clamped
into the scanning piezo featuring a ring electrode for mechani-
cal excitation. The QTF surface features a set of three metallic
electrodes evaporated on it. Their chemical composition has
been characterized by EDS as consisting of a ≃200 nm thick
layer of Au on a thinner chromium layer to favor the adhesion
and wetting of Au. The massive electrode is for grounding. The
two thinner ones, running along the free prong, are for the
piezoelectric current and tunneling current readouts. The free
prong is l = (2045 ± 100) μm long. The tip, indicated at the end
of the free prong, consists of a W wire that is 50 μm in diame-
ter, better visible in Figure 1b. It is glued with a conducting
epoxy, visible in the pictures, on the side of the free prong, near
its end. With this asymmetry, oscillations due to the first
torsional eigenmode of the qPlus sensor might occur and
perturb the detection of the thermal motion due to the first
bending mode. However with regular QTFs, the first torsional
eigenmode is expected to be above, or near, our sampling fre-
quency of ≃155 kHz [84] (cf. subsection “Acquisition parame-
ters of the thermal fluctuations as a discrete time signal”). The
torsional resonance is, therefore, far away from our considered
frequency range, and torsional effects should not influence, to a
large extent, our measurements. The W wire has been cut at the
top end and etched at the bottom end to form the tip. One can
estimate its height as that of an effective cylinder, as indicated
in the picture, h = (574 ± 30) μm. However, this quantity is only
representative of this particular qPlus sensor and is expected to
vary from one sensor to another. The free prong has a width
w = (132 ± 7) μm and a thickness t = (222 ± 12) μm, as
measured from Figure 1c, which is the magnification of the
dotted rectangle shown in Figure 1b. From these geometric
quantities, the estimated static stiffness of the probe (cf.
Equation 2) is ks = (3322 ± 1270) N/m. To get this value, we
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have considered Young’s modulus and density of quartz,
E = (78.7 ± 1.6) GPa and ρ = (2.65 ± 0.06) × 103 kg·m−3, re-
spectively. It is also reminded that Equation 2 does not include
the contribution of the tip.

The qPlus sensor is assumed to be in thermal equilibrium at
T = 9.8 K. The temperature is measured within the head of the
microscope by a Si diode and readout by a Lakeshore 335
Controller. The microscope being in closed-cycle has been ther-
malized at that temperature for several weeks. A HQA-15M-
10T charge preamplifier from Femto collects the piezoelectric
current generated by the qPlus sensor [28] and sends the pream-
plified signal into a Nanonis OC4 oscillation control unit for
digital conversion and a Nanonis Mimea SPM control system
from SPECS for processing this signal. An analog low-pass
filter in the OC4 acts as an antialiasing filter before digital
conversion by an ADC. It is implemented as a third-order
overall Butterworth filter with a Sallen–Key topology and with
a fixed cut-off frequency of 5 MHz, meaning that dampening is
60 dB per decade. There is no additional filter in the analog
part, and there is no antialiasing filter in the digital domain.
Before thermal noise measurements, the qPlus deflections are
accurately calibrated into metric units with a custom-made
script implemented in the Nanonis MIMEA control unit that
performs the constant-γ calibration procedure of the oscillation
amplitude in nc-AFM mode [16-18]. The accuracy of the cali-
bration is cross-checked in STM mode, which guarantees an
accuracy of 5% in the amplitude calibration.

A dedicated software data acquisition module implemented by
SPECS into the Nanonis MIMEA control software is used to
acquire the Mexp time traces of the signal z(t) featuring the ther-
mal fluctuations of the qPlus sensor and to process them accord-
ingly to yield the averaged rms PSD spectrum of the thermal
fluctuations (cf. subsection “Acquisition parameters of the ther-
mal fluctuations”).

Because Mexp ≃ 500 time traces are acquired, lasting Tw ≃ 50 s
each (cf. also subsection “Acquisition parameters of the ther-
mal fluctuations”), the total acquisition lasts a couple of hours.
In order to lower the parasitic noise level, these measurements
are carried out overnight. The protocol might seem long and
demanding, but it is the properties of the qPlus sensor that
constrain one to drastic acquisition parameters. In 2013, Lübbe
et al. had already come to the same conclusion in the case of
silicon cantilevers in UHV at room temperature [56]. To over-
come the drawback of the acquisition duration with high-Q
probes, they introduced a quick and efficient alternative method
based on the spectral analysis of the frequency shift detected by
the PLL. If their concept was transposable to the case of qPlus
sensors without loss of accuracy in the calibration, which is not

established so far, it would be an advantage over the current
method.

During the thermal noise measurement (Sz(f)), the qPlus sensor
is located far from the sample such that no interaction force
may develop between tip and surface. All inputs to the micro-
scope are grounded (e.g., high voltage lines of the X, Y, and Z
scanner, coarse motor, and bias). The tunneling current readout
is also grounded. It is also made sure that no parasitic external
noise source (mechanical or electrical) adds to the measure-
ment. The measurement noise PSD ( (f)) is recorded under
similar conditions, except that the input of the charge amplifier
is not connected and let open (qPlus sensor not connected). The
acquisition parameters of Sz(f) and (f) are detailed here-
after.

The qPlus sensor seen as an equivalent
SHO
As with many other results dealing with that topic, a central
assumption of this work is that the mechanical behavior of the
qPlus sensor may be described by that of an equivalent SHO of
resonance frequency f1, quality factor Q1, amplitude at the reso-
nance A1, and stiffness k1. The relevance of that approximation
is verified by recording the resonance curve around f1 and
checking to which extent the measured amplitude A(f) and
phase φ(f) can be fitted by the SHO model for large quality
factors (cf. section “Experimental results”, subsection “Equiva-
lent SHO”):

(19)

Doing so, f1 and Q1 will be determined accurately. For the sake
of the forthcoming discussions, we use typical orders of
magnitude for qPlus sensors operated in LT UHV, namely
f1 ≃ 25 kHz and Q1 ≃ 2 × 105.

