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Context

Fault-Injection Attacks (FIA) [1] pose significant threats to the security and reliability of embedded systems. Nashimoto et al. [2] have illustrated the
possibility to modify the Physical Memory Protection (PMP) configuration registers on a RISC-V processor through FIA using clock glitching. However, their
study did not delve into the consequences of faults on these PMP configuration registers. Thus, in this study, we investigate the effects of clock glitching
on the PMP configuration flow of a CVA6 RISC-V core.

CVA6 PMP

EE NN NN NN NN NN NN NN SN NN NN SN NN NN NN NN NN NN NN NN NN NN NN NN NSNS NN NN NN NN NN NN NN NS NN NN NSNS NN NN SN NN NSNS N NS NN SN NENEEENEENNEENSEEEEEEEEEEEEEEEEEEE

ral
— [DTLB][ITLB] :
FU

Execute 0 Commit
u

Physical Memory Protection (PMP) [3] allows to protect 16 maximum memory
regions by assigning specific access permissions. Each memory region is
governed by 2 Control Status Registers (CSRs):

e pmpctg controls access permissions (read, write, execute) and address- | (e ——
ing mode. (s

e pmpaddr stores region size and base address based on addressing {0
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In the CVAG6 core, PMP configuration flow through pipeline stages is depicted
in the Figure 1. Registers maintaining the PMP configuration are located in
the CSR Write module of the Commit.

| Branch I
I Mispredict I

NN NN AN N AN EEE AR NN NN AN SN NN NN NN NN NN NN AN NN NN AN NN NN NN NN NN NS NE NS NSNS SN AN S NS NSNS NN NN NSNS NN A NN NN N AN NN NN NN NN AN A A NSNS NSNS NN EEEEEEEE NN NN NN NN NN NN AN NENEEEEEEEEEEEEES

Figure 1: CVAG architecture

Experimental setup

Our experimental setup relies on the Chipwhisperer Lite to
inject faults through clock glitching targeting the Arty A7-100T  Clock
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presented in Figure 2. There are 1,970,001 injections per ;... 5 csrw pmpaddr0, @ret;
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Figure 2: Clock Glitch principles parameters

tion for PMP configuration. Figure 3: Target pseudo code

Effects of FIA on PMP configuration

45

ini ' : T : 1 bit-flip
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e Six sensitive zones are identified where all fault effects can occur 35 “*ﬂﬁ .
e Within each sensitive zone, specific sub-zones corresponding to parameters leading to .. %*‘ ’
a particular effect can be delineated. T s a T
e Notably, the single bit-flip effect predominantly occurs at the boundaries of these Width
Z0Nes. Figure 4: Fault effects about injection parameters
Table 1: pmpctg0 & pmpaddro Table 2: pmpcfg® or pmpaddro
hift / 1 bit-flip / 2 bits-flip / 1 bit-flip / > 3 bits-flip / 1 bit-flip / 2 bits-flip / > 3 bits-flip / t o : : : : : :
Ibitfip  1bitfip  1bicAip 2bitsfip  Lbiefp > 3bitefip  2bitefip > 3biteflp.  registers Lbitflip  2bitsflip > 3Ibitsflip  registerset  register reset
pmpcfgO / pmpcfg0 23 9 3 17 0
ompaddro 87 46 22 34 608 22 2 37 549 pmpaddro 571 67 508 44 345

Conclusion & perspectives

This study shows clock glitch-based FIA on the CVA6 PMP configuration, identifying exploitable effects. Consequently, attackers could manipulate injection
parameters to achieve desired effects with a high probability. In future works, experiments will be conducted to comprehend the impacts of faults and
develop customized countermeasures for each pipeline stage. Additionally, we plan to extend the approach to other critical processor execution flows.
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