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Power Spectral Densities of a SHOand of the thermal force - Probability

density function of the thermal force

This SI file relies on the elements developed in the SI file 2 to derive the expression of the thermal

noise PSD of a SHO in thermal equilibrium within a thermostat carrying a thermal energy :�) . The

PSD of the stochastic, thermal force giving rise to the fluctuations of the SHO is derived as well. This

allows us to derive the standard deviation (rms value) of the thermal force, along with its probability

density, used in the numerical simulations. The elements below are a digest of several sources [1,2].

Power Spectral Densities of a SHO and of the thermal force

In this work, the prong of the QTF behaves as a SHO (resonance frequency 51, &-factor&1, stiffness

:1) subject to thermal fluctuations. Assuming �th(C) to be the instantaneous value of the thermal

force acting on the SHO, the instantaneous position of the prong in time, I(C), obeys the classical

second order differential equation:

<1 ¥I(C) + <1
2c 51
&1
¤I(C) + :1I(C) = �th(C) (S1)

At that stage, I(C) and �th(C) stand for continuous time signals, whose corresponding Fourier pairs,

under our Fourier transform convention (cf. SI file 2, equ.1), are: I(C) 
 /̂ ( 5 ) and �th(C) 
 �̂th( 5 ).

The Fourier transform of the above equation then gives:

/̂ ( 5 ) ĵSHO( 5 ) = �̂th( 5 ), (S2)

where ĵSHO( 5 ) is the Fourier transform of the susceptibility, or linear response function, of the SHO:

S2



ĵSHO( 5 ) = :1

[
1 −

(
5

51

)2
+ 9 5

&1 51

]
(S3)

Equation S2 illustrates that �̂th( 5 ) is characterized, to first order, by the Fourier transform of the

linear response function of the SHO.

This sets the framework of the Fluctuation–Dissipation Theorem (FDT) [3,4] that relates the strength

of the thermal fluctuations the SHO undergoes to its dissipation, here characterized by its quality

factor &1, and whose frequency response is quantified by ĵSHO( 5 ). The FDT relates the two-sided

PSD of I(C) and �th(C), namely (I ( 5 ) and (�th ( 5 ) respectively, to the imaginary part of ĵSHO( 5 ).

On the one hand:

(I ( 5 ) = −
:�)

c 5
Im

{
1

ĵSHO( 5 )

}
, (S4)

and on the other hand:

(�th ( 5 ) = +
:�)

c 5
Im { ĵSHO( 5 )} (S5)

Equation S4 leads to:

(I ( 5 ) =
:�)

c:1&1 51

1[
1 −

(
5

51

)2]2
+

(
5

&1 51

)2 , (S6)

whereas equ.S5 leads to:
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(�th ( 5 ) =
:�):1
c&1 51

(S7)

The former equations stand for continuous time signals. If both signals I(C) and �th(C) are now )B-

sampled over a duration)F, following the description detailed in the SI file 2, then their corresponding

one-sided rms PSD are written:

(rms
I ( 5=x) =

2:�)
c:1&1 51

1[
1 −

(
5=x
51

)2]2
+

(
5=x
&1 51

)2 , (S8)

and:

(rms
�th
( 5=x) =

2:�):1
c&1 51

(S9)

It is reminded that (rms
I ( 5=x) and (rms

�th
( 5=x) are sampled signals consisting of #/2 samples and that

5=x ∈ [0; 5B/2[, as detailed in the SI file 2, equ.8.

Probability density function of the thermal force

Equation S9 allows us to specify the probability density function of the thermal force that is used

in the numerical simulations. Indeed, the rms value of the thermal force fluctuations �rms
th in a time

interval C ∈ [0;)F [ representing a frequency interval [0; 5B/2[, is given by:
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�rms
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√
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√
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√
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(S10)

The latter equation may sometimes be found in the literature written as [5]:

�rms
th =

√
2:�):1
c&1 51

�, (S11)

with �, ’the measurement bandwidth’. This statement is quite elusive as � is never clearly correlated

to the sampling frequency of the problem. Here, we will keep in mind that � = 5B/2 matches the

Nyquist frequency of the problem.

The stochastic, thermal, force used in the numerical simulations will therefore feature a probability

distribution following a normal law (implemented with the function randn inMatlab) with a standard

deviation f = �rms
th , and centered around 0 (no mean force), hence a probability density function

(Pdf):

Pdf(�th) =
1

f
√
2c
4
− 12

�2th
f2 (S12)
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