Acquisition parameters of the thermal
fluctuations as a discrete time signal
The concept of PSD applied to the measurement of thermal
fluctuations was introduced by assuming a continuous, that is,
analog time signal. But on the experimental level, the thermal
fluctuations are meant to be processed by the Nanonis MIMEA
control unit, which is based on a digital FPGA architecture,
such that the signal is ultimately discrete in time and of finite
duration Tw. Let us assume the signal to be sampled with a
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period Ts, that is, a sampling frequency fs = 1/Ts, yielding a
buffer of N samples. The windowing duration is then:

(20)

In UHV and at low temperature, the qPlus sensor’s thermal
fluctuations stem from stochastic phonons of the quartz in ther-
mal equilibrium with the thermostat at the energy kBT. The
phonons excite the qPlus sensor and statistically repeat over
time with a frequency spectrum yielding a thermal noise rms
PSD described by that of an equivalent SHO (Equation 17). The
spectrum conceals the mechanical properties of the SHO and
exhibits a resonance at f1. Thus, stochastic phonons with
frequencies at, or close to, the SHO resonance frequency,
produce long-standing oscillations, particularly if the SHO’s
quality factor is large, which is the case with qPlus sensors. It is
therefore mandatory to acquire the thermal fluctuations over a
duration window Tw that is much larger than the intrinsic equili-
bration time of the SHO defined as τ1 = 2Q1/f1, hence, Tw ≫ τ1.
With the orders of magnitude that were chosen above, τ1 ≃ 16 s.

Furthermore, setting Tw implicitly means setting δf, that is, the
frequency resolution δf of the rms PSD spectrum:

(21)

Therefore, the problem is to determine a correct value for δf that
must satisfy δf ≪ . With our parameters, δf ≪ 60 mHz. We
arbitrarily set δf = 20 mHz, that is, Tw = 50 s. According to
the definition of the quality factor, the SHO bandwidth is
wf = f1/Q1, that is, here wf ≃ 125 mHz. Thus, it is essential to
have at least ≃7 samples within the wf bandwidth around f1 in
the tn-PSD.

On the hardware level, the analog signal of the qPlus deflec-
tions is sampled at the maximum rate imposed by the MIMEA
control unit, fs,max = 40 MHz, resulting in a Shannon–Nyquist
frequency of 20 MHz. At that frequency, because of the analog
antialiasing filter, the digital signal provided by the ADC is
dampened by 36 dB. However, fs,max is not the sampling
frequency used to perform the thermal noise analysis, as
Tw ≃ 50 s would imply a too large buffer of samples to handle
(N = Twfs,max ≃ 2 × 109). Therefore the discrete time signal
is downsampled at fs while making sure that fs fulfills the
Shannon–Nyquist sampling theorem fs > 2f1. To limit memory
usage on the hardware, the maximum buffer size is limited to
N = 8,388,544 samples. Thus, because f1 ≃ 25 kHz, we set fs =
156.250 kHz (Tw = N/fs ≃ 53.6 s). This results in an acquisition

bandwidth of the thermal fluctuations of Bs = fs/2 = 78.125 kHz.
Note that, because the second flexural eigenmode features a
resonance frequency f2 ≃ 6.27 f1 ≃ 156.750 kHz > fs/2, the cor-
responding discrete time signal will be downsampled and,
hence, not properly detected. Therefore, our framework to the
stiffness calibration restricts the detection bandwidth of the
qPlus sensor’s thermal fluctuations to its fundamental eigen-
mode. It is reminded that no additional digital filtering that
might act as an antialiasing filter is used for the acquisition of
the thermal noise (cf. section “Numerical Simulations”, subsec-
tion “Ideal case: no measurement noise”).

To summarize, for qPlus sensors operated in LT UHV, typical
sampling parameters of the discrete time signal of the thermal
fluctuations are: Tw ≃ 53 s, fs = 156.250 kHz, Ts = 1/fs = 6.4 μs,
δf ≃ 19 mHz, yielding a buffer of N ≃ 8.4 × 106 samples.

Numerical Simulations
The simulation of AFM experiments affected by stochastic
noise and its consequences on the statistics of the PSD has been
addressed by Labuda and coworkers [85,86]. Specifically, the
authors use inverse Fourier transform for generating time-
domain stochastic noise directly from a numerically defined
PSD of stationary noise. The method is valuable as the defined
PSD may, for example, be fitted from an experimental measure-
ment.

Our approach is the opposite. We simulate the time trace of the
thermal fluctuations and derive the tn-PSD consistently via
direct discrete Fourier Transform. Our framework restricts the
experimental detection bandwidth of the qPlus sensor’s thermal
fluctuations to its fundamental eigenmode. However, the nu-
merical description of the qPlus sensor’s mechanical behavior
must be as accurate as possible. As already mentioned, the
Euler–Bernoulli model accounts for the probe deflection from
the superposition of the deflections of each of its eigenmodes
described as independent SHOs. With our computational means
however, it is unrealistic to describe a too large number of
eigenmodes presenting high-Q factors. To gain computational
time, we restrict the numerical analysis to the first three eigen-
modes of the qPlus sensor (n = 1–3). Furthermore, we do not
account for the influence of the tip (mtip = 0). The as-calculated
values of the set (fn, Qn, kn) are reported in Table 1. We chose
for (f1, Q1, k1) the values (25 kHz, 105, 1800 N/m). The values
of f2 (f3) and k2 (k3) are given by Equations S9 and S10 of Sup-
porting Information File 1, respectively, with αn given by
Equation 5. As for Q2 and Q3, there are few results in the litera-
ture on how they are expected to vary in UHV. Usually, the
quality factor decreases with n (cf. [87] and silicon cantilever
P5 in [56]). We therefore have set arbitrary values following
that trend. The simulated temperature is 9.8 K.
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Table 1: Values of fn, Qn, and kn for the first three eigenmodes of the simulated qPlus sensor. We only set the values of the fundamental eigenmode
(n = 1), the others are derived from the corresponding equations.

Eigenmode αn () fn (kHz) Qn () kn (N/m)
(n) (Equation 5) (cf. Supporting Information File 1,

Equation S9)
(cf. Supporting Information File 1,
Equation S10)

1 1.875 25.000 105 1800
2 4.694 156.680 50 × 103 70 703
3 7.864 438.650 25 × 103 554 150

We first consider the ideal case where there is no measurement
noise and then introduce measurement noise, whose characteris-
tics reproduce those of the experimental noise.

Ideal case: no measurement noise
Assuming Fth,n(t) to be the instantaneous value of the thermal
force applied to the qPlus sensor’s n-th eigenmode, the corre-
sponding instantaneous deflection zth,n(t) obeys the classical
second-order differential equation for the SHO:

(22)

where ωn = 2πfn and mn =  are the resonance angular fre-
quency and mass of the equivalent SHO representing the n-th
eigenmode, respectively.

The thermal noise is simulated as stemming from a random sta-
tionary process, a reasonable assumption for thermal noise.
Then, the FDT states that the thermal force inducing thermal
fluctuations of each eigenmode is normally distributed with a
rms standard deviation given by (cf. Supporting Information
File 3, Equation S11):

(23)

where Bs,max = fs,max/2 is the acquisition bandwidth of zth,n(t). It
is important to notice that Bs,max is not to be confused with Bs,
which was described as the experimental acquisition bandwidth
of the thermal fluctuations. Here, Bs,max is the acquisition band-
width of the numerical signal zth,n(t), which describes the in-
stantaneous deflection of the qPlus sensor, that is, a continuous
time signal, whose experimental counterpart is sampled by the
control unit at a maximum rate fs,max = 40 MHz, as already
mentioned.

With our computational means it is not possible to account for
such a large sampling frequency. We, therefore, have restricted

it to an integer multiple of fs = 156.250 kHz, namely  =
20 × fs = 3.125 MHz. Thus, Equation 22 is integrated with
a Runge–Kutta 4 scheme by using a sampling period

 = 320 ns, embodying the discrete time signal
processed by the control unit for thermal noise analysis. We
have noticed that the relevance of Runge–Kutta methods to
solve stochastic differential equations seems debated [88,89];
however, at our level, this algorithm was found to be more
accurate than the Symplectic Euler or the Verlet (Leapfrog)
algorithms (data not shown).

Consistently with the estimated acquisition parameters, we
simulate a window duration Tw = 60 s. Because the three SHOs
are independent, the total deflection of the qPlus sensor is given
by:

(24)

An example of a single simulated time trace of zth(t) is reported
in Figure 2, along with the stochastic force (first eigenmode
only). The thermal force histogram exhibits a normal distribu-
tion with a rms standard deviation given by Equation 23. The
corresponding probability density function (cf. Supporting
Information File 3, Equation S12) is shown in black.

A set of Mnum = 64 time traces of z(t) is thus calculated. Then,
each trace z(t) is downsampled with a rate r = fs,max/fs = 20
to form a signal zd(t) of duration Tw = 60 s sampled at fs =
156.250 kHz. This results in a thermal noise acquisition band-
width Bs = fs/2 = 78.125 kHz, consistent with the experimental
conditions.

A typical spectrum is reported in Figure 3a in the spectral range
[0;Bs] (black curve). A zoom around f1 = 25 kHz (spectral range
[24.987 kHz; 25.013 kHz]) is shown in Figure 3b. The curve
exhibits a pronounced resonance, representing the resonance
frequency of the first eigenmode of the simulated qPlus sensor
with Q1 = 105. The continuous red curve is the theoretical
tn-PSD calculated with Equation 17. Around the resonance, the
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Figure 2: a- Time trace of the simulated thermal force for the first eigenmode displayed over an arbitrary duration of 12 s. b- Corresponding histogram
and probability density function showing its normal distribution (thick black curve). c- Corresponding time trace of the fluctuations of the simulated
qPlus (superposition of the first three eigenmodes, cf. text).

agreement between both curves is excellent. Deriving the stiff-
ness according to method 1 (PSD integral over the range [0;Bs],
Equation 15) gives  = 1750 N/m. Method 2, using
Equation 17 as fit functional, gives  = 1765 N/m, while
method 3 gives , that is,

 = 1813 N/m. The results are gathered in Table 2. The
relative error is less than 3% with respect to the nominal value
k1 = 1800 N/m, regardless of the method.

In addition to the resonance peak at f1, the black curve in
Figure 3a exhibits two additional unexpected peaks, resembling
resonance peaks, at fa ≃ 433 Hz and fb ≃ 31.7 kHz. However,
their magnitudes are by several decades smaller than that of the
f1 peak. These peaks are aliases of the eigenmodes 2 and 3 of
the qPlus sensor due to spectral aliasing within the band [0;Bs].
The spectral aliasing is also responsible for the discrepancy be-
tween the simulated tn-PSD and the theoretical tn-PSD of the
SHO in the low-frequency part of the spectrum, which is dis-
cussed in Supporting Information File 4, along with the influ-
ence of an additional digital antialiasing filter.

Influence of measurement noise
The experimental data are subject to measurement noise. To
assess how it might influence the stiffness calibration, two types
of measurement noise sources that embody the experimental
measurement noise are introduced in the simulations. The first
one is white noise featuring a constant rms PSD spectrum,

. The second source has a 1/fn rms PSD spectrum, (f).
For n = 1, one has a regular 1/f noise. The discussion is carried
out with the theoretical tn-PSD of the SHO (Equation 17), and a

Figure 3: a- Simulated tn-PSD spectrum at 9.8 K (spectral range
[0;Bs]) for the qPlus sensor whose mechanical parameters are given in
Table 1 (black curve). The resonance peak due to the fundamental
eigenmode (f1 = 25.000 kHz) largely dominates the tn-PSD. The theo-
retical tn-PSD for the SHO is displayed in red. Additional peaks (fa and
fb) stemming from eigenmodes 2 and 3 are visible because of spectral
aliasing, which also explains the discrepancy with respect to the SHO
tn-PSD (cf. text). b- tn-PSD displayed in the spectral range ±15 Hz
around f1 (simulated data: black curve, SHO tn-PSD: red curve).
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Table 2: Calibrated stiffness using methods 1, 2 or 3. The number of
averaged time traces is Mnum = 64 in each case. The estimated stiff-
ness is in excellent agreement with the nominal value.

Method Nominal k1

(n) (N/m) (N/m) (rel. err.)

1 1800 1750 (−2.8%)
2 1800 1765 (−1.9%)
3 1800 1813 (+0.7%)

similar acquisition bandwidth Bs = 78.125 kHz is considered.
Then, the total rms PSD of the system is written as:

(25)

where:

(26)

To make the discussion relevant, the numerical parameters
defining (f) are those deduced empirically from the experi-
mental PSD (cf. section “Experimental results” and Figure 6),
namely:

(27)

As for SSHO(f), (f1, Q1, k1) = (25 kHz, 105, 1800 N/m). The cor-
responding spectrum is reported in Figure 4a.

According to method 1, we first make sure that

(28)

accurately leads to the nominal value  = 1800 N/m.

Practically, the measurement noise PSD may be difficult to
account for with a functional as simple as Equation 27. This is
why, in the literature, the stiffness may also be found to be esti-
mated by integration of the PSD within a restricted bandwidth
around the resonance [48], where its behavior is easier to

Figure 4: a- Numerical tn-PSD including measurement noise displayed
in the range [500 Hz;Bs]: Sz(f) = SSHO(f) + (f) (black curve). The
measurement noise PSD, (f), is displayed as a dotted blue curve
on top of Sz(f), except at the resonance. The numerical parameters are
given in the text. (f) is built as the superposition of a constant
background  (dotted orange curve) and a 1/fn-like contribution

(f) = K/fn (dotted purple curve). Here, n = 1.6 to match with the ex-
perimental PSD (cf. text). A 1/f component has been displayed as a
guide to the eye (dotted green curve). b- Zoom in the spectral range
±B/2 = ±30 Hz around f1. The theoretical PSD of the equivalent SHO is
overlaid (red curve). In that area of the PSD, the noise floor may be
estimated from the value of (f1 − B/2) (blue circle). c- Estimated
stiffness upon integration of (i) Sz(f) − (f) (black curve),
(ii) Sz(f) − (f1 − B/2) (blue curve), and (iii) Sz(f) −  (orange
curve), for an increasing bandwidth around f1. The nominal stiffness is
k1 = 1800 N/m. d- Corresponding relative errors.

describe. In the mentioned reference, however, the authors state
that they compensate for the finite integration range, but with-
out detailing how. We hereafter propose an analysis of the in-
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fluence of a finite PSD integration range on the stiffness cali-
bration.

In a ±30 Hz wide area around f1, the PSD noise background
looks flat (cf. Figure 4b), as if the measurement noise only con-
sisted of a constant, that is, white background noise. This effect
essentially stems from the high Q value of the qPlus sensor,
which imposes a weak bandwidth wf = f1/Q1 = 125 mHz around
f1, over which the 1/fn attenuation, with our parameters, is
barely visible. To assess how much the estimated stiffness is
sensitive to the PSD integration interval, we derive the stiffness
upon integration of the quantity Sz(f) − (f) over an increas-
ing bandwidth B around f1 according to:

(29)

The result is reported in Figure 4c (black curve). The estimated
stiffness fits to better than 2% with the nominal value as soon as
the integration bandwidth is larger than B/2 = 5 Hz (cf.
Figure 4d, black curve).

Then, we assess how much the estimated stiffness is falsified if
only a constant background is subtracted from Sz(f) instead of

(f), regardless of the PSD power-law dependence at low
frequencies. Following the same methodology, the estimated
stiffness is derived for two cases, namely by integration of
(i) Sz(f) −  (removal of the white noise only, cf. orange
curve in Figure 4c), and (ii) 
(removal of the white noise and the 1/fn  noise, but
t h e  f o r m e r  i s  e s t i m a t e d  a t  f  =  f 1  −  B / 2 ;  h e r e

, cf. blue curve and
blue circle in Figure 4c). The accuracy of the estimated stiff-
ness remains excellent by integration of the quantity

 and nearly equal to that ob-
tained upon integration of Sz(f) − (f) (black vs blue curve in
Figure 4c) up to B/2 = 30 Hz. Conversely,  underestimates
the background noise in the area around f1 such that the integra-
tion of the quantity Sz(f) −  yields a largely underestimated
stiffness value (orange curves in Figure 4c,d).

In summary, this section has proven that the stiffness of a qPlus
sensors may be accurately calibrated by integration of the
tn-PSD in a restricted bandwidth B around f1, provided that
(i) Sz(f) presents a homogeneous background measurement
noise without parasitic peaks within B, (ii) B is much larger than
the equivalent SHO bandwidth wf, and (iii) Sz(f) is corrected
from the measurement noise, whose spectral dependence has
been estimated over B or corrected from a constant measure-

ment noise estimated nearby f1; however, depending on how the
constant background is determined, that former approach is less
accurate.

Experimental Results
The experimental stiffness calibration was performed with two
distinct qPlus sensors, referred to as qPlus 1 and 2 in the
following. For qPlus 1, the tip was removed so as to reproduce
the behavior of a perfectly free prong, which allows us to
benchmark the thermal noise measurement method on two
probes with expected distinct mechanical behaviors.

Equivalent SHO
In order to assess whether the mechanical behavior of the qPlus
sensor reasonably compares to that of a SHO, several reso-
nance curves (fundamental eigenmode) were measured for both
qPlus sensors with decreasing excitation amplitudes (cf.
Figure 5). Each curve is fitted with Equation 19 (amplitude de-
pendence only), from which the resonance frequency f1, the
resonance amplitude A1, and the quality factor Q1 are deduced.
A constant background, Abkg, has been added to Equation 19 to
account for the noise floor. A set of four coefficients is there-
fore ultimately used for the fits, namely A1, Q1, f1, and Abkg.
The fits are performed by means of the software Igor Pro from
Wavemetrics®. For the non-linear least-squares fit process used
here, Igor uses the Levenberg–Marquardt algorithm looking for
the minimum value of chi-squared. The confidence interval for
the fit coefficients is set to 99%. The residual of each fit, Δ, is
built according to Δ = Aexp(f) − Afit(f). Doing so, we not only
want to measure these parameters while estimating the fit
quality, but also want to verify whether the qPlus quality factor
is independent from the excitation amplitude (Aexc), as ex-
pected in the SHO model. Since the thermal noise measure-
ments are performed without mechanical excitation of the qPlus
sensor and its quality factor is required to perform the stiffness
calibration (methods 2 and 3), this value must reflect an
intrinsic property of the probe. We name that quantity . The
quality factor used to perform the stiffness calibration must be
as close as possible to , meaning that it must have been de-
termined without any influence of the mechanical transfer func-
tion of the qPlus sensor holder within the microscope, that is, at
extremely low excitation amplitude.

A set of excitation amplitudes yielding A1 values ranging from
≃500 pm down to ≃10 pm has been selected. The resonance
curves are reported in Figure 5a and Figure 5e (qPlus 1 and 2,
respectively). Each curve is acquired over an interval of
±4.8 Hz around the resonance (qPlus 1: f1 = 29,182.99 Hz,
qPlus 2: f1 = 24,661.76 Hz) and features a spectral resolution
equal to, or better than, the required one, δf = 20 mHz. Each
curve is acquired within a one hour time lap because of the
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Figure 5: Experimental resonance curves of the fundamental eigenmode for two distinct qPlus sensors recorded with decreasing excitation ampli-
tudes Aexc (a- and e-). For each curve, a fit with the SHO equations gives the values of resonance frequency f1, resonance amplitude A1, background
Abkg, and quality factor Q1 (red curves). The curves acquired with the smallest excitation amplitude are shown in blue to discriminate them from the
less noisy data. The residual Δ of each fit is shown in panels b- and f-. The relative magnitude of the ratio Δ/A1 at the resonance is between 5% and
10%. The evolution of A1 and Q1 vs Aexc is reported in panels c- and g- (right and left axes, blue and red markers, respectively). The evolution of Abkg
and f1 vs Aexc is reported in panels d- and h- (right and left axes, orange and black markers, respectively). The evolution of the fitted quality factor
allows us to extract the intrinsic quality factor of each qPlus sensor,  (cf. text).

large quality factor, which is enough to prevent any non-adia-
batic effect from occurring. The fits with Equation 19 as fit
functional are overlaid on each acquisition (red curves). The
residuals are reported in Figure 5b and Figure 5f (qPlus 1 and 2,
respectively).

Figure 5b,f shows that the magnitude of the residuals increases
when Aexc is decreased owing to the degraded signal-to-noise
ratio. Overall, in the vicinity of the resonance, the relative mag-
nitude increases from less than 5% (A1 = 605 pm) to less than

10% (A1 = 12.5 pm). Although the following statement is not
rigorous, we estimate that a relative uncertainty of ±5% is quite
representative for the fit coefficients (except f1, which is esti-
mated with a much better accuracy; cf. below). They are plotted
consistently, but note that these error bars are much larger than
the standard deviations given by the fit process for each coeffi-
cient. We have noticed that some approaches are reported to
achieve specified tolerances on the fit coefficients of spectra ex-
hibiting a Lorentzian response; however, we did not employ
them here [53,90].
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The evolution of the fitted quality factor as a function of Aexc
for qPlus 1 and 2 is reported in Figure 5c and Figure 5g, respec-
tively (red symbols and continuous red line, left axis). The
evolution of the fitted value of A1 as a function of Aexc is re-
ported as well (blue symbols and continuous blue line, right
axis). For A1 ≃ 100 pm, the quality factor of qPlus 1 is in the
range of 168,000, whereas for qPlus 2, it is rather 280,000. The
correct expected linear dependence between A1 and Aexc is ob-
served down to Aexc = 0 (dotted line and blue cross), which
testifies that, with these excitations, non-linearities due to the
mechanical transfer function of the qPlus excitation system are
not likely to occur.

The evolution of the fitted value of the resonance frequency as a
function of Aexc for qPlus 1 and 2 is reported in Figure 5d and
Figure 5h, respectively (black symbols and continuous black
line, left axis). The evolution of the fitted value of Abkg as a
function of Aexc is reported as well (orange symbols and orange
curve, right axis). Because of the high quality factors, the fits
yield values of f1 with a high accuracy, such that it is irrelevant
to plot the fitted value for that coefficient with 5% error bars.
We rather use the standard deviation given by the fit, which is
about ±f1 × 10−7 ≃ ±3 mHz. We note that the fitted values for
Abkg remain consistently small compared to A1 and that a signif-
icant offset error in the estimation of the amplitude is unlikely
to occur.

For both qPlus sensors, the quality factor and the resonance fre-
quency feature a moderate linear dependence with Aexc. Both
Q1 and f1 increase as Aexc decreases. Q1 increases by about 20%
(140,000→170,000 for qPlus 1, 260,000→310,000 for qPlus 2)
and f1 by about +30 mHz. A similar effect on f1, with compa-
rable magnitudes, has been reported by Dagdeviren et al. with
other types of qPlus sensors [91]. The reference states that the
drop of the resonance frequency upon increase of the oscilla-
tion amplitude results from an in-plane surface stress near the
clamp of the free prong of the QTF. In the mentioned reference,
the evolution of the quality factor is not reported. Hence, it is
difficult to conclude whether the in-plane surface stress is the
main cause for the observed trend of the quality factor. Thus,
even though the observations by Dagdeviren et al. are consis-
tent with ours, we do not exclude the additional influence of the
mechanical transfer function of the excitation system onto the
QTF. Indeed, it is known that the way the probes are mounted
on their holders, along with the mechanical transfer function of
the probe excitation system, may influence their quality factor
[92], which is detrimental to the decoupling of conservative and
dissipative forces in nc-AFM [93]. Because much less mechani-
cal energy is injected into the system when Aexc is decreased,
energy losses are reduced, and it is the most reactive part of the
system, namely the QTF, that reacts to the excitation.

From these measurements, we deduce the  value of each
qPlus sensor (extrapolation at Aexc = 0, dotted line and red
cross). For qPlus 1 and 2, we get, respectively,  = 172,000
and 304,000. These values are used in the following to perform
the stiffness calibration.

Measurement noise PSD
Figure 6a reports the measured tn-PSD spectrum with measure-
ment noise, Sz(f), for qPlus 2 (black curve), for which we now
have identified f1 = 24,661.76 Hz and  = 304,000. The spec-
trum was acquired with the parameters fs = 156.250 kHz,
N = 8,388,544 samples, and Mexp = 512 time traces. It is re-
ported over the bandwidth [500 Hz;Bs] since the qPlus charge
preamplifier features a cut-off high-pass frequency of ≃500 Hz
[28]. The spectrum exhibits a bunch of parasitic peaks for
frequencies above 10 kHz. Owing to the large spectral resolu-
tion, extremely narrow ones can be identified, tracing the influ-
ence of purely sinusoidal noise components. Some others look
wider. As mentioned earlier, one expects some of these to stem
from aliasing effects, although this was not investigated in
detail and neither was the origin of the purely sinusoidal noise
components.

The magnified area of the spectrum around the qPlus resonance
is reported in Figure 6b (40 Hz wide), where no parasitic
peak is visible. The resonance is superimposed on a seemingly
constant background measurement noise that is estimated
to be  (orange dotted line in
Figure 6b).  is the noise floor of the experimental setup in
this frequency range. In Figure 6b, the experimental spectrum
can qualitatively be compared with that of the numerical simu-
lations (cf. Figure 4b). In the log–log scale, the spectrum fea-
tures a linear decay from 500 to ≃5000 Hz (cf. Figure 6a). The
estimated background measurement noise using Equation 26
as functional yields Equation 27. We name this quantity

(f), although it was not deduced from a fit, but estimated
empirically with the constraint to make it match  for
f = f1 − 20 Hz (cf. blue dot in Figure 6b). The corresponding
curve is reported in blue in Figure 6a,b. We notice that the
charge preamplifier transfer function of the experimental setup
induces a measurement noise drop (∝1/f1.6) that decays faster
than regular 1/f noise.

The measurement noise PSD has also been estimated by direct
measurement, that is, without connecting the qPlus sensor to the
charge preamplifier input (green curve in Figure 6a,b). This
third estimate of the measurement noise is named (f). For
this acquisition, similar sampling parameters have been used. In
the log–log scale, the spectrum exhibits a nearly linear decay all
over the acquisition bandwidth. Some residual narrow noise
components are still visible; but, overall, the spectrum is much
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Figure 6: a- Experimental tn-PSD featuring measurement noise, Sz(f),
for qPlus 2 (black curve). The empirically derived measurement noise
PSD (f) is displayed in blue, whereas the directly measured ho-
mologous quantity (f) is displayed in green (cf. text). b- Zoom area
around the resonance of the qPlus sensor (40 Hz wide). The traces of

(f) and (f) are visible. The dotted orange curve depicts a con-
stant noise background  that coincides with (f) in that spec-
tral range. c- tn-PSD for qPlus 2 (f) derived according to (i) Sz(f) −

 (dotted orange curve), (ii) Sz(f) − (f) (blue curve), and
(iii) Sz(f) − (f) (green curve). The estimated stiffness is derived
from these measurements and gathered in Table 3. The red curve is
the theoretical SHO PSD calculated from the experimentally deduced
parameters of the qPlus sensor. d Zoom area on top of the resonance
shown in panel c- (250 mHz wide). The bandwidth of the equivalent
SHO, wf ≃ 81 mHz, has been overlaid in light grey. The experimental
data are framed by the theoretical SHO PSD with an uncertainty
smaller than 10% (cf. text).

cleaner than the tn-PSD one. The fact that both PSDs (qPlus
connected and disconnected) are so different points towards an
additional influence of noise when the qPlus sensor is
connected. This is most probably due to the qPlus cabling inside
the microscope; however, this issue was not addressed so far. It
is, however, clear that (f) will be insufficient to account for
all the noise in the system and will, therefore, not be reliable to
perform the stiffness calibration (cf. section below).

Stiffness calibration
The tn-PSD (f) of qPlus 2 deduced from , (f),
and (f) is reported in Figure 6c over a 9 Hz wide
spectral range. The orange curve in Figure 6c shows
the tn-PSD , the blue curve shows

, and the green curve shows
.

As mentioned earlier, we use no curve-fitting process for (f)
and only focus on methods 1 and 3. Method 1 is used with an
integration range of ±60 Hz around f1, where no parasitic peak
is visible while ensuring a good accuracy of the stiffness cali-
bration, based on the numerical results. The stiffness thus
derived from (f), (f), and (f) gives  = 1800,
1995, and 318 N/m, respectively. Method 3 applied to (f)
gives ,  and  =
2007 N/m. We cannot straightforwardly establish error bars on
those measurements at that stage, but this is done hereafter.
Therefore methods 1 and 3 applied to (f) are found to be in
excellent agreement. As suspected, the estimated stiffness
deduced from (f) is critically underestimated and unreliable.
Furthermore, because we have numerically established that the
calibration stiffness is more accurate when using a background
measurement noise estimated over the entire acquisition band-
width rather than a constant one, the most realistic stiffness of
qPlus 2 is that derived from (f), namely  = 1995 N/m.
The continuous red curve in Figure 6c is the theoretical tn-PSD
of the SHO (Equation 17) calculated with the now established
values of f1, , and . The curve overlays with a good
agreement on top of the experimental tn-PSDs over three
decades.

Figure 6d is a zoom area on top of the tn-PSD shown in
Figure 6c. The frequency range is now 250 mHz. The experi-
mental samples of (f) are displayed with their error bars of
±10 mHz in frequency, consistent with the frequency resolution,
and ±10% in , consistent with our amplitude calibra-
tion uncertainty. The two thick, light grey curves depict the
tn-PSD of the SHO (Equation 17) with 10% deviations of 
and . Because the quality factor and the stiffness have
opposite contributions in the tn-PSD (cf. Equation 18), the
upper curve is obtained with  + 10% and  − 10%, and
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Table 3: Estimated stiffness of the two qPlus sensors used in this study. Various methods have been used. When the tip mass correction is applied,
one assumes the tip geometry to be the same as that given in Figure 1, which is a strong hypothesis and explains the dispersion between the data (cf.
text).

Method Estimated Tip mass qPlus 1 (no tip) qPlus 2 (with tip)
stiffness correction (N/m) (N/m)

geometry (Equation 2) ks no (3322 ± 1270) not applicable
Lübbe et al. [51] (Equation 4) no (809 ± 162) not applicable

Cleveland et al. [32]
(cf. Supporting Information File 1, Equation S5)

no (1296 ± 195) not applicable

Cleveland et al. [32]
(cf. Supporting Information File 1, Equation S14)

yes not applicable (1447 ± 223)

Lozano et al. [49]
(cf. Supporting Information File 1, Equation S12) yes not applicable (1636 ± 164)

tn-PSD implicit

method 1, bkg = (f) (1289 ± 130) (1995 ± 200)

method 3, bkg = (f) (1544 ± 155)
Equation 10

(2007 ± 200)
Supporting Information File 1,
Equation S13

Equation 10, or Supporting Information File 1,
Equation S13, with 

(1252 ± 125) (3012 ± 301)

the lower one with  − 10% and  + 10%. It may be seen
from the figure that the relevant experimental samples located
within the qPlus bandwidth,  ≃ 81 mHz, depicted
with the shaded rectangle, sit all well within this interval.
Therefore, we conclude that the stiffness is estimated with a
maximum relative uncertainty of 10%, which is reported in
Table 3.

The same processing was reproduced with qPlus 1 (f1 =
29,182.99 Hz and  = 172,000) featuring no tip. The esti-
mated stiffness with methods 1 and 3 using (f) as back-
ground measurement noise (±60 Hz integration range) gives

 = (1289 ± 130) N/m and  = (1544 ± 155) N/m, re-
spectively. Like with qPlus 2, we note a slightly larger value of

 with respect to . The results are gathered in Table 3
and are discussed in the section below.

Discussion
In this section, we discuss the advantage of method 1 over
method 3, and we compare the thermal noise-based estimated
stiffness to values derived from other approaches (cf. Table 3).

Our results indicate that method 3 tends to slightly overesti-
mate the stiffness with respect to method 1. But the latter
method forces the experimentalist to point the maximum of
the PSD at the resonance, which introduces a somewhat subjec-
tive bias in the stiffness estimate. Conversely, method 1 inte-
grates the PSD without subjective input. Thus, any potential
statistical bias is smeared out as compared to method 3. This is

why method 1 is likely more robust and, hence, preferred to
method 3.

It is reminded that qPlus 1 features no tip and that the SEM
imaging has been performed with a qPlus sensor that is neither
qPlus 1 nor qPlus 2. Thus, we cannot guarantee that the tip
dimensions that are used hereafter are consistent with those of
the qPlus 2. The discussion is adapted consistently.

For the static stiffness derived from the geometrical
parameters of a qPlus sensor (Equation 2, model without
tip), we have yet calculated ks = (3322 ± 1270) N/m. Lübbe’s
approach [51] (Equation 4 with α1 = 1.875), leads for qPlus 1
to:  = (809 ± 162) N/m. We also estimate the stiffness
from Cleveland’s approach [32] , where

 is the effective mass of the
fundamental eigenmode (cf. also Supporting Information File 1,
Equation S5). With the geometric parameters introduced, the
prong mass is estimated to be mprobe = (160 ± 24) ng (thus,

 = (39 ± 6) ng). The mass of the metallic electrodes is
neglected compared to mprobe. For qPlus 1, Cleveland’s ap-
proach [32] leads to  = (1296 ± 195) N/m.

The latter values stand for the qPlus static stiffness and are not
strictly comparable to  (or ), which depict the modal
stiffness of the probe’s fundamental eigenmode. Nevertheless,
because qPlus 1 features no tip, its static stiffness can be
derived from  (or ) from Equation 10. Then, we get

 = (1252 ± 125) N/m. Cleveland’s approach [32] and ther-
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mal noise measurements are, therefore, in good agreement.
However, we notice a strong discrepancy between the former
results and the stiffness derived from the geometrical parame-
ters of the qPlus (overestimate) and Lübbe’s approach [51]
(underestimate). The reason for that has not been investigated,
but both approaches rely on the embedded beam theory. It
might be that such a description does not perfectly suit to the
type of qPlus sensors investigated here, as discussed in the
bibliographic section of the work by Falter and coworkers [65].
Besides, the tip of qPlus 1 has been removed with the goal to
have a perfectly free prong, whose behavior might be com-
pared to the geometrical model. But again, we cannot guarantee
that there is no glue left at the end of the free prong, which
might falsify the comparison to the model.

Regarding qPlus 2, the influence of both tip and glue used to
hold it must change its stiffness. This is not accounted for in
Equation 2 or Equation 4 and must now be considered. In their
article, Cleveland et al. had proposed a simple approach to that
problem [32] (cf. also Supporting Information File 1, Equation
S14). The stiffness of the loaded prong is  = m(2πf1)2,
where m is not the total mass of the probe including the tip, but
given by . Doing so, they do not consider the
modification of the first eigenmode geometry due to the
added mass, which makes the approach approximate. 
has been established. As for mtip, based on Figure 1, we assume
for the tip an effective cylinder of 50 μm diameter and of
h = (570 ± 29) μm height (cf. Figure 1b). The mass of the
glue is neglected compared to mtip. We get mtip = (22 ± 4) ng.
Thus, for qPlus 2, Cleveland’s approach [32] now yields

 = (1447 ± 223) N/m. The approach by Lozano et al. [49]
improves Cleveland’s one. As mentioned, the tip changes the
geometry of the probe eigenmodes compared to the unloaded
case. This results in a change of the value of the constant αn of
each eigenmode (now becoming , cf. Equation 6). To derive
the value of  for the first eigenmode, Equation 6 is to be
solved with a selected value of μ = mtip/mprobe. With our esti-
mations, μ ≃ 13.8%. The numerical solution of Equation 6
yields  = 1.679. Thus, we derive the stiffness of the equiva-
lent SHO featuring a total mass m = mprobe + mtip according to
(cf. Supporting Information File 1, Equation S12):

(30)

For the qPlus 2, the approach by Lozano et al. [49] yields
 = (1636 ± 164) N/m, closer to  (or ), and, thus,

more consistent than Cleveland’s one [32]. However, it is again
outlined that  and  (or ) do not depict the same

stiffness. The connection between them is not given by
Equation 10 anymore, but by:

(31)

For the qPlus 2, we ultimately get  = (3012 ± 301) N/m.
The estimated static stiffness is about twice as large as Lozano’s
one. However as already mentioned, the tip geometry is not
guaranteed; hence, the relevance of the comparison is neither.

At last, a large discrepancy between the estimated modal stiff-
ness values of qPlus 1 and 2 is also noticed, which is assigned
to the absence/presence of the tip. Our results highlight both the
fundamental role played by the tip in the estimated stiffness and
the urge for the stiffness calibration of each qPlus sensor. For
us, measuring the tip geometry cannot be performed in situ
because the SEM is not connected to the experimental setup.
Hence, the interest in thermal noise measurements.

Our final conclusion is that the most relevant value we can rely
on for qPlus 2 is its modal stiffness  = (1995 ± 200) N/m,
determined through thermal noise measurements from method
1. The fact that this value coincides to within 10% of the value
of 1800 N/m reported for the early versions of qPlus sensor is
purely fortuitous and specific to this qPlus sensor. This value
will be different for other qPlus sensors since they will feature
different tips.

Conclusion
This work details a combined numerical and experimental
framework for the stiffness calibration (k) of a particular type of
non-contact atomic force microscopy (nc-AFM) probes, the
so-called qPlus sensors, in ultrahigh vacuum (UHV) and at low
temperature (9.8 K), based on thermal noise measurements. The
qPlus design for which the stiffness calibration is performed is
shown in Figure 1. These sensors are based on a quartz tuning
fork with one prong fixed and a metallic wire glued at the front
end of their free prong forming the tip. The stiffness calibration
of such high-k sensors, featuring high-quality factors (Q) as
well, requires to master both the acquisition parameters and the
data post-processing. Our approach relies on the statistical anal-
ysis of the thermal noise power spectral density (tn-PSD) of the
fluctuations of the qPlus sensor’s free prong. The estimated
stiffness is derived upon analysis of the tn-PSD by means of the
Euler–Bernoulli model and the simple harmonic oscillator
equivalence, an otherwise common approach in the literature.
Our numerical framework allows us to optimize the experimen-
tal acquisition parameters and draw conclusions about the most
efficient way to treat the measurement noise that interferes with
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the tn-PSD. Among several methods introduced for estimating
the stiffness from the tn-PSD, it has been shown that the most
reliable is to perform the tn-PSD integration over a limited
bandwidth around the resonance of the qPlus sensor. The subse-
quent analysis of the experimental tn-PSD yields a value for the
modal stiffness of the qPlus of ≃2000 N/m, with an uncertainty
of 10% maximum, whereas the corresponding static stiffness of
the sensor featuring no tip, derived from geometric criteria, is
3300 N/m.

Our work highlights the influence of the tip on the estimated
stiffness, as well as the need for individual calibration of these
probes. Calibrating the stiffness by measuring thermal noise
also proves to be more reliable than geometric methods that not
only require highly accurate measurements of probe and tip
dimensions, but also an ad hoc mechanical model.

Our framework details many technical and practical aspects of
the stiffness calibration of qPlus sensors in UHV and at low
temperature. From this point of view, it may be adapted to any
high-k, high-Q nc-AFM probe used under similar conditions,
such as silicon cantilevers and length extensional resonators, the
latter including the KolibriSensor.

Nowadays, a lot of nc-AFM experiments based on qPlus
sensors use frequency shift spectroscopy to deduce the forces
and potentials above individual atoms or molecules in order to
quantitatively evaluate the tip–sample interaction. Most of these
publications use a value of 1800 N/m for the stiffness, reported
more than 20 years ago for the original qPlus sensor design.
However, as we have shown, this can lead to wrong estimates,
as the stiffness is used in the frequency shift-to-force conver-
sion.

Supporting Information
Supporting information features four files. File Supporting
Information File 1 reminds the most salient results of the
Euler–Bernoulli model and how it sustains the point-mass
SHO equivalence. File Supporting Information File 2
reminds fundamental elements of signal processing applied
to discrete time signals, among which the Power Spectral
Density. File Supporting Information File 3 reminds the
expression of the thermal noise PSD of a SHO in thermal
equilibrium within a thermostat. The PSD of the stochastic
thermal force giving rise to the fluctuations of the SHO is
derived as well, which is used in the numerical simulations.
File Supporting Information File 4 illustrates the influence
of a digital antialiasing filter on the measured tn-PSD.

Supporting Information File 1
The Euler–Bernoulli model and the point-mass SHO
equivalence
[https://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-15-50-S1.pdf]

Supporting Information File 2
Discrete Fourier transform and power spectral density of a
discrete time signal
[https://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-15-50-S2.pdf]

Supporting Information File 3
Power Spectral densities of a SHO and of the thermal force
– Probability density function of the thermal force
[https://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-15-50-S3.pdf]

Supporting Information File 4
Influence of a digital antialiasing filter on the measured
tn-PSD
[https://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-15-50-S4.pdf]
